File: mdl-rtl-tools.sml

package info (click to toggle)
mlton 20210117%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 58,464 kB
  • sloc: ansic: 27,682; sh: 4,455; asm: 3,569; lisp: 2,879; makefile: 2,347; perl: 1,169; python: 191; pascal: 68; javascript: 7
file content (253 lines) | stat: -rw-r--r-- 10,889 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
(*
 * Process rtl descriptions
 *)
functor MDLRTLTools
   (structure AstUtil   : MDL_AST_UTIL
    structure MLTreeRTL : MLTREE_RTL
   ) : MDL_RTL_TOOLS =
struct
   structure Ast = AstUtil.Ast
   structure RTL = MLTreeRTL
   structure T   = RTL.T
   structure A   = Ast
   structure U   = AstUtil
   structure CellsBasis = CellsBasis

   fun error msg = MLRiscErrorMsg.error("MDRTLTools",msg)

   (*========================================================================
    *
    * Simplify an RTL expression
    *
    *========================================================================*)
   fun simplify rtl =
   let fun stm reduce (T.SEQ [s]) = s
         | stm reduce (T.IF(T.TRUE, y, n)) = y
         | stm reduce (T.IF(T.FALSE, y, n)) = n
         | stm reduce s = s

       and (* rexp reduce (T.ADD(_,T.LI 0,x)) = x
         | rexp reduce (T.ADD(_,x,T.LI 0)) = x
         | rexp reduce (T.SUB(_,x,T.LI 0)) = x
         | rexp reduce (T.MULS(_,_,zero as T.LI 0)) = zero
         | rexp reduce (T.MULU(_,_,zero as T.LI 0)) = zero
         | rexp reduce (T.MULT(_,_,zero as T.LI 0)) = zero
         | rexp reduce (T.MULS(_,zero as T.LI 0, _)) = zero
         | rexp reduce (T.MULU(_,zero as T.LI 0, _)) = zero
         | rexp reduce (T.MULT(_,zero as T.LI 0, _)) = zero
         | rexp reduce (T.MULS(_,x,T.LI 1)) = x
         | rexp reduce (T.MULU(_,x,T.LI 1)) = x
         | rexp reduce (T.MULT(_,x,T.LI 1)) = x
         | rexp reduce (T.DIVS(_,x,T.LI 1)) = x
         | rexp reduce (T.DIVU(_,x,T.LI 1)) = x
         | rexp reduce (T.DIVT(_,x,T.LI 1)) = x
         | rexp reduce (T.ANDB(_,_,zero as T.LI 0)) = zero
         | rexp reduce (T.ANDB(_,zero as T.LI 0,_)) = zero
         | *) rexp reduce (e as T.ANDB(_,x,y)) =
             if RTL.Util.eqRexp(x,y) then x else e
         (* | rexp reduce (T.ORB(_,x,T.LI 0)) = x
         | rexp reduce (T.ORB(_,T.LI 0,x)) = x *)
         | rexp reduce (e as T.ORB(_,x,y)) =
             if RTL.Util.eqRexp(x,y) then x else e
         | rexp reduce (T.NOTB(_,T.NOTB(_,x))) = x
         | rexp reduce (e as T.SX(t1,t2,x)) = if t1 = t2 then x else e
         | rexp reduce (e as T.ZX(t1,t2,x)) = if t1 = t2 then x else e
         | rexp reduce e = e
       and fexp reduce e = e

       and ccexp reduce (T.NOT T.TRUE) = T.FALSE
         | ccexp reduce (T.NOT T.FALSE) = T.TRUE
         | ccexp reduce (T.AND(T.FALSE,_)) = T.FALSE
         | ccexp reduce (T.AND(_,T.FALSE)) = T.FALSE
         | ccexp reduce (T.AND(T.TRUE, x)) = x
         | ccexp reduce (T.AND(x,T.TRUE)) = x
         | ccexp reduce (T.OR(T.FALSE,x)) = x
         | ccexp reduce (T.OR(x,T.FALSE)) = x
         | ccexp reduce (T.OR(T.TRUE, _)) = T.TRUE
         | ccexp reduce (T.OR(_,T.TRUE)) = T.TRUE
         | ccexp reduce (e as T.CMP(_,T.EQ,x,y)) =
            if RTL.Util.eqRexp(x,y) then T.TRUE else e
         | ccexp reduce (e as T.CMP(_,T.NE,x,y)) =
            if RTL.Util.eqRexp(x,y) then T.FALSE else e
         | ccexp reduce e = e

       val rewriter =
             RTL.Rewrite.rewrite{rexp=rexp, fexp=fexp, ccexp=ccexp, stm=stm}
   in  #stm rewriter rtl
   end

   (*========================================================================
    *
    * Translate an RTL into something else
    *
    *========================================================================*)
   fun transRTL
        {app,id,int,intinf,word32,string,list,Nil,tuple,record,arg,
         cellkind,oper,region}
                rtl =
   let fun word w = word32(Word32.fromLargeWord(Word.toLargeWord w))
       fun ternOp n (x,ty,y,z) = app(n,[x, int ty, rexp y, rexp z])
       and binOp n (ty,x,y) = app(n,[int ty,rexp x,rexp y])
       and unaryOp n (ty,x) = app(n,[int ty,rexp x])
       and rexp(T.LI i) = app("LI",[intinf i])
         | rexp(T.NEG x) = unaryOp "NEG" x
         | rexp(T.ADD x) = binOp "ADD" x
         | rexp(T.SUB x) = binOp "SUB" x
         | rexp(T.MULS x) = binOp "MULS" x
(* FIXME
         | rexp(T.DIVS x) = ternOp "DIVS" x
         | rexp(T.REMS x) = ternOp "REMS" x
 *)
         | rexp(T.MULU x) = binOp "MULU" x
         | rexp(T.DIVU x) = binOp "DIVU" x
         | rexp(T.REMU x) = binOp "REMU" x
         | rexp(T.NEGT x) = unaryOp "NEGT" x
         | rexp(T.ADDT x) = binOp "ADDT" x
         | rexp(T.SUBT x) = binOp "SUBT" x
         | rexp(T.MULT x) = binOp "MULT" x
(* FIXME
         | rexp(T.DIVT x) = ternOp "DIVT" x
 *)
         | rexp(T.NOTB x) = unaryOp "NOTB" x
         | rexp(T.ANDB x) = binOp "ANDB" x
         | rexp(T.ORB x) = binOp "ORB" x
         | rexp(T.XORB x) = binOp "XORB" x
         | rexp(T.EQVB x) = binOp "EQVB" x
         | rexp(T.SLL x) = binOp "SLL" x
         | rexp(T.SRL x) = binOp "SRL" x
         | rexp(T.SRA x) = binOp "SRA" x
         | rexp(T.SX(t1,t2,x)) = app("SX",[int t1,int t2,rexp x])
         | rexp(T.ZX(t1,t2,x)) = app("ZX",[int t1,int t2,rexp x])
         | rexp(T.CVTF2I(t1,r,t2,x)) =
               app("CVTF2I",[int t1,id(T.Basis.roundingModeToString r),
                             int t2,fexp x])
         | rexp(T.COND(ty,cc,a,b)) =
              app("COND",[int ty,ccexp cc,rexp a,rexp b])
         | rexp(T.$(ty,k,e)) = app("$",[int ty,cellkind k,rexp e])
         | rexp(T.ARG(ty,a,b)) = arg(ty,a,b)
         | rexp(T.PARAM(i)) = app("PARAM",[int i])
         | rexp(T.???) = id "???"
         | rexp(T.OP(ty,opc,es)) =
              app("OP",[int ty,oper opc,list(map rexp es, NONE)])
         | rexp(T.BITSLICE(ty,sl,e)) =
              app("BITSLICE",[int ty,slice sl,rexp e])
         | rexp e = error("transRTL: "^RTL.Util.rexpToString e)
       and slice sl = list(map (fn (x,y) => tuple[int x,int y]) sl, NONE)
       and fbinOp n (ty,x,y) = app(n,[int ty,fexp x,fexp y])
       and funaryOp n (ty,x) = app(n,[int ty,fexp x])
       and fexp(T.FADD x) = fbinOp "FADD" x
         | fexp(T.FSUB x) = fbinOp "FSUB" x
         | fexp(T.FMUL x) = fbinOp "FMUL" x
         | fexp(T.FDIV x) = fbinOp "FDIV" x
         | fexp(T.FCOPYSIGN x) = fbinOp "FCOPYSIGN" x
         | fexp(T.FNEG x) = funaryOp "FNEG" x
         | fexp(T.FABS x) = funaryOp "FABS" x
         | fexp(T.FSQRT x) = funaryOp "FSQRT" x
         | fexp(T.FCOND(ty,cc,x,y)) =
              app("FCOND",[int ty,ccexp cc,fexp x,fexp y])
         | fexp(T.CVTI2F(t1,t2,x)) = app("CVTI2F",[int t1,int t2,rexp x])
         | fexp(T.CVTF2F(t1,t2,x)) = app("CVTF2F",[int t1,int t2,fexp x])
         | fexp e = error("transRTL: "^RTL.Util.fexpToString e)

       and stm(T.ASSIGN(ty,x,y)) = app("ASSIGN",[int ty,rexp x,rexp y])
         | stm(T.JMP(e,_)) = app("JMP",[rexp e,Nil])
         | stm(T.RET _) = app("RET",[Nil])
         | stm(T.IF(x,y,z)) = app("IF",[ccexp x,stm y,stm z])
         | stm(T.SEQ ss) = app("SEQ",[list(map stm ss,NONE)])
         | stm(T.RTL{e, ...}) = stm e
         | stm(T.CALL{funct,...}) = app("CALL",
                [record[("defs",Nil),
                        ("uses",Nil),
                        ("funct",rexp funct),
                        ("targets",Nil),
                        ("region",region)]
                ]
            )
         | stm s = error("transRTL: "^RTL.Util.stmToString s)

       and ccexp(T.CMP(ty,cc,x,y)) =
             app("CMP",[int ty,id(T.Basis.condToString cc),rexp x,rexp y])
         | ccexp(T.FCMP(ty,cc,x,y)) =
             app("FCMP",[int ty,id(T.Basis.fcondToString cc),fexp x,fexp y])
         | ccexp(T.TRUE)     = id "TRUE"
         | ccexp(T.FALSE)    = id "FALSE"
         | ccexp(T.AND(x,y)) = app("AND",[ccexp x,ccexp y])
         | ccexp(T.OR(x,y))  = app("OR",[ccexp x,ccexp y])
         | ccexp(T.XOR(x,y)) = app("XOR",[ccexp x,ccexp y])
         | ccexp(T.EQV(x,y)) = app("EQV",[ccexp x,ccexp y])
         | ccexp(T.NOT x)    = app("NOT",[ccexp x])
         | ccexp e = error("transRTL: "^RTL.Util.ccexpToString e)
   in  stm rtl
   end

   (*========================================================================
    * Translate an RTL to an expression
    *========================================================================*)
   fun rtlToExp rtl =
   let fun id name = A.IDexp(A.IDENT(["T"],name))
       fun app(n, es) = A.APPexp(id n, A.TUPLEexp es)
       val int = U.INTexp
       val string= U.STRINGexp
       fun arg(ty,a,name) = A.IDexp(A.IDENT([],name))
       fun cellkind k = A.IDexp(A.IDENT(["C"],CellsBasis.cellkindToString k))
       fun oper(T.OPER{name,...}) = A.IDexp(A.IDENT(["P"],name))
       val region=A.IDexp(A.IDENT(["T","Region"],"memory"))
   in  transRTL{id=id, app=app, list=A.LISTexp, string=string,
                int=int, intinf=U.INTINFexp,
                word32=U.WORD32exp, Nil=A.LISTexp([],NONE),
                tuple=A.TUPLEexp, record=A.RECORDexp,
                region=region, arg=arg, cellkind=cellkind, oper=oper
               } rtl
   end

   (*========================================================================
    * Translate an RTL to a pattern
    *========================================================================*)
   fun rtlToPat rtl =
   let fun mkId name = A.IDENT(["T"],name)
       fun id name = A.CONSpat(mkId name,NONE)
       fun app(n, [x]) = A.CONSpat(mkId n, SOME x)
         | app(n, es) = A.CONSpat(mkId n, SOME(A.TUPLEpat es))
       fun record ps = A.RECORDpat(ps,false)
       val int = U.INTpat
       val intinf= U.INTINFpat
       val string= U.STRINGpat
       fun arg(ty,a,name) = A.IDpat name
       fun cellkind k = A.IDpat(CellsBasis.cellkindToString k)
       fun oper(T.OPER{name,...}) =
          A.CONSpat(A.IDENT(["T"],"OPER"),
            SOME(A.RECORDpat([("name",U.STRINGpat name)],true)))
       val region=A.WILDpat
   in  transRTL{id=id, app=app, list=A.LISTpat, string=string,
                int=int, intinf=intinf,
                word32=U.WORD32pat, Nil=A.LISTpat([],NONE),
                tuple=A.TUPLEpat, record=record, region=region,
                arg=arg, cellkind=cellkind, oper=oper
               } rtl
   end

   (*========================================================================
    * Translate an RTL to a function with arguments
    *========================================================================*)
   fun rtlToFun(rtlName, rtlArgs, rtl) =
   let val body = rtlToExp rtl
       val args = A.RECORDpat(map (fn id => (id,A.IDpat id)) rtlArgs,false)
   in  A.FUNdecl
          [A.FUNbind(rtlName, [A.CLAUSE([args], NONE, body)])]
   end

   (*========================================================================
    * Create a new_op
    *========================================================================*)
   fun createNewOp{name, hash, attribs} =
       A.VALdecl[
         A.VALbind(A.IDpat name,
            A.APPexp(A.IDexp(A.IDENT(["T"],"OPER")),
               A.APPexp(A.IDexp(A.IDENT(["RTL"],"newOp")),
                  A.RECORDexp[("name",U.STRINGexp name),
                              ("attribs",U.WORDexp (!attribs))
                             ])))
       ]

end