1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
(*
* Process rtl descriptions
*)
functor MDLRTLTools
(structure AstUtil : MDL_AST_UTIL
structure MLTreeRTL : MLTREE_RTL
) : MDL_RTL_TOOLS =
struct
structure Ast = AstUtil.Ast
structure RTL = MLTreeRTL
structure T = RTL.T
structure A = Ast
structure U = AstUtil
structure CellsBasis = CellsBasis
fun error msg = MLRiscErrorMsg.error("MDRTLTools",msg)
(*========================================================================
*
* Simplify an RTL expression
*
*========================================================================*)
fun simplify rtl =
let fun stm reduce (T.SEQ [s]) = s
| stm reduce (T.IF(T.TRUE, y, n)) = y
| stm reduce (T.IF(T.FALSE, y, n)) = n
| stm reduce s = s
and (* rexp reduce (T.ADD(_,T.LI 0,x)) = x
| rexp reduce (T.ADD(_,x,T.LI 0)) = x
| rexp reduce (T.SUB(_,x,T.LI 0)) = x
| rexp reduce (T.MULS(_,_,zero as T.LI 0)) = zero
| rexp reduce (T.MULU(_,_,zero as T.LI 0)) = zero
| rexp reduce (T.MULT(_,_,zero as T.LI 0)) = zero
| rexp reduce (T.MULS(_,zero as T.LI 0, _)) = zero
| rexp reduce (T.MULU(_,zero as T.LI 0, _)) = zero
| rexp reduce (T.MULT(_,zero as T.LI 0, _)) = zero
| rexp reduce (T.MULS(_,x,T.LI 1)) = x
| rexp reduce (T.MULU(_,x,T.LI 1)) = x
| rexp reduce (T.MULT(_,x,T.LI 1)) = x
| rexp reduce (T.DIVS(_,x,T.LI 1)) = x
| rexp reduce (T.DIVU(_,x,T.LI 1)) = x
| rexp reduce (T.DIVT(_,x,T.LI 1)) = x
| rexp reduce (T.ANDB(_,_,zero as T.LI 0)) = zero
| rexp reduce (T.ANDB(_,zero as T.LI 0,_)) = zero
| *) rexp reduce (e as T.ANDB(_,x,y)) =
if RTL.Util.eqRexp(x,y) then x else e
(* | rexp reduce (T.ORB(_,x,T.LI 0)) = x
| rexp reduce (T.ORB(_,T.LI 0,x)) = x *)
| rexp reduce (e as T.ORB(_,x,y)) =
if RTL.Util.eqRexp(x,y) then x else e
| rexp reduce (T.NOTB(_,T.NOTB(_,x))) = x
| rexp reduce (e as T.SX(t1,t2,x)) = if t1 = t2 then x else e
| rexp reduce (e as T.ZX(t1,t2,x)) = if t1 = t2 then x else e
| rexp reduce e = e
and fexp reduce e = e
and ccexp reduce (T.NOT T.TRUE) = T.FALSE
| ccexp reduce (T.NOT T.FALSE) = T.TRUE
| ccexp reduce (T.AND(T.FALSE,_)) = T.FALSE
| ccexp reduce (T.AND(_,T.FALSE)) = T.FALSE
| ccexp reduce (T.AND(T.TRUE, x)) = x
| ccexp reduce (T.AND(x,T.TRUE)) = x
| ccexp reduce (T.OR(T.FALSE,x)) = x
| ccexp reduce (T.OR(x,T.FALSE)) = x
| ccexp reduce (T.OR(T.TRUE, _)) = T.TRUE
| ccexp reduce (T.OR(_,T.TRUE)) = T.TRUE
| ccexp reduce (e as T.CMP(_,T.EQ,x,y)) =
if RTL.Util.eqRexp(x,y) then T.TRUE else e
| ccexp reduce (e as T.CMP(_,T.NE,x,y)) =
if RTL.Util.eqRexp(x,y) then T.FALSE else e
| ccexp reduce e = e
val rewriter =
RTL.Rewrite.rewrite{rexp=rexp, fexp=fexp, ccexp=ccexp, stm=stm}
in #stm rewriter rtl
end
(*========================================================================
*
* Translate an RTL into something else
*
*========================================================================*)
fun transRTL
{app,id,int,intinf,word32,string,list,Nil,tuple,record,arg,
cellkind,oper,region}
rtl =
let fun word w = word32(Word32.fromLargeWord(Word.toLargeWord w))
fun ternOp n (x,ty,y,z) = app(n,[x, int ty, rexp y, rexp z])
and binOp n (ty,x,y) = app(n,[int ty,rexp x,rexp y])
and unaryOp n (ty,x) = app(n,[int ty,rexp x])
and rexp(T.LI i) = app("LI",[intinf i])
| rexp(T.NEG x) = unaryOp "NEG" x
| rexp(T.ADD x) = binOp "ADD" x
| rexp(T.SUB x) = binOp "SUB" x
| rexp(T.MULS x) = binOp "MULS" x
(* FIXME
| rexp(T.DIVS x) = ternOp "DIVS" x
| rexp(T.REMS x) = ternOp "REMS" x
*)
| rexp(T.MULU x) = binOp "MULU" x
| rexp(T.DIVU x) = binOp "DIVU" x
| rexp(T.REMU x) = binOp "REMU" x
| rexp(T.NEGT x) = unaryOp "NEGT" x
| rexp(T.ADDT x) = binOp "ADDT" x
| rexp(T.SUBT x) = binOp "SUBT" x
| rexp(T.MULT x) = binOp "MULT" x
(* FIXME
| rexp(T.DIVT x) = ternOp "DIVT" x
*)
| rexp(T.NOTB x) = unaryOp "NOTB" x
| rexp(T.ANDB x) = binOp "ANDB" x
| rexp(T.ORB x) = binOp "ORB" x
| rexp(T.XORB x) = binOp "XORB" x
| rexp(T.EQVB x) = binOp "EQVB" x
| rexp(T.SLL x) = binOp "SLL" x
| rexp(T.SRL x) = binOp "SRL" x
| rexp(T.SRA x) = binOp "SRA" x
| rexp(T.SX(t1,t2,x)) = app("SX",[int t1,int t2,rexp x])
| rexp(T.ZX(t1,t2,x)) = app("ZX",[int t1,int t2,rexp x])
| rexp(T.CVTF2I(t1,r,t2,x)) =
app("CVTF2I",[int t1,id(T.Basis.roundingModeToString r),
int t2,fexp x])
| rexp(T.COND(ty,cc,a,b)) =
app("COND",[int ty,ccexp cc,rexp a,rexp b])
| rexp(T.$(ty,k,e)) = app("$",[int ty,cellkind k,rexp e])
| rexp(T.ARG(ty,a,b)) = arg(ty,a,b)
| rexp(T.PARAM(i)) = app("PARAM",[int i])
| rexp(T.???) = id "???"
| rexp(T.OP(ty,opc,es)) =
app("OP",[int ty,oper opc,list(map rexp es, NONE)])
| rexp(T.BITSLICE(ty,sl,e)) =
app("BITSLICE",[int ty,slice sl,rexp e])
| rexp e = error("transRTL: "^RTL.Util.rexpToString e)
and slice sl = list(map (fn (x,y) => tuple[int x,int y]) sl, NONE)
and fbinOp n (ty,x,y) = app(n,[int ty,fexp x,fexp y])
and funaryOp n (ty,x) = app(n,[int ty,fexp x])
and fexp(T.FADD x) = fbinOp "FADD" x
| fexp(T.FSUB x) = fbinOp "FSUB" x
| fexp(T.FMUL x) = fbinOp "FMUL" x
| fexp(T.FDIV x) = fbinOp "FDIV" x
| fexp(T.FCOPYSIGN x) = fbinOp "FCOPYSIGN" x
| fexp(T.FNEG x) = funaryOp "FNEG" x
| fexp(T.FABS x) = funaryOp "FABS" x
| fexp(T.FSQRT x) = funaryOp "FSQRT" x
| fexp(T.FCOND(ty,cc,x,y)) =
app("FCOND",[int ty,ccexp cc,fexp x,fexp y])
| fexp(T.CVTI2F(t1,t2,x)) = app("CVTI2F",[int t1,int t2,rexp x])
| fexp(T.CVTF2F(t1,t2,x)) = app("CVTF2F",[int t1,int t2,fexp x])
| fexp e = error("transRTL: "^RTL.Util.fexpToString e)
and stm(T.ASSIGN(ty,x,y)) = app("ASSIGN",[int ty,rexp x,rexp y])
| stm(T.JMP(e,_)) = app("JMP",[rexp e,Nil])
| stm(T.RET _) = app("RET",[Nil])
| stm(T.IF(x,y,z)) = app("IF",[ccexp x,stm y,stm z])
| stm(T.SEQ ss) = app("SEQ",[list(map stm ss,NONE)])
| stm(T.RTL{e, ...}) = stm e
| stm(T.CALL{funct,...}) = app("CALL",
[record[("defs",Nil),
("uses",Nil),
("funct",rexp funct),
("targets",Nil),
("region",region)]
]
)
| stm s = error("transRTL: "^RTL.Util.stmToString s)
and ccexp(T.CMP(ty,cc,x,y)) =
app("CMP",[int ty,id(T.Basis.condToString cc),rexp x,rexp y])
| ccexp(T.FCMP(ty,cc,x,y)) =
app("FCMP",[int ty,id(T.Basis.fcondToString cc),fexp x,fexp y])
| ccexp(T.TRUE) = id "TRUE"
| ccexp(T.FALSE) = id "FALSE"
| ccexp(T.AND(x,y)) = app("AND",[ccexp x,ccexp y])
| ccexp(T.OR(x,y)) = app("OR",[ccexp x,ccexp y])
| ccexp(T.XOR(x,y)) = app("XOR",[ccexp x,ccexp y])
| ccexp(T.EQV(x,y)) = app("EQV",[ccexp x,ccexp y])
| ccexp(T.NOT x) = app("NOT",[ccexp x])
| ccexp e = error("transRTL: "^RTL.Util.ccexpToString e)
in stm rtl
end
(*========================================================================
* Translate an RTL to an expression
*========================================================================*)
fun rtlToExp rtl =
let fun id name = A.IDexp(A.IDENT(["T"],name))
fun app(n, es) = A.APPexp(id n, A.TUPLEexp es)
val int = U.INTexp
val string= U.STRINGexp
fun arg(ty,a,name) = A.IDexp(A.IDENT([],name))
fun cellkind k = A.IDexp(A.IDENT(["C"],CellsBasis.cellkindToString k))
fun oper(T.OPER{name,...}) = A.IDexp(A.IDENT(["P"],name))
val region=A.IDexp(A.IDENT(["T","Region"],"memory"))
in transRTL{id=id, app=app, list=A.LISTexp, string=string,
int=int, intinf=U.INTINFexp,
word32=U.WORD32exp, Nil=A.LISTexp([],NONE),
tuple=A.TUPLEexp, record=A.RECORDexp,
region=region, arg=arg, cellkind=cellkind, oper=oper
} rtl
end
(*========================================================================
* Translate an RTL to a pattern
*========================================================================*)
fun rtlToPat rtl =
let fun mkId name = A.IDENT(["T"],name)
fun id name = A.CONSpat(mkId name,NONE)
fun app(n, [x]) = A.CONSpat(mkId n, SOME x)
| app(n, es) = A.CONSpat(mkId n, SOME(A.TUPLEpat es))
fun record ps = A.RECORDpat(ps,false)
val int = U.INTpat
val intinf= U.INTINFpat
val string= U.STRINGpat
fun arg(ty,a,name) = A.IDpat name
fun cellkind k = A.IDpat(CellsBasis.cellkindToString k)
fun oper(T.OPER{name,...}) =
A.CONSpat(A.IDENT(["T"],"OPER"),
SOME(A.RECORDpat([("name",U.STRINGpat name)],true)))
val region=A.WILDpat
in transRTL{id=id, app=app, list=A.LISTpat, string=string,
int=int, intinf=intinf,
word32=U.WORD32pat, Nil=A.LISTpat([],NONE),
tuple=A.TUPLEpat, record=record, region=region,
arg=arg, cellkind=cellkind, oper=oper
} rtl
end
(*========================================================================
* Translate an RTL to a function with arguments
*========================================================================*)
fun rtlToFun(rtlName, rtlArgs, rtl) =
let val body = rtlToExp rtl
val args = A.RECORDpat(map (fn id => (id,A.IDpat id)) rtlArgs,false)
in A.FUNdecl
[A.FUNbind(rtlName, [A.CLAUSE([args], NONE, body)])]
end
(*========================================================================
* Create a new_op
*========================================================================*)
fun createNewOp{name, hash, attribs} =
A.VALdecl[
A.VALbind(A.IDpat name,
A.APPexp(A.IDexp(A.IDENT(["T"],"OPER")),
A.APPexp(A.IDexp(A.IDENT(["RTL"],"newOp")),
A.RECORDexp[("name",U.STRINGexp name),
("attribs",U.WORDexp (!attribs))
])))
]
end
|