File: alpha.sml

package info (click to toggle)
mlton 20210117%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 58,464 kB
  • sloc: ansic: 27,682; sh: 4,455; asm: 3,569; lisp: 2,879; makefile: 2,347; perl: 1,169; python: 191; pascal: 68; javascript: 7
file content (1649 lines) | stat: -rw-r--r-- 69,295 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
(* 
 * This is a revamping of the Alpha32 instruction selection module
 * using the new MLTREE and instruction representation.   I've dropped
 * the suffix 32 since we now support 64 bit datatypes.
 * 
 * -- Allen
 * 
 * Notes: places with optimizations are marked ***OPT**n*
 *)


functor Alpha
   (structure AlphaInstr : ALPHAINSTR 
    structure PseudoInstrs : ALPHA_PSEUDO_INSTR (* where I = AlphaInstr *)
                             where type I.Constant.const = AlphaInstr.Constant.const
                               and type I.Region.region = AlphaInstr.Region.region
                               and type I.T.Basis.cond = AlphaInstr.T.Basis.cond
                               and type I.T.Basis.div_rounding_mode = AlphaInstr.T.Basis.div_rounding_mode
                               and type I.T.Basis.ext = AlphaInstr.T.Basis.ext
                               and type I.T.Basis.fcond = AlphaInstr.T.Basis.fcond
                               and type I.T.Basis.rounding_mode = AlphaInstr.T.Basis.rounding_mode
                               and type ('s,'r,'f,'c) I.T.Extension.ccx = ('s,'r,'f,'c) AlphaInstr.T.Extension.ccx
                               and type ('s,'r,'f,'c) I.T.Extension.fx = ('s,'r,'f,'c) AlphaInstr.T.Extension.fx
                               and type ('s,'r,'f,'c) I.T.Extension.rx = ('s,'r,'f,'c) AlphaInstr.T.Extension.rx
                               and type ('s,'r,'f,'c) I.T.Extension.sx = ('s,'r,'f,'c) AlphaInstr.T.Extension.sx
                               and type I.T.I.div_rounding_mode = AlphaInstr.T.I.div_rounding_mode
                               and type I.T.ccexp = AlphaInstr.T.ccexp
                               and type I.T.fexp = AlphaInstr.T.fexp
                               (* and type I.T.labexp = AlphaInstr.T.labexp *)
                               and type I.T.mlrisc = AlphaInstr.T.mlrisc
                               and type I.T.oper = AlphaInstr.T.oper
                               and type I.T.rep = AlphaInstr.T.rep
                               and type I.T.rexp = AlphaInstr.T.rexp
                               and type I.T.stm = AlphaInstr.T.stm
                               and type I.branch = AlphaInstr.branch
                               and type I.cmove = AlphaInstr.cmove
                               and type I.ea = AlphaInstr.ea
                               and type I.fbranch = AlphaInstr.fbranch
                               and type I.fcmove = AlphaInstr.fcmove
                               and type I.fload = AlphaInstr.fload
                               and type I.foperate = AlphaInstr.foperate
                               and type I.foperateV = AlphaInstr.foperateV
                               and type I.fstore = AlphaInstr.fstore
                               and type I.funary = AlphaInstr.funary
                               and type I.instr = AlphaInstr.instr
                               and type I.instruction = AlphaInstr.instruction
                               and type I.load = AlphaInstr.load
                               and type I.operand = AlphaInstr.operand
                               and type I.operate = AlphaInstr.operate
                               and type I.operateV = AlphaInstr.operateV
                               and type I.osf_user_palcode = AlphaInstr.osf_user_palcode
                               and type I.pseudo_op = AlphaInstr.pseudo_op
                               and type I.store = AlphaInstr.store
    structure ExtensionComp : MLTREE_EXTENSION_COMP (* where I = AlphaInstr and T = AlphaInstr.T *)
                              where type I.addressing_mode = AlphaInstr.addressing_mode
                                and type I.ea = AlphaInstr.ea
                                and type I.instr = AlphaInstr.instr
                                and type I.instruction = AlphaInstr.instruction
                                and type I.operand = AlphaInstr.operand
                              where type T.Basis.cond = AlphaInstr.T.Basis.cond
                                and type T.Basis.div_rounding_mode = AlphaInstr.T.Basis.div_rounding_mode
                                and type T.Basis.ext = AlphaInstr.T.Basis.ext
                                and type T.Basis.fcond = AlphaInstr.T.Basis.fcond
                                and type T.Basis.rounding_mode = AlphaInstr.T.Basis.rounding_mode
                                and type T.Constant.const = AlphaInstr.T.Constant.const
                                and type ('s,'r,'f,'c) T.Extension.ccx = ('s,'r,'f,'c) AlphaInstr.T.Extension.ccx
                                and type ('s,'r,'f,'c) T.Extension.fx = ('s,'r,'f,'c) AlphaInstr.T.Extension.fx
                                and type ('s,'r,'f,'c) T.Extension.rx = ('s,'r,'f,'c) AlphaInstr.T.Extension.rx
                                and type ('s,'r,'f,'c) T.Extension.sx = ('s,'r,'f,'c) AlphaInstr.T.Extension.sx
                                and type T.I.div_rounding_mode = AlphaInstr.T.I.div_rounding_mode
                                and type T.Region.region = AlphaInstr.T.Region.region
                                and type T.ccexp = AlphaInstr.T.ccexp
                                and type T.fexp = AlphaInstr.T.fexp
                                (* and type T.labexp = AlphaInstr.T.labexp *)
                                and type T.mlrisc = AlphaInstr.T.mlrisc
                                and type T.oper = AlphaInstr.T.oper
                                and type T.rep = AlphaInstr.T.rep
                                and type T.rexp = AlphaInstr.T.rexp
                                and type T.stm = AlphaInstr.T.stm

      (* Cost of multiplication in cycles *)
    val multCost : int ref

      (* Should we just use the native multiply by a constant? *)
    val useMultByConst : bool ref

      (* Should we use SUD flags for floating point and generate DEFFREG? 
       * This should be set to false for C-like clients but true for SML/NJ.
       *)
    val SMLNJfloatingPoint : bool 

      (* Should we use generate special byte/word load instructions
       * like LDBU, LDWU, STB, STW.
       *)
    val byteWordLoadStores : bool ref
   ) : MLTREECOMP =
struct

  structure I   = AlphaInstr
  structure C   = I.C
  structure T   = I.T
  structure TS  = ExtensionComp.TS
  structure R   = T.Region
  structure W32 = Word32
  structure P   = PseudoInstrs
  structure A   = MLRiscAnnotations
  structure CB  = CellsBasis
  structure CFG = ExtensionComp.CFG

 (*********************************************************

       Trap Shadows, Floating Exceptions, and Denormalized
        Numbers on the DEC Alpha

                Andrew W. Appel and Lal George
                  Nov 28, 1995

  See section 4.7.5.1 of the Alpha Architecture Reference Manual.

  The Alpha has imprecise exceptions, meaning that if a floating
  point instruction raises an IEEE exception, the exception may
  not interrupt the processor until several successive instructions have
  completed.  ML, on the other hand, may want a "precise" model
  of floating point exceptions.

  Furthermore, the Alpha hardware does not support denormalized numbers
  (for "gradual underflow").  Instead, underflow always rounds to zero.
  However, each floating operation (add, mult, etc.) has a trapping
  variant that will raise an exception (imprecisely, of course) on
  underflow; in that case, the instruction will produce a zero result
  AND an exception will occur.  In fact, there are several variants
  of each instruction; three variants of MULT are:

  MULT  s1,s2,d       truncate denormalized result to zero; no exception
  MULT/U  s1,s2,d     truncate denormalized result to zero; raise UNDERFLOW
  MULT/SU  s1,s2,d    software completion, producing denormalized result

  The hardware treats the MULT/U and MULT/SU instructions identically,
  truncating a denormalized result to zero and raising the UNDERFLOW
  exception.  But the operating system, on an UNDERFLOW exception,
  examines the faulting instruction to see if it's an /SU form, and if so,
  recalculates s1*s2, puts the right answer in d, and continues,
  all without invoking the user's signal handler.

  Because most machines compute with denormalized numbers in hardware,
  to maximize portability of SML programs, we use the MULT/SU form.
  (and ADD/SU, SUB/SU, etc.)  But to use this form successfully,
  certain rules have to be followed.  Basically, d cannot be the same
  register as s1 or s2, because the opsys needs to be able to 
  recalculate the operation using the original contents of s1 and s2,
  and the MULT/SU instruction will overwrite d even if it traps.

  More generally, we may want to have a sequence of floating-point
  instructions.  The rules for such a sequence are:

  1. The sequence should end with a TRAPB (trap barrier) instruction.
     (This could be relaxed somewhat, but certainly a TRAPB would
      be a good idea sometime before the next branch instruction or
      update of an ML reference variable, or any other ML side effect.)
  2. No instruction in the sequence should destroy any operand of itself
     or of any previous instruction in the sequence.
  3. No two instructions in the sequence should write the same destination
     register.

  We can achieve these conditions by the following trick in the
  Alpha code generator.  Each instruction in the sequence will write
  to a different temporary; this is guaranteed by the translation from
  ML-RISC.  At the beginning of the sequence, we will put a special
  pseudo-instruction (we call it DEFFREG) that "defines" the destination
  register of the arithmetic instruction.  If there are K arithmetic
  instructions in the sequence, then we'll insert K DEFFREG instructions
  all at the beginning of the sequence.
  Then, each arithop will not only "define" its destination temporary
  but will "use" it as well.  When all these instructions are fed to
  the liveness analyzer, the resulting interference graph will then
  have inteference edges satisfying conditions 2 and 3 above.

  Of course, DEFFREG doesn't actually generate any code.  In our model
  of the Alpha, every instruction generates exactly 4 bytes of code
  except the "span-dependent" ones.  Therefore, we'll specify DEFFREG
  as a span-dependent instruction whose minimum and maximum sizes are zero.

  At the moment, we do not group arithmetic operations into sequences;
  that is, each arithop will be preceded by a single DEFFREG and
  followed by a TRAPB.  To avoid the cost of all those TRAPB's, we
  should improve this when we have time.  Warning:  Don't put more 
  than 31 instructions in the sequence, because they're all required
  to write to different destination registers!  

  What about multiple traps?  For example, suppose a sequence of
  instructions produces an Overflow and  a Divide-by-Zero exception?
  ML would like to know only about the earliest trap, but the hardware
  will report BOTH traps to the operating system.  However, as long
  as the rules above are followed (and the software-completion versions
  of the arithmetic instructions are used), the operating system will
  have enough information to know which instruction produced the
  trap.  It is very probable that the operating system will report ONLY
  the earlier trap to the user process, but I'm not sure.

  For a hint about what the operating system is doing in its own
  trap-handler (with software completion), see section 6.3.2 of
  "OpenVMS Alpha Software" (Part II of the Alpha Architecture
  Manual).  This stuff should apply to Unix (OSF1) as well as VMS.







		-------------------o*o----------------------
			   LIVE/KILL instructions
				 Nov 28, 2001
				  Lal George

  The mechanism described above is now obsolete. We no longer use
  the DEFFREG instruction but the zero length LIVE instruction. 
  Therefore the code that gets generated is something like;

	f1 := f2 + f3
        trap
	LIVE f1, f2, f3

  The live ranges for f1, f2, and f3 are extended by the LIVE
  instruction, and are live simultaneously and therefore cannot
  be allocated to the same register. 

  Multiple floating point instructions should be surrounded
  by parallel copies. That is to say, if we have:

        f1 := f2 + f3
	trapb
        LIVE f1, f2, f3

	f4 := f1 * f2
	trapb
	LIVE f1, f2, f4

  Then the sequence above should be transformed to:

        [f2', f3'] := [f1, f2] ; parallel copy
        f1' := f2' + f3'
	f4' := f1' * f2'
        trapb
	LIVE f1', f2', f3', f4'
        [f4] := [f4']  ; copy assuming f4 is the only value live.

  The parallel copies are to ensure that the primed variables will 
  not spill, and there should never be more than K reigsters in the LIVE
  instruction (K is the number of registers on the machine).
  ****************************************************************)

  fun error msg = MLRiscErrorMsg.error("Alpha",msg) 

  type instrStream = (I.instruction, C.cellset, CFG.cfg) TS.stream
  type mltreeStream = (T.stm, T.mlrisc list, CFG.cfg) TS.stream

  (*
   * This module is used to simulate operations of non-standard widths.
   *)
  structure Gen = MLTreeGen(structure T = T
			    structure Cells = C
                            val intTy = 64
                            val naturalWidths = [32,64]
                            datatype rep = SE | ZE | NEITHER
                            val rep = SE
                           )

  val zeroR   = C.r31
  val zeroOpn = I.REGop zeroR
  fun LI i    = T.LI(T.I.fromInt(32, i))
  fun toInt i = T.I.toInt(32, i)
  val EQ      = op =

  (*
   * Specialize the modules for multiplication/division 
   * by constant optimizations.
   *)

  (* signed, trapping version of multiply and divide *)
  structure Multiply32 = struct
     structure I = I
     structure T = T
     structure CB = CellsBasis

     val intTy = 32
   
     type arg  = {r1:CB.cell,r2:CB.cell,d:CB.cell}
     type argi = {r:CB.cell,i:int,d:CB.cell}

     fun mov{r,d}    = I.COPY{k=CB.GP, sz=intTy, dst=[d],src=[r],tmp=NONE}
     fun add{r1,r2,d} = I.operate{oper=I.ADDL,ra=r1,rb=I.REGop r2,rc=d}
     (*
      * How to left shift by a constant (32bits)
      *)
     fun slli{r,i=1,d} = [I.operate{oper=I.ADDL,ra=r,rb=I.REGop r,rc=d}]
       | slli{r,i=2,d} = [I.operate{oper=I.S4ADDL,ra=r,rb=zeroOpn,rc=d}]
       | slli{r,i=3,d} = [I.operate{oper=I.S8ADDL,ra=r,rb=zeroOpn,rc=d}]
       | slli{r,i,d}   = 
          let val tmp = C.newReg()
          in  [I.operate{oper=I.SLL,ra=r,rb=I.IMMop i,rc=tmp},
               I.operate{oper=I.ADDL,ra=tmp,rb=zeroOpn,rc=d}]
          end

     (* 
      * How to right shift (unsigned) by a constant (32bits)
      *)
     fun srli{r,i,d} =
         let val tmp = C.newReg()
         in  [I.operate{oper=I.ZAP,ra=r,rb=I.IMMop 0xf0,rc=tmp},
              I.operate{oper=I.SRL,ra=tmp,rb=I.IMMop i,rc=d}]
         end

     (* 
      * How to right shift (signed) by a constant (32bits)
      *)
     fun srai{r,i,d} = 
         let val tmp = C.newReg()
         in  [I.operate{oper=I.ADDL,ra=r,rb=zeroOpn,rc=tmp},
              I.operate{oper=I.SRA,ra=tmp,rb=I.IMMop i,rc=d}]
         end 
  end

  structure Multiply64 = struct
     structure I = I
     structure T = T
     structure CB = CellsBasis
   
     val intTy = 64

     type arg  = {r1:CB.cell, r2:CB.cell, d:CB.cell}
     type argi = {r:CB.cell, i:int, d:CB.cell}

     fun mov{r,d}    = I.COPY{k=CB.GP, sz=intTy, dst=[d],src=[r],tmp=NONE}
     fun add{r1,r2,d}= I.operate{oper=I.ADDQ,ra=r1,rb=I.REGop r2,rc=d}
     fun slli{r,i,d} = [I.operate{oper=I.SLL,ra=r,rb=I.IMMop i,rc=d}]
     fun srli{r,i,d} = [I.operate{oper=I.SRL,ra=r,rb=I.IMMop i,rc=d}]
     fun srai{r,i,d} = [I.operate{oper=I.SRA,ra=r,rb=I.IMMop i,rc=d}]
  end

  (* signed, trapping version of multiply and divide *)
  structure Mult32 = MLTreeMult
    (open Multiply32
     val trapping = true
     val multCost = multCost
     fun addv{r1,r2,d} = [I.operatev{oper=I.ADDLV,ra=r1,rb=I.REGop r2,rc=d}]
     fun subv{r1,r2,d} = [I.operatev{oper=I.SUBLV,ra=r1,rb=I.REGop r2,rc=d}]
     val sh1addv = NONE
     val sh2addv = NONE
     val sh3addv = NONE

     val signed = true)

  (* non-trapping version of multiply and divide *)
  structure Mul32 = struct
     open Multiply32
     val trapping = false
     val multCost = multCost
     fun addv{r1,r2,d} = [I.operate{oper=I.ADDL,ra=r1,rb=I.REGop r2,rc=d}]
     fun subv{r1,r2,d} = [I.operate{oper=I.SUBL,ra=r1,rb=I.REGop r2,rc=d}]
     val sh1addv = NONE
     val sh2addv = SOME(fn {r1,r2,d} => 
                    [I.operate{oper=I.S4ADDL,ra=r1,rb=I.REGop r2,rc=d}])
     val sh3addv = SOME(fn {r1,r2,d} => 
                    [I.operate{oper=I.S8ADDL,ra=r1,rb=I.REGop r2,rc=d}])
  end
  structure Mulu32 = MLTreeMult(open Mul32 val signed = false)
  structure Muls32 = MLTreeMult(open Mul32 val signed = true)

  (* signed, trapping version of multiply and divide *)
  structure Mult64 = MLTreeMult
    (open Multiply64
     val trapping = true
     val multCost = multCost
     fun addv{r1,r2,d} = [I.operatev{oper=I.ADDQV,ra=r1,rb=I.REGop r2,rc=d}]
     fun subv{r1,r2,d} = [I.operatev{oper=I.SUBQV,ra=r1,rb=I.REGop r2,rc=d}]
     val sh1addv = NONE
     val sh2addv = NONE
     val sh3addv = NONE

     val signed = true)

  (* unsigned, non-trapping version of multiply and divide *)
  structure Mul64 = struct
     open Multiply64
     val trapping = false
     val multCost = multCost
     fun addv{r1,r2,d} = [I.operate{oper=I.ADDQ,ra=r1,rb=I.REGop r2,rc=d}]
     fun subv{r1,r2,d} = [I.operate{oper=I.SUBQ,ra=r1,rb=I.REGop r2,rc=d}]
     val sh1addv = NONE
     val sh2addv = SOME(fn {r1,r2,d} => 
                    [I.operate{oper=I.S4ADDQ,ra=r1,rb=I.REGop r2,rc=d}])
     val sh3addv = SOME(fn {r1,r2,d} => 
                    [I.operate{oper=I.S8ADDQ,ra=r1,rb=I.REGop r2,rc=d}])
  end
  structure Mulu64 = MLTreeMult(open Mul64 val signed = false)
  structure Muls64 = MLTreeMult(open Mul64  val signed = true)

  (* 
   * The main stuff
   *)

  datatype times4or8 = TIMES1 | TIMES4 | TIMES8 
  datatype zeroOne   = ZERO | ONE | OTHER
  datatype commutative = COMMUTE | NOCOMMUTE

  val zeroFR = C.f31 
  val zeroEA = I.Direct zeroR
  val zeroT  = T.LI 0
  val trapb = [I.trapb]
  val zeroImm = I.IMMop 0

  fun selectInstructions
        (instrStream as
         TS.S.STREAM{emit=emitInstruction,beginCluster,endCluster,getAnnotations,
                     defineLabel,entryLabel,pseudoOp,annotation,
                     exitBlock,comment,...}) =
  let

      infix || && << >> ~>>

      val op ||  = W32.orb
      val op &&  = W32.andb
      val op <<  = W32.<<
      val op >>  = W32.>>
      val op ~>> = W32.~>>

      val itow = Word.fromInt
      val wtoi = Word.toIntX

      val emit = emitInstruction o I.INSTR

      val newReg = C.newReg
      val newFreg = C.newFreg

      (* Choose the appropriate rounding mode to generate.
       * This stuff is used to support the alpha32x SML/NJ backend.
       *
       *
       * Floating point rounding mode.
       * When this is set to true, we use the /SU rounding mode
       * (chopped towards zero) for floating point arithmetic.
       * This flag is only used to support the old alpha32x backend.
       * 
       * Otherwise, we use /SUD.  This is the default for SML/NJ.
       *
       *)
      val (ADDTX,SUBTX,MULTX,DIVTX) =
           (I.ADDTSUD,I.SUBTSUD,I.MULTSUD,I.DIVTSUD)
      val (ADDSX,SUBSX,MULSX,DIVSX) =
            (I.ADDSSUD,I.SUBSSUD,I.MULSSUD,I.DIVSSUD)
  
      fun annotate(i, an) = List.foldl (fn (a, i) => I.ANNOTATION{i=i,a=a}) i an
      fun mark'(i, an) = emitInstruction(annotate(i,an))
      fun mark(i,an) = emitInstruction(annotate(I.INSTR i,an))

      (* Fit within 16 bits? *)
      fun literal16 n = ~32768 <= n andalso n < 32768
      fun literal16w w = 
          let val hi = W32.~>>(w,0wx16)
          in  hi = 0w0 orelse (W32.notb hi) = 0w0 end

      (* emit an LDA instruction; return the register that holds the value *)
      fun lda(base,I.IMMop 0) = base
        | lda(base,offset) = 
            let val r = newReg()
            in  emit(I.LDA{r=r, b=base, d=offset}); r end

      (* emit load immed *)
      fun loadImmed(n, base, rd, an) = let
	val n = T.I.toInt32(32, n)
      in
	if n = 0 then move(base, rd, an)
	else if ~32768 <= n andalso n < 32768 then
	  mark(I.LDA{r=rd, b=base, d=I.IMMop(Int32.toInt n)}, an)
        else loadImmed32(n, base, rd, an)
      end

      (* loadImmed32 is used to load int32 and word32 constants.
       * In either case we sign extend the 32-bit value. This is compatible 
       * with LDL which sign extends a 32-bit valued memory location.
       *)
      (* TODO: 
       *  Should handle 64 bits if immediate is not in the 32 bit range.
       *)
      and loadImmed32(n, base, rd, an) = let
	fun immed(0, high) =
	      mark(I.LDAH{r=rd, b=base, d=I.IMMop(high)}, an)
	  | immed(low, 0) = 
	      mark(I.LDA{r=rd, b=base, d=I.IMMop(low)}, an)
	  | immed(low, high) = 
	      (emit(I.LDA{r=rd, b=base, d=I.IMMop(low)});
	       mark(I.LDAH{r=rd, b=rd, d=I.IMMop(high)}, an)
	       )
	val w = Word32.fromLargeInt(Int32.toLarge n)
	val low = W32.andb(w, 0wxffff)
	val high = W32.~>>(w, 0w16)
      in
	if W32.<(low, 0wx8000) then 
	  immed(W32.toInt low, W32.toIntX high)
	else let
	    val low = W32.toIntX(W32.-(low, 0wx10000))
	    val high = W32.toIntX(W32.+(high, 0w1))
          in
	    if high <> 0x8000 then immed(low, high) 
	    else let (* transition of high from pos to neg *)
	        val tmpR1 = newReg() 
		val tmpR2 = newReg() 
		val tmpR3=newReg()
              in
		(* you just gotta do, what you gotta do! *)
		emit(I.LDA{r=tmpR3, b=base, d=I.IMMop(low)});
		emit(I.OPERATE{oper=I.ADDQ, ra=zeroR, rb=I.IMMop 1, rc=tmpR1});
		emit(I.OPERATE{oper=I.SLL, ra=tmpR1, rb=I.IMMop 31, rc=tmpR2});
		mark(I.OPERATE{oper=I.ADDQ, ra=tmpR2, rb=I.REGop tmpR3, rc=rd},an)
              end
	  end
      end


      (* emit load label expression *)
      and loadLabexp(le,d,an) = mark(I.LDA{r=d,b=zeroR,d=I.LABop le},an)

      (* emit a copy *)
      and copy(dst,src,an) = 
          mark'(I.COPY{k=CB.GP, sz=32, dst=dst,src=src,
                      tmp=case dst of
                           [_] => NONE | _ => SOME(I.Direct(newReg()))},an)

      (* emit a floating point copy *)
      and fcopy(dst,src,an) = 
          mark'(I.COPY{k=CB.FP, sz=64, dst=dst,src=src,
                      tmp=case dst of
                           [_] => NONE | _ => SOME(I.FDirect(newFreg()))},an)

      and move(s,d,an) = 
          if CB.sameCell(s,d) orelse CB.sameCell(d,zeroR) then () else 
          mark'(I.COPY{k=CB.GP, sz=32, dst=[d],src=[s],tmp=NONE},an)

      and fmove(s,d,an) = 
          if CB.sameCell(s,d) orelse CB.sameCell(d,zeroFR) then () else 
          mark'(I.COPY{k=CB.FP, sz=64, dst=[d],src=[s],tmp=NONE},an)

       (* emit an sign extension op *)
      and signExt32(r,d) =
          emit(I.OPERATE{oper=I.ADDL,ra=r,rb=zeroOpn,rc=d})

      (* emit an commutative arithmetic op *)
      and commArith(opcode,a,b,d,an) =
          case (opn a,opn b) of
            (I.REGop r,i) => mark(I.OPERATE{oper=opcode,ra=r,rb=i,rc=d},an)
          | (i,I.REGop r) => mark(I.OPERATE{oper=opcode,ra=r,rb=i,rc=d},an)
          | (r,i) => mark(I.OPERATE{oper=opcode,ra=reduceOpn r,rb=i,rc=d},an)

      (* emit an arithmetic op *)
      and arith(opcode,a,b,d,an) =
          mark(I.OPERATE{oper=opcode,ra=expr a,rb=opn b,rc=d},an)
      and arith'(opcode,a,b,d,an) =
          let val rb = opn b
              val ra = expr a
          in  mark(I.OPERATE{oper=opcode,ra=ra,rb=rb,rc=d},an) end

      (* emit a trapping commutative arithmetic op *)
      and commArithTrap(opcode,a,b,d,an) =
         (case (opn a,opn b) of
            (I.REGop r,i) => mark(I.OPERATEV{oper=opcode,ra=r,rb=i,rc=d},an)
          | (i,I.REGop r) => mark(I.OPERATEV{oper=opcode,ra=r,rb=i,rc=d},an)
          | (r,i) => mark(I.OPERATEV{oper=opcode,ra=reduceOpn r,rb=i,rc=d},an);
          emit(I.TRAPB)
         )

      (* emit a trapping arithmetic op *)
      and arithTrap(opcode,a,b,d,an) =
         (mark(I.OPERATEV{oper=opcode,ra=expr a,rb=opn b,rc=d},an);
          emit(I.TRAPB)
         )

      (* convert an operand into a register *)
      and reduceOpn(I.REGop r) = r
        | reduceOpn(I.IMMop 0) = zeroR
        | reduceOpn opn = 
           let val d = newReg()
           in  emit(I.OPERATE{oper=I.BIS,ra=zeroR,rb=opn,rc=d}); d end

      (* convert an expression into an operand *)
      and opn(T.REG(_,r)) = I.REGop r
        | opn(e as T.LI n) = 
	    if n <= 0xff andalso n >= 0 then 
	      I.IMMop(toInt(n))
            else let val tmpR = newReg()
                 in  loadImmed(n,zeroR,tmpR,[]); I.REGop tmpR end
        | opn(e as T.CONST _) = I.LABop e
        | opn(T.LABEXP x) = I.LABop x
        | opn e = I.REGop(expr e)

      (* compute base+displacement from an expression 
       *)
      and addr exp =
          let fun toLexp(I.IMMop i) = T.LI(IntInf.fromInt i)
                | toLexp(I.LABop le) = le
                | toLexp _ = error "addr.toLexp"

              fun add(t,n,I.IMMop m)  = 
                   I.IMMop(toInt(T.I.ADD(t,n,IntInf.fromInt m)))
                | add(t,n,I.LABop le) = I.LABop(T.ADD(t,T.LI n,le))
                | add(t,n,_) = error "addr.add"

              fun addLe(ty,le,I.IMMop 0) = I.LABop le
                | addLe(ty,le,disp) = I.LABop(T.ADD(ty,le,toLexp disp))

              fun sub(t,n,I.IMMop m) = 
                  I.IMMop(toInt(T.I.SUB(t,IntInf.fromInt m,n)))
                | sub(t,n,I.LABop le) = I.LABop(T.SUB(t,le,T.LI n))
                | sub(t,n,_) = error "addr.sub"

              fun subLe(ty,le,I.IMMop 0) = I.LABop le
                | subLe(ty,le,disp) = I.LABop(T.SUB(ty,le,toLexp disp))
             
              (* Should really take into account of the address width XXX *) 
              fun fold(T.ADD(t,e,T.LI n),disp) = fold(e,add(t,n,disp))
                | fold(T.ADD(t,e,x as T.CONST _),disp) = fold(e,addLe(t,x,disp))
                | fold(T.ADD(t,e,x as T.LABEL _),disp) = fold(e,addLe(t,x,disp))
                | fold(T.ADD(t,e,T.LABEXP l),disp) = fold(e,addLe(t,l,disp))
                | fold(T.ADD(t,T.LI n,e),disp) = fold(e, add(t,n,disp))
                | fold(T.ADD(t,x as T.CONST _,e),disp) = fold(e,addLe(t,x,disp))
                | fold(T.ADD(t,x as T.LABEL _,e),disp) = fold(e,addLe(t,x,disp))
                | fold(T.ADD(t,T.LABEXP l,e),disp) = fold(e,addLe(t,l,disp))
                | fold(T.SUB(t,e,T.LI n),disp) = fold(e,sub(t,n,disp))
                | fold(T.SUB(t,e,x as T.CONST _),disp) = fold(e,subLe(t,x,disp))
                | fold(T.SUB(t,e,x as T.LABEL _),disp) = fold(e,subLe(t,x,disp))
                | fold(T.SUB(t,e,T.LABEXP l),disp) = fold(e,subLe(t,l,disp))
                | fold(e,disp) = (expr e,disp)

          in  makeEA(fold(exp, zeroImm))
          end

      (* compute base+displacement+small offset *)
      and offset(base,disp as I.IMMop n,off) =
           let val n' = n+off
           in  if literal16 n' then (base,I.IMMop n')
               else 
               let val tmp = newReg()
               in  emit(I.OPERATE{oper=I.ADDQ,ra=base,rb=disp,rc=tmp});
                   (tmp,I.IMMop off)
               end
           end
        | offset(base,disp as I.LABop le,off) =
           (base, I.LABop(T.ADD(64,le,T.LI(IntInf.fromInt off))))
        | offset(base,disp,off) =
           let val tmp = newReg()
           in  emit(I.OPERATE{oper=I.ADDQ,ra=base,rb=disp,rc=tmp});
               (tmp,I.IMMop off)
           end

      (* check if base offset fits within the field *)
      and makeEA(base, off as I.IMMop offset) =
         if ~32768 <= offset andalso offset <= 32767 
         then (base, off)
         else 
         let val tmpR = newReg()
                (* unsigned low 16 bits *)
             val low = wtoi(Word.andb(itow offset, 0wxffff)) 
             val high = offset div 65536
             val (lowsgn, highsgn) =                        (* Sign-extend *)
              if low <= 32767 then (low, high) else (low -65536, high+1)
         in
             (emit(I.LDAH{r=tmpR, b=base, d=I.IMMop highsgn});
             (tmpR, I.IMMop lowsgn))
         end
       | makeEA(base, offset) = (base, offset)

      (* look for multiply by 4 and 8 of the given type *)
      and times4or8(ty,e) =
          let 
	      fun f(t,a,n) = if t = ty then 
                               if EQ(n, 4) then (TIMES4,a)
                               else if EQ(n, 8) then (TIMES8,a)
                               else (TIMES1,e)
                             else (TIMES1,e)

              fun u(t,a,n) = if t = ty then
                               if EQ(n, 2) then (TIMES4,a)
                               else if EQ(n, 3) then (TIMES8,a)
                               else (TIMES1,e)
                             else (TIMES1,e)
          in  case e of 
                T.MULU(t,a,T.LI n)   => f(t,a,n)
              | T.MULS(t,T.LI n,a)   => f(t,a,n)
              | T.SLL(t,a,T.LI n)    => u(t,a,n)
              | _                    => (TIMES1,e)
          end

      (* generate an add instruction 
       * ***OPT*** look for multiply by 4 and 8 and use the S4ADD and S8ADD
       * forms.
       *)
      and plus(ty,add,s4add,s8add,a,b,d,an) =
          (case times4or8(ty,a) of
              (TIMES4,a) => arith(s4add,a,b,d,an)
           |  (TIMES8,a) => arith(s8add,a,b,d,an)
           |  _ =>
          case times4or8(ty,b) of
              (TIMES4,b) => arith'(s4add,b,a,d,an)
           |  (TIMES8,b) => arith'(s8add,b,a,d,an)
           |  _          => commArith(add,a,b,d,an)
          )

      (* generate a subtract instruction 
       * ***OPT*** look for multiply by 4 and 8
       *)
      and minus(ty,sub,s4sub,s8sub,a,b,d,an) =
          (case times4or8(ty,a) of
              (TIMES4,a) => arith(s4sub,a,b,d,an)
           |  (TIMES8,a) => arith(s8sub,a,b,d,an)
           |  _          => 
              if ty = 64 then
              (case b of 
                 (* use LDA to handle subtraction when possible 
                  * Note: this may have sign extension problems later.
                  *)
                 T.LI i => (loadImmed(T.I.NEGT(32,i),expr a,d,an) handle _ =>
                              arith(sub,a,b,d,an))
              |  _ => arith(sub,a,b,d,an)
              ) else arith(sub,a,b,d,an)
          )

      (* look for special constants *)
      and wordOpn(T.LI n) = SOME(T.I.toWord32(32, n))
        | wordOpn e = NONE

      (* look for special byte mask constants 
       * IMPORTANT: we must ALWAYS keep the sign bit!      
       *)
      and byteMask(_,SOME 0wx00000000) = 0xff
        | byteMask(_,SOME 0wx000000ff) = 0xfe
        | byteMask(_,SOME 0wx0000ff00) = 0xfd
        | byteMask(_,SOME 0wx0000ffff) = 0xfc
        | byteMask(_,SOME 0wx00ff0000) = 0xfb
        | byteMask(_,SOME 0wx00ff00ff) = 0xfa
        | byteMask(_,SOME 0wx00ffff00) = 0xf9
        | byteMask(_,SOME 0wx00ffffff) = 0xf8
        | byteMask(ty,SOME 0wxff000000) = if ty = 64 then 0xf7 else 0x07
        | byteMask(ty,SOME 0wxff0000ff) = if ty = 64 then 0xf6 else 0x06
        | byteMask(ty,SOME 0wxff00ff00) = if ty = 64 then 0xf5 else 0x05
        | byteMask(ty,SOME 0wxff00ffff) = if ty = 64 then 0xf4 else 0x04
        | byteMask(ty,SOME 0wxffff0000) = if ty = 64 then 0xf3 else 0x03
        | byteMask(ty,SOME 0wxffff00ff) = if ty = 64 then 0xf2 else 0x02
        | byteMask(ty,SOME 0wxffffff00) = if ty = 64 then 0xf1 else 0x01
        | byteMask(ty,SOME 0wxffffffff) = if ty = 64 then 0xf0 else 0x00
        | byteMask _ = ~1

      (* generate an and instruction 
       * look for special masks.
       *)
      and andb(ty,a,b,d,an) =
          case byteMask(ty,wordOpn a) of
            ~1 => (case byteMask(ty,wordOpn b) of
                    ~1 => commArith(I.AND,a,b,d,an)
                  | mask => arith(I.ZAP,a,LI mask,d,an)
                  )
          | mask => arith(I.ZAP,b,LI mask,d,an)

      (* generate sll/sra/srl *)
      and sll32(a,b,d,an) =
          case wordOpn b of
            SOME 0w0 => doExpr(a,d,an)
          | SOME 0w1 => 
            let val r = T.REG(32,expr a) in arith(I.ADDL,r,r,d,an) end
          | SOME 0w2 => arith(I.S4ADDL,a,zeroT,d,an)
          | SOME 0w3 => arith(I.S8ADDL,a,zeroT,d,an)
          | _        => let val t = newReg()
                        in  arith(I.SLL,a,b,t,an);
                            signExt32(t,d)
                        end

      and sll64(a,b,d,an) =
          case wordOpn b of
            SOME 0w0 => doExpr(a,d,an)
          | SOME 0w1 => 
            let val r = T.REG(64,expr a) in arith(I.ADDQ,r,r,d,an) end
          | SOME 0w2 => arith(I.S4ADDQ,a,zeroT,d,an)
          | SOME 0w3 => arith(I.S8ADDQ,a,zeroT,d,an)
          | _        => arith(I.SLL,a,b,d,an)

       (* On the alpha, all 32 bit values are already sign extended. 
        * So no sign extension is necessary.  We do the same for 
        * sra32 and sra64
        *)
      and sra(a,b,d,an) = 
          mark(I.OPERATE{oper=I.SRA,ra=expr a,rb=opn b,rc=d},an)

      and srl32(a,b,d,an) = 
          let val ra = expr a 
              val rb = opn b 
              val t = newReg() 
          in  emit(I.OPERATE{oper=I.ZAP,ra=ra,rb=I.IMMop 0xf0,rc=t});
              mark(I.OPERATE{oper=I.SRL,ra=t,rb=rb,rc=d},an)
          end

      and srl64(a,b,d,an) = 
          mark(I.OPERATE{oper=I.SRL,ra=expr a,rb=opn b,rc=d},an)

      (*
       * Generic multiply.  
       * We first try to use the multiply by constant heuristic
       *)
      and multiply(ty,gen,genConst,e1,e2,rd,trapb,an) = 
          let fun nonconst(e1,e2) =
              let val instr = 
                case (opn e1,opn e2) of
                  (i,I.REGop r) => gen{ra=r,rb=i,rc=rd}
                | (I.REGop r,i) => gen{ra=r,rb=i,rc=rd}
                | (r,i)         => gen{ra=reduceOpn r,rb=i,rc=rd}
              in annotate(instr,an)::trapb end
              fun const(e,i) =
                  let val r = expr e
                  in  if !useMultByConst andalso
			 i >= 0 andalso i < 0x100 then
                          annotate(gen{ra=r,rb=I.IMMop(toInt i),rc=rd},an)::trapb
                      else    
                         (genConst{r=r,i=toInt i,d=rd}@trapb
                          handle _ => nonconst(T.REG(ty,r),T.LI i))
                  end
              val instrs =
		case (e1, e2) 
		of (_, T.LI i) => const(e1, i)
	         | (T.LI i, _) => const(e2, i)
		 | _ => nonconst(e1, e2)
          in  app emitInstruction instrs
          end

          (* Round r towards zero.
           * I generate the following sequence of code, which should get
           * mapped into conditional moves.
           *
           * d <- r + i;
           * d <- if (r > 0) then r else d
           *)
      (*
      and roundToZero{ty,r,i,d} =
          (doStmt(T.MV(ty,d,T.ADD(ty,T.REG(ty,r),T.LI i)));
           doStmt(T.MV(ty,d,T.COND(ty,T.CMP(ty,T.GE,T.REG(ty,r),T.LI 0),
                                   T.REG(ty,r),T.REG(ty,d))))
          )
       *)

      (*
       * Generic division.  
       * We first try to use the division by constant heuristic
       *)
      and divide(ty,pseudo,genDiv,e1,e2,rd,an) = 
          let fun nonconst(e1,e2) =
                  pseudo({ra=expr e1,rb=opn e2,rc=rd},reduceOpn)

              fun const(e,i) =
                  let val r = expr e
                  in  genDiv{mode=T.TO_ZERO,stm=doStmt}
                            {r=r,i=toInt i,d=rd}
                      handle _ => nonconst(T.REG(ty,r),T.LI i)
                  end
              val instrs =
                  case e2 of
                     T.LI i   => const(e1,i)
                   | _        => nonconst(e1,e2)
          in  app emitInstruction instrs
          end


      (*
      and multTrap(MULV,ADD,ADDV,e1,e2,rd,an) = (* signed multiply and trap *)
      let val ADD = fn {ra,rb,rc} => I.OPERATE{oper=ADD,ra=ra,rb=rb,rc=rc}
          val ADDV = fn {ra,rb,rc} => I.OPERATEV{oper=ADDV,ra=ra,rb=rb,rc=rc}
          val MULV = fn {ra,rb,rc} => I.OPERATEV{oper=MULV,ra=ra,rb=rb,rc=rc}
      in  multiply(MULV,ADD,ADDV,e1,e2,rd,an);
          emit(I.TRAPB)
      end 

      and mulu(MUL,ADD,e1,e2,rd,an) =  (* unsigned multiply *)
      let val ADD = fn {ra,rb,rc} => I.OPERATE{oper=ADD,ra=ra,rb=rb,rc=rc}
          val MUL = fn {ra,rb,rc} => I.OPERATE{oper=MUL,ra=ra,rb=rb,rc=rc}
      in  multiply(MUL,ADD,ADD,e1,e2,rd,an)
      end

      (* Multiplication *)
      and multiply(MULV, ADD, ADDV, e1, e2, rd, an) = 
      let val reg = expr e1
          val opn = opn e2
          fun emitMulvImmed (reg, 0, rd) =
                emit(I.LDA{r=rd, b=zeroR, d=I.IMMop 0})
            | emitMulvImmed (reg, 1, rd) =
                emit(ADD{ra=reg, rb=zeroOpn, rc=rd})
            | emitMulvImmed (reg, multiplier, rd) = 
              let fun log2 0w1 = 0 | log2 n = 1 + (log2 (Word.>> (n, 0w1)))
                  fun exp2 n = Word.<<(0w1, n)
                  fun bitIsSet (x,n) = Word.andb(x,exp2 n) <> 0w0
                  fun loop (~1) = ()
                    | loop n =
                     (if bitIsSet(itow multiplier, itow n) then
                       emit(ADDV{ra=reg,rb=I.REGop rd,rc=rd})
                      else ();
                      if n>0 then
                        emit(ADDV{ra=rd,rb=I.REGop rd,rc=rd})
                      else ();
                      loop (n-1))
              in  emit(ADDV{ra=reg, rb=I.REGop reg, rc=rd});
                  loop ((log2 (itow multiplier)) - 1)
              end
      in  case opn of 
            (I.IMMop multiplier) => emitMulvImmed (reg, multiplier, rd)
          | _ => mark(MULV{ra=reg, rb=opn, rc=rd},an)
          (*esac*)
      end
      *) 

      (* generate pseudo instruction *)
      and pseudo(instr,e1,e2,rc) =
           app emitInstruction (instr({ra=expr e1,rb=opn e2,rc=rc}, reduceOpn))

      (* generate a load *)
      and load(ldOp,ea,d,mem,an) =
          let val (base,disp) = addr ea
          in  mark(I.LOAD{ldOp=ldOp,r=d,b=base,d=disp,mem=mem},an) end

      (* generate a load with zero extension *)
      and loadZext(ea,rd,mem,EXT,an) = 
          let val (b, d) = addr ea
              val t1 = newReg()
              val _  = mark(I.LOAD{ldOp=I.LDQ_U, r=t1, b=b, d=d, mem=mem},an);
              val t2 = lda(b,d)
          in  emit(I.OPERATE{oper=EXT, ra=t1, rb=I.REGop t2, rc=rd}) end

      (* generate a load with sign extension *)
      and loadSext(ea,rd,mem,off,EXT,shift,an) = 
          let val (b, d)  = addr ea
              val (b',d') = offset(b,d,off)
              val t1      = newReg()
              val t2      = newReg()
              val t3      = newReg()
          in  mark(I.LOAD{ldOp=I.LDQ_U, r=t1, b=b, d=d, mem=mem},an);
              emit(I.LDA{r=t2, b=b', d=d'});
              emit(I.OPERATE{oper=EXT, ra=t1, rb=I.REGop t2, rc=t3});
              emit(I.OPERATE{oper=I.SRA, ra=t3, rb=I.IMMop shift, rc=rd})
          end

      (* generate a load byte with zero extension (page 4-48) *)
      and load8(ea,rd,mem,an) = 
          if !byteWordLoadStores then load(I.LDBU,ea,rd,mem,an)
          else loadZext(ea,rd,mem,I.EXTBL,an)

      (* generate a load byte with sign extension (page 4-48) *)
      and load8s(ea,rd,mem,an) = 
          if !byteWordLoadStores then load(I.LDB,ea,rd,mem,an)
          else loadSext(ea,rd,mem,1,I.EXTQH,56,an)

      (* generate a load 16 bit *)
      and load16(ea,rd,mem,an) = 
          if !byteWordLoadStores then load(I.LDWU,ea,rd,mem,an)
          else loadZext(ea,rd,mem,I.EXTWL,an)

      (* generate a load 16 bit with sign extension *)
      and load16s(ea,rd,mem,an) = 
          if !byteWordLoadStores then load(I.LDW,ea,rd,mem,an) 
          else loadSext(ea,rd,mem,2,I.EXTQH,48,an)

      (* generate a load 32 bit with sign extension *)
      and load32s(ea,rd,mem,an) = load(I.LDL,ea,rd,mem,an)

      (* generate a floating point load *)
      and fload(ldOp,ea,d,mem,an) =
          let val (base,disp) = addr ea
          in  mark(I.FLOAD{ldOp=ldOp,r=d,b=base,d=disp,mem=mem},an) end

      (* generate a store *)
      and store(stOp,ea,data,mem,an) =
          let val (base,disp) = addr ea
          in  mark(I.STORE{stOp=stOp,r=expr data,b=base,d=disp,mem=mem},an) end

      (* generate an store8 or store16 *)
      and storeUnaligned(ea,data,mem,INS,MSK,an) = 
          let val (base,disp) = addr ea
              val data = expr data
              val t1 = newReg()
              val t3 = newReg()
              val t4 = newReg()
              val t5 = newReg()
              val _ = emit(I.LOAD{ldOp=I.LDQ_U, r=t1, b=base, d=disp, mem=mem})
              val t2 = lda(base,disp)
          in  emit(I.OPERATE{oper=INS, ra=data, rb=I.REGop(t2), rc=t3});
              emit(I.OPERATE{oper=MSK, ra=t1, rb=I.REGop(t2), rc=t4});
              emit(I.OPERATE{oper=I.BIS, ra=t4, rb=I.REGop(t3), rc=t5});
              mark(I.STORE{stOp=I.STQ_U, r=t5, b=base, d=disp, mem=mem},an)
          end

      (* generate a store byte *)
      and store8(ea,data,mem,an) = 
          if !byteWordLoadStores then store(I.STB, ea, data, mem, an)
          else storeUnaligned(ea,data,mem,I.INSBL,I.MSKBL,an)  

      (* generate a store16 *)
      and store16(ea,data,mem,an) = 
          if !byteWordLoadStores then store(I.STW, ea, data, mem, an)
          else storeUnaligned(ea,data,mem,I.INSWL,I.MSKWL,an)  

      (* generate conversion from floating point to integer *)
      and cvtf2i(pseudo,rounding,e,rd,an) = 
          app emitInstruction (pseudo{mode=rounding, fs=fexpr e, rd=rd})

      (* generate an expression and return the register that holds the result *)
      and expr(e) = let
	fun comp() = let
	  val r = newReg()
        in doExpr(e, r, []); r
	end
      in
	case e
	of T.REG(_, r) => r
         | T.LI z => if z = 0 then zeroR else comp()
            (* On the alpha: all 32 bit values are already sign extended.
             * So no sign extension is necessary
             *)
         | T.SX(64, 32, e) => expr e
         | T.ZX(64, 32, e) => expr e
	 | _ => comp()
      end

      (* generate an expression that targets register d *)
      and doExpr(exp,d,an) =
          case exp of
            T.REG(_,r) => move(r,d,an)
          | T.LI n     => loadImmed(n,zeroR,d,an)
          | T.LABEL l  => loadLabexp(exp,d,an)
          | T.CONST c  => loadLabexp(exp,d,an)
          | T.LABEXP le => loadLabexp(le,d,an)

            (* special optimizations for additions and subtraction 
             * Question: using LDA for all widths is not really correct
             * since the result may not fit into the sign extension scheme.
             *)
          | T.ADD(64,e,T.LABEXP le) => mark(I.LDA{r=d,b=expr e,d=I.LABop le},an)
          | T.ADD(64,T.LABEXP le,e) => mark(I.LDA{r=d,b=expr e,d=I.LABop le},an)
          | T.ADD(64,e,x as (T.CONST _ | T.LABEL _))  => 
               mark(I.LDA{r=d,b=expr e,d=I.LABop x},an)
          | T.ADD(64,x as (T.CONST _ | T.LABEL _),e)  => 
               mark(I.LDA{r=d,b=expr e,d=I.LABop x},an)
          | T.ADD(64,e,T.LI i)     => loadImmed(i, expr e, d, an)
          | T.ADD(64,T.LI i,e)     => loadImmed(i, expr e, d, an)
	  | T.SUB(sz, a, b as T.LI z)    =>
	      if z = 0 then
		doExpr(a,d,an) 
	      else (case sz
		of 32 => minus(32,I.SUBL,I.S4SUBL,I.S8SUBL,a,b,d,an)
	         | 64 => minus(64,I.SUBQ,I.S4SUBQ,I.S8SUBQ,a,b,d,an)
		 | _ =>  doExpr(Gen.compileRexp exp,d,an)
		(*esac*))

            (* 32-bit support *)
          | T.ADD(32,a,b) => plus(32,I.ADDL,I.S4ADDL,I.S8ADDL,a,b,d,an)
          | T.SUB(32,a,b) => minus(32,I.SUBL,I.S4SUBL,I.S8SUBL,a,b,d,an)
          | T.ADDT(32,a,b) => commArithTrap(I.ADDLV,a,b,d,an)
          | T.SUBT(32,a,b) => arithTrap(I.SUBLV,a,b,d,an)
          | T.MULT(32,a,b) => 
               multiply(32,
                 fn{ra,rb,rc} => I.operatev{oper=I.MULLV,ra=ra,rb=rb,rc=rc},
                 Mult32.multiply,a,b,d,trapb,an) 
          | T.MULU(32,a,b) => 
               multiply(32,
                 fn{ra,rb,rc} => I.operate{oper=I.MULL,ra=ra,rb=rb,rc=rc},
                 Mulu32.multiply,a,b,d,[],an) 
          | T.MULS(32,a,b) => 
               multiply(32,
                 fn{ra,rb,rc} => I.operate{oper=I.MULL,ra=ra,rb=rb,rc=rc},
                 Muls32.multiply,a,b,d,[],an) 
          | T.DIVT(T.DIV_TO_ZERO,32,a,b) =>
	                      divide(32,P.divlv,Mult32.divide,a,b,d,an)
          | T.DIVU(32,a,b) => divide(32,P.divlu,Mulu32.divide,a,b,d,an)
          | T.DIVS(T.DIV_TO_ZERO,32,a,b) =>
	                      divide(32,P.divl,Muls32.divide,a,b,d,an)
(* FIXME: these two lines can go back in once the alphaMC can handle them:
          | T.REMU(32,a,b) => pseudo(P.remlu,a,b,d)
          | T.REMS(T.DIV_TO_ZERO,32,a,b) => pseudo(P.reml,a,b,d)
*)

          | T.SLL(32,a,b) => sll32(a,b,d,an)
          | T.SRA(32,a,b) => sra(a,b,d,an)
          | T.SRL(32,a,b) => srl32(a,b,d,an)

            (* 64 bit support *)
          | T.ADD(64,a,b) => plus(64,I.ADDQ,I.S4ADDQ,I.S8ADDQ,a,b,d,an)
          | T.SUB(64,a,b) => minus(64,I.SUBQ,I.S4SUBQ,I.S8SUBQ,a,b,d,an)
          | T.ADDT(64,a,b) => commArithTrap(I.ADDQV,a,b,d,an)
          | T.SUBT(64,a,b) => arithTrap(I.SUBQV,a,b,d,an)
          | T.MULT(64,a,b) =>
               multiply(64,
                 fn{ra,rb,rc} => I.operatev{oper=I.MULQV,ra=ra,rb=rb,rc=rc},
                 Mult64.multiply,a,b,d,trapb,an) 
          | T.MULU(64,a,b) => 
               multiply(64,
                 fn{ra,rb,rc} => I.operate{oper=I.MULQ,ra=ra,rb=rb,rc=rc},
                 Mulu64.multiply,a,b,d,[],an) 
          | T.MULS(64,a,b) => 
               multiply(64,
                 fn{ra,rb,rc} => I.operate{oper=I.MULQ,ra=ra,rb=rb,rc=rc},
                 Muls64.multiply,a,b,d,[],an) 
          | T.DIVT(T.DIV_TO_ZERO,64,a,b) =>
	                      divide(64,P.divqv,Mult64.divide,a,b,d,an)
          | T.DIVU(64,a,b) => divide(64,P.divqu,Mulu64.divide,a,b,d,an)
          | T.DIVS(T.DIV_TO_ZERO,64,a,b) =>
	                      divide(64,P.divq,Muls64.divide,a,b,d,an)
(* FIXME: These two lines can go back in once the alphaMC can handle them:
          | T.REMU(64,a,b) => pseudo(P.remqu,a,b,d)
          | T.REMS(T.DIV_TO_ZERO,64,a,b) => pseudo(P.remq,a,b,d)
*)

          | T.SLL(64,a,b) => sll64(a,b,d,an)
          | T.SRA(64,a,b) => sra(a,b,d,an)
          | T.SRL(64,a,b) => srl64(a,b,d,an)

            (* special bit operations with complement *)
          | T.ANDB(_,a,T.NOTB(_,b)) => arith(I.BIC,a,b,d,an)
          | T.ORB(_,a,T.NOTB(_,b))  => arith(I.ORNOT,a,b,d,an)
          | T.XORB(_,a,T.NOTB(_,b)) => commArith(I.EQV,a,b,d,an)
          | T.ANDB(_,T.NOTB(_,a),b) => arith(I.BIC,b,a,d,an)
          | T.ORB(_,T.NOTB(_,a),b)  => arith(I.ORNOT,b,a,d,an)
          | T.XORB(_,T.NOTB(_,a),b) => commArith(I.EQV,b,a,d,an)
          | T.NOTB(_,T.XORB(_,a,b)) => commArith(I.EQV,b,a,d,an)

            (* bit operations *)
          | T.ANDB(ty,a,b) => andb(ty,a,b,d,an)
          | T.XORB(_,a,b) => commArith(I.XOR,a,b,d,an)
          | T.ORB(_,a,b) => commArith(I.BIS,a,b,d,an)
          | T.NOTB(_,e) => arith(I.ORNOT,zeroT,e,d,an)

            (* loads *)
          | T.SX(_,_,T.LOAD(8,ea,mem)) => load8s(ea,d,mem,an)
          | T.SX(_,_,T.LOAD(16,ea,mem))=> load16s(ea,d,mem,an)
          | T.SX(_,_,T.LOAD(32,ea,mem))=> load32s(ea,d,mem,an)
          | T.ZX((8|16|32|64),_,T.LOAD(8,ea,mem)) => load8(ea,d,mem,an)
          | T.ZX((16|32|64),_,T.LOAD(16,ea,mem))=> load16(ea,d,mem,an)
          | T.ZX(64,_,T.LOAD(64,ea,mem)) => load(I.LDQ,ea,d,mem,an)
          | T.LOAD(8,ea,mem) => load8(ea,d,mem,an)
          | T.LOAD(16,ea,mem) => load16(ea,d,mem,an)
          | T.LOAD(32,ea,mem) => load32s(ea,d,mem,an)
          | T.LOAD(64,ea,mem) => load(I.LDQ,ea,d,mem,an) 

           (* floating -> int conversion *)
          | T.CVTF2I(ty,rounding,fty,e) =>
            (case (fty,ty) of
               (32,32) => cvtf2i(P.cvtsl,rounding,e,d,an)
             | (32,64) => cvtf2i(P.cvtsq,rounding,e,d,an)
             | (64,32) => cvtf2i(P.cvttl,rounding,e,d,an)
             | (64,64) => cvtf2i(P.cvttq,rounding,e,d,an)
             | _       => doExpr(Gen.compileRexp exp,d,an) (* other cases *)
            )

           (* conversion to boolean *)
	  | T.COND(_, T.CMP(ty,cond,e1,e2), x, y)  => 
	     (case (x, y)
	      of (T.LI n, T.LI m) =>
		if EQ(n, 1) andalso EQ(m, 0) then 
		  compare(ty,cond,e1,e2,d,an) 
		else if EQ(n, 0) andalso EQ(m, 1) then
		  compare(ty,T.Basis.negateCond cond,e1,e2,d,an)
	        else
		  cmove(ty,cond,e1,e2,x,y,d,an) 
	      | _ => cmove(ty,cond,e1,e2,x,y,d,an) 
	     (*esac*))

          | T.LET(s,e) => (doStmt s; doExpr(e, d, an))
          | T.MARK(e,A.MARKREG f) => (f d; doExpr(e,d,an))
          | T.MARK(e,a) => doExpr(e,d,a::an)
            (* On the alpha: all 32 bit values are already sign extended.
             * So no sign extension is necessary
             *)
          | T.SX(64, 32, e) => doExpr(e, d, an)
          | T.ZX(64, 32, e) => doExpr(e, d, an)

          | T.PRED(e, c) => doExpr(e, d, A.CTRLUSE c::an)
          | T.REXT e => ExtensionComp.compileRext (reducer()) {e=e, an=an, rd=d}
    
           (* Defaults *) 
          | e => doExpr(Gen.compileRexp e,d,an)

       (* Hmmm...  this is the funky thing described in the comments
        * in at the top of the file.  This should be made parametrizable
        * for other backends. 
        *)
      and farith(opcode,opcodeSMLNJ,a,b,d,an) = 
          let val fa = fexpr a
              val fb = fexpr b
          in  if SMLNJfloatingPoint then 
                   ((* emit(I.DEFFREG d); *)
                    mark(I.FOPERATEV{oper=opcodeSMLNJ,fa=fa,fb=fb,fc=d},an);
                    emit(I.TRAPB);
		    emitInstruction(I.LIVE{regs=List.foldl C.addFreg C.empty [fa,fb,d],
					   spilled=[]})
		    
                   )
              else mark(I.FOPERATE{oper=opcode,fa=fa,fb=fb,fc=d},an)
          end

      and farith'(opcode,a,b,d,an) = 
            mark(I.FOPERATE{oper=opcode,fa=fexpr a,fb=fexpr b,fc=d},an)

      and funary(opcode,e,d,an) = mark(I.FUNARY{oper=opcode,fb=fexpr e,fc=d},an)


      (* generate an floating point expression
       * return the register that holds the result 
       *)
      and fexpr(T.FREG(_,r)) = r
        | fexpr e = let val d = newFreg() in doFexpr(e,d,[]); d end

      (* generate an external floating point operation *) 
      and fcvti2f(pseudo,e,fd,an) =
          let val opnd = opn e
          in  app emitInstruction (pseudo({opnd=opnd, fd=fd}, reduceOpn))
          end

      (* generate a floating point store *)
      and fstore(stOp,ea,data,mem,an) =
          let val (base,disp) = addr ea
          in  mark(I.FSTORE{stOp=stOp,r=fexpr data,b=base,d=disp,mem=mem},an) 
          end

      (* generate a floating point expression that targets register d *)
      and doFexpr(e,d,an) =
          case e of
            T.FREG(_,f)    => fmove(f,d,an)

            (* single precision support *)
          | T.FADD(32,a,b) => farith(I.ADDS,ADDSX,a,b,d,an)
          | T.FSUB(32,a,b) => farith(I.SUBS,SUBSX,a,b,d,an)
          | T.FMUL(32,a,b) => farith(I.MULS,MULSX,a,b,d,an)
          | T.FDIV(32,a,b) => farith(I.DIVS,DIVSX,a,b,d,an)

            (* double precision support *)
          | T.FADD(64,a,b) => farith(I.ADDT,ADDTX,a,b,d,an)
          | T.FSUB(64,a,b) => farith(I.SUBT,SUBTX,a,b,d,an)
          | T.FMUL(64,a,b) => farith(I.MULT,MULTX,a,b,d,an)
          | T.FDIV(64,a,b) => farith(I.DIVT,DIVTX,a,b,d,an)

            (* copy sign (correct?) XXX *)
          | T.FCOPYSIGN(_,T.FNEG(_,a),b) => farith'(I.CPYSN,a,b,d,an)
          | T.FCOPYSIGN(_,a,T.FNEG(_,b)) => farith'(I.CPYSN,a,b,d,an)
          | T.FNEG(_,T.FCOPYSIGN(_,a,b)) => farith'(I.CPYSN,a,b,d,an)
          | T.FCOPYSIGN(_,a,b)           => farith'(I.CPYS,a,b,d,an)

            (* generic *)
          | T.FABS(_,a)   => 
               mark(I.FOPERATE{oper=I.CPYS,fa=zeroFR,fb=fexpr a,fc=d},an)
          | T.FNEG(_,a)   => 
               let val fs = fexpr a
               in mark(I.FOPERATE{oper=I.CPYSN,fa=fs,fb=fs,fc=d},an) end
          | T.FSQRT(_,a)  => error "fsqrt"

            (* loads *)
          | T.FLOAD(32,ea,mem) => fload(I.LDS,ea,d,mem,an)
          | T.FLOAD(64,ea,mem) => fload(I.LDT,ea,d,mem,an)
         
            (* floating/floating conversion 
             * Note: it is not necessary to convert single precision
             * to double on the alpha.
             *)
          | T.CVTF2F(fty,fty',e) => (* ignore rounding mode for now *)
            (case (fty,fty') of
               (64,64) => doFexpr(e,d,an) 
             | (64,32) => doFexpr(e,d,an) 
             | (32,32) => doFexpr(e,d,an) 
             | (32,64) => funary(I.CVTTS,e,d,an) (* use normal rounding *)
             | _       => error "CVTF2F"
            )

            (* integer -> floating point conversion *)
          | T.CVTI2F(fty,ty,e) => 
            let val pseudo = 
                case (ty,fty) of
                  (ty,32) => if ty <= 32 then P.cvtls else P.cvtqs
                | (ty,64) => if ty <= 32 then P.cvtlt else P.cvtqt
                | _       => error "CVTI2F"
            in  fcvti2f(pseudo,e,d,an) end

          | T.FMARK(e,A.MARKREG f) => (f d; doFexpr(e,d,an))
          | T.FMARK(e,a) => doFexpr(e,d,a::an)
          | T.FPRED(e,c) => doFexpr(e, d, A.CTRLUSE c::an)
          | T.FEXT e => ExtensionComp.compileFext (reducer()) {e=e, fd=d, an=an}
          | _ => error "doFexpr"

          (* check whether an expression is andb(e,1) *)
      and isAndb1(e as T.ANDB(_, e1, e2)) = let
	    fun isOne(n, ei) = 
	      if EQ(n, 1) then (true, ei) else (false, e)
	  in
	    case(e1, e2) 
	    of (T.LI n, _) => isOne(n, e2)
	     | (_, T.LI n) => isOne(n, e1)
	     | _ => (false, e)
	  end
	| isAndb1 e = (false, e)

      and zeroOrOne(T.LI n) =
	if n = 0 then ZERO 
	else if EQ(n, 1) then ONE
	     else OTHER
	| zeroOrOne _ = OTHER

      (* compile a branch *)
      and branch(e,lab,an) = 
          case e of
            T.CMP(ty,cc,e1 as T.LI _,e2) => 
               branchBS(ty,T.Basis.swapCond cc,e2,e1,lab,an)
          | T.CMP(ty,cc,e1,e2) => branchBS(ty,cc,e1,e2,lab,an)
            (* generate an floating point branch *)
          | T.FCMP(fty,cc,e1,e2) =>
            let val f1 = fexpr e1
                val f2 = fexpr e2
                fun bcc(cmp,br) = 
                let val tmpR = C.newFreg()
                in  (*emit(I.DEFFREG(tmpR));*)
                    emit(I.FOPERATE{oper=cmp,fa=f1,fb=f2,fc=tmpR});
                    emit(I.TRAPB);
		    emitInstruction(I.LIVE{regs=List.foldl C.addFreg C.empty [f1,f2,tmpR],
				spilled=[]});
                    mark(I.FBRANCH{b=br,f=tmpR,lab=lab},an)
                end
                fun fall(cmp1, br1, cmp2, br2) = 
                let val tmpR1 = newFreg()
                    val tmpR2 = newFreg()
                    val fallLab = Label.anon()
                in  (*emit(I.DEFFREG(tmpR1));*)
                    emit(I.FOPERATE{oper=cmp1, fa=f1, fb=f2, fc=tmpR1});
                    emit(I.TRAPB);
		    emitInstruction(I.LIVE{regs=List.foldl C.addFreg C.empty [f1,f2,tmpR1],
				spilled=[]});
                    mark(I.FBRANCH{b=br1, f=tmpR1, lab=fallLab},an);
                    (* emit(I.DEFFREG(tmpR2)); *)
                    emit(I.FOPERATE{oper=cmp2, fa=f1, fb=f2, fc=tmpR2});
                    emit(I.TRAPB);
		    emitInstruction(I.LIVE{regs=List.foldl C.addFreg C.empty [f1,f2,tmpR2],
				spilled=[]});
                    mark(I.FBRANCH{b=br2, f=tmpR2, lab=lab},an);
                    defineLabel fallLab
                end
                fun bcc2(cmp1, br1, cmp2, br2) = 
                     (bcc(cmp1, br1); bcc(cmp2, br2))
            in  case cc of 
                  T.==  => bcc(I.CMPTEQSU, I.FBNE)
                | T.?<> => bcc(I.CMPTEQSU, I.FBEQ)
                | T.?   => bcc(I.CMPTUNSU, I.FBNE)
                | T.<=> => bcc(I.CMPTUNSU, I.FBEQ)
                | T.>   => fall(I.CMPTLESU, I.FBNE, I.CMPTUNSU, I.FBEQ)
                | T.>=  => fall(I.CMPTLTSU, I.FBNE, I.CMPTUNSU, I.FBEQ)
                | T.?>  => bcc(I.CMPTLESU, I.FBEQ)
                | T.?>= => bcc(I.CMPTLTSU, I.FBEQ)
                | T.<   => bcc(I.CMPTLTSU, I.FBNE)
                | T.<=  => bcc(I.CMPTLESU, I.FBNE)
                | T.?<  => bcc2(I.CMPTLTSU, I.FBNE, I.CMPTUNSU, I.FBNE)
                | T.?<= => bcc2(I.CMPTLESU, I.FBNE, I.CMPTUNSU, I.FBNE)
                | T.<>  => fall(I.CMPTEQSU, I.FBNE, I.CMPTUNSU, I.FBEQ)
                | T.?=  => bcc2(I.CMPTEQSU, I.FBNE, I.CMPTUNSU, I.FBNE)
                | _     => error "branch"
            end
          | e => mark(I.BRANCH{b=I.BNE,r=ccExpr e,lab=lab},an)

      and br(opcode,exp,lab,an) = mark(I.BRANCH{b=opcode,r=expr exp,lab=lab},an)

            (* Use the branch on bit set/clear instruction when possible *) 
      and branchBS(ty,cc,a,b,lab,an)  =
          (case (cc,isAndb1 a,zeroOrOne b) of
             (T.EQ,(true,e),ONE)  => br(I.BLBS,e,lab,an)
           | (T.EQ,(true,e),ZERO) => br(I.BLBC,e,lab,an)
           | (T.NE,(true,e),ZERO) => br(I.BLBS,e,lab,an)
           | (T.NE,(true,e),ONE)  => br(I.BLBC,e,lab,an)
           | (cc,_,_)             => branchIt(ty,cc,a,b,lab,an)
          )
 
          (* generate a branch instruction. 
           * Check for branch on zero as a special case 
           *)

      and branchIt(ty,cc,e1,e2 as T.LI z,lab,an) = 
	   if z = 0 then branchIt0(cc,e1,lab,an)
	   else branchItOther(ty,cc,e1,e2,lab,an)
        | branchIt(ty,cc,e1,e2,lab,an) = branchItOther(ty,cc,e1,e2,lab,an)

          (* generate a branch instruction. 
           * This function optimizes the special case of comparison with zero.
           *)
      and branchIt0(T.EQ,e,lab,an) = br(I.BEQ,e,lab,an)
        | branchIt0(T.NE,e,lab,an) = br(I.BNE,e,lab,an)
        | branchIt0(T.GT,e,lab,an) = br(I.BGT,e,lab,an)
        | branchIt0(T.GE,e,lab,an) = br(I.BGE,e,lab,an)
        | branchIt0(T.LE,e,lab,an) = br(I.BLE,e,lab,an)
        | branchIt0(T.LT,e,lab,an) = br(I.BLT,e,lab,an)
        | branchIt0(T.GTU,e,lab,an) = br(I.BNE,e,lab,an)  (* always > 0! *)
        | branchIt0(T.GEU,e,lab,an) = (* always true! *) goto(lab,an)
        | branchIt0(T.LTU,e,lab,an) = (* always false! *) ()
        | branchIt0(T.LEU,e,lab,an) = br(I.BEQ,e,lab,an)  (* never < 0! *)
        | branchIt0 _               = error "brnachIt0"

        (* Generate the operands for unsigned comparisons 
         * Mask out high order bits whenever necessary.
         *)
      and unsignedCmpOpnds(ty,e1,e2) = 
          let fun zapHi(r,mask) = 
              let val d = newReg()
              in  emit(I.OPERATE{oper=I.ZAP, ra=r, rb=I.IMMop mask,rc=d}); 
                  I.REGop d
              end

              fun zap(opn as I.REGop r) =
                  (case ty of
                     8  => zapHi(r,0xfd)
                   | 16 => zapHi(r,0xfc)
                   | 32 => zapHi(r,0xf0)
                   | 64 => opn 
                   | _  => error "unsignedCmpOpnds" 
                  )
                | zap opn = opn 
              val opn1 = opn e1
              val opn2 = opn e2
          in  (zap opn1,zap opn2) end

        (* Generate a branch *)
      and branchItOther(ty,cond,e1,e2,lab,an) = 
          let val tmpR = newReg()
              fun signedCmp(cmp,br) = 
                  (emit(I.OPERATE{oper=cmp, ra=expr e1, rb=opn e2, rc=tmpR});
                   mark(I.BRANCH{b=br, r=tmpR, lab=lab},an)
                  )
              fun unsignedCmp(ty,cmp,br) = 
                  let val (x,y) = unsignedCmpOpnds(ty,e1,e2)
                  in  emit(I.OPERATE{oper=cmp,ra=reduceOpn x,rb=y,rc=tmpR});
                      mark(I.BRANCH{b=br, r=tmpR, lab=lab},an)
                  end
          in  case cond of
                T.LT  => signedCmp(I.CMPLT,I.BNE)
              | T.LE  => signedCmp(I.CMPLE,I.BNE)
              | T.GT  => signedCmp(I.CMPLE,I.BEQ)
              | T.GE  => signedCmp(I.CMPLT,I.BEQ)
              | T.EQ  => signedCmp(I.CMPEQ,I.BNE)
              | T.NE  => signedCmp(I.CMPEQ,I.BEQ)
              | T.LTU => unsignedCmp(ty,I.CMPULT,I.BNE)
              | T.LEU => unsignedCmp(ty,I.CMPULE,I.BNE)
              | T.GTU => unsignedCmp(ty,I.CMPULE,I.BEQ)
              | T.GEU => unsignedCmp(ty,I.CMPULT,I.BEQ)
              | _     => error "branchItOther"
          end

         (* This function generates a conditional move:
          *   d = if cond(a,b) then x else y
          * Apparently, only signed comparisons conditional moves
          * are supported on the alpha.
          *)
      and cmove(ty,cond,a,b,x,y,d,an) =
          let val tmp = newReg()
              val _ = doExpr(y,tmp,[]) (* evaluate false case *)

              val (cond,a,b) = 
                (* move the immed operand to b *)
                case a of
                  (T.LI _ | T.CONST _ | T.LABEL _ | T.LABEXP _) => 
                    (T.Basis.swapCond cond,b,a)
                | _ => (cond,a,b)

              fun sub(a, T.LI z) = 
		   if z = 0 then expr a else expr(T.SUB(ty,a,b))
                | sub(a,b)       = expr(T.SUB(ty,a,b))

              fun cmp(cond,e1,e2) = 
                  let val flag = newReg()
                  in  compare(ty,cond,e1,e2,flag,[]); flag end

              val (oper,ra,x,y) =
                case (cond,isAndb1 a,zeroOrOne b) of
                     (* low bit set/clear? *)
                  (T.EQ,(true,e),ONE)  => (I.CMOVLBS,expr e,x,y)
                | (T.EQ,(true,e),ZERO) => (I.CMOVLBC,expr e,x,y)
                | (T.NE,(true,e),ZERO) => (I.CMOVLBS,expr e,x,y)
                | (T.NE,(true,e),ONE)  => (I.CMOVLBC,expr e,x,y)
                     (* signed  *)
                | (T.EQ,_,_)           => (I.CMOVEQ,sub(a,b),x,y)
                | (T.NE,_,_)           => (I.CMOVNE,sub(a,b),x,y)
                | (T.GT,_,_)           => (I.CMOVGT,sub(a,b),x,y)
                | (T.GE,_,_)           => (I.CMOVGE,sub(a,b),x,y)
                | (T.LT,_,_)           => (I.CMOVLT,sub(a,b),x,y)
                | (T.LE,_,_)           => (I.CMOVLE,sub(a,b),x,y)

                   (* unsigned: do compare then use the condition code *)
                | (T.LTU,_,_)          => (I.CMOVEQ,cmp(T.GEU,a,b),x,y)
                | (T.LEU,_,_)          => (I.CMOVEQ,cmp(T.GTU,a,b),x,y)
                | (T.GTU,_,_)          => (I.CMOVEQ,cmp(T.LEU,a,b),x,y)
                | (T.GEU,_,_)          => (I.CMOVEQ,cmp(T.LTU,a,b),x,y)
                | _                    => error "cmove"
          in  mark(I.CMOVE{oper=oper,ra=ra,rb=opn x,rc=tmp},an); (* true case *)
              move(tmp, d, [])
          end


        (* This function generates a comparion between e1 and e2 and writes 
         * the result to register d.
         * It'll mask out the high order 32-bits when performing
         * unsigned 32-bit integer comparisons.
         *)
      and compare(ty,cond,e1,e2,d,an) = 
          let fun signedCmp(oper,a,b,d) = 
                  mark(I.OPERATE{oper=oper,ra=expr a,rb=opn b,rc=d},an)
              fun unsignedCmp(ty,oper,a,b,d) = 
                  let val (x,y) = unsignedCmpOpnds(ty,a,b)
                  in  mark(I.OPERATE{oper=oper,ra=reduceOpn x,rb=y,rc=d},an)
                  end
              fun eq(a,b,d) = 
                 (case (opn a,opn b) of
                    (a,I.REGop r) => 
                      mark(I.OPERATE{oper=I.CMPEQ,ra=r,rb=a,rc=d},an)
                  | (a,b) =>
                      mark(I.OPERATE{oper=I.CMPEQ,ra=reduceOpn a,rb=b,rc=d},an)
                 )
              fun neq(a,b,d) = 
                  let val tmp = newReg()  
                  in  eq(a,b,tmp);
                      emit(I.OPERATE{oper=I.CMPEQ,ra=tmp,rb=zeroOpn,rc=d})
                  end
              val (cond,e1,e2) =
		  case e1 of
                    (T.LI _ | T.CONST _ | T.LABEL _ | T.LABEXP _) => 
                       (T.Basis.swapCond cond,e2,e1)
                  | _ => (cond,e1,e2)
          in  case cond of
                T.EQ  => eq(e1,e2,d)
              | T.NE  => neq(e1,e2,d)
              | T.GT  => signedCmp(I.CMPLT,e2,e1,d)
              | T.GE  => signedCmp(I.CMPLE,e2,e1,d)
              | T.LT  => signedCmp(I.CMPLT,e1,e2,d)
              | T.LE  => signedCmp(I.CMPLE,e1,e2,d)
              | T.GTU => unsignedCmp(ty,I.CMPULT,e2,e1,d)
              | T.GEU => unsignedCmp(ty,I.CMPULE,e2,e1,d)
              | T.LTU => unsignedCmp(ty,I.CMPULT,e1,e2,d)
              | T.LEU => unsignedCmp(ty,I.CMPULE,e1,e2,d)
              | _     => error "compare"
          end

         (* generate an unconditional branch *)
      and goto(lab,an) = mark(I.BRANCH{b=I.BR,r=zeroR,lab=lab},an)

         (* generate an call instruction *)
      and call(ea,flow,defs,uses,mem,cutTo,an,0) = 
	  let val defs=cellset defs
              val uses=cellset uses
              val instr = 
		  case (ea, flow) of
                      (T.LABEL lab, [_]) => 
                      I.BSR{lab=lab,r=C.returnAddr,defs=defs,uses=uses,
                            cutsTo=cutTo,mem=mem}
		    | _ => I.JSR{r=C.returnAddr,b=expr ea,
				 d=0,defs=defs,uses=uses,cutsTo=cutTo,mem=mem}
	  in  mark(instr,an)
	  end
	| call _ = error "pops<>0 not implemented"

      and doCCexpr(T.CC(_,r),d,an) = move(r,d,an)
        | doCCexpr(T.FCC(_,r),d,an) = fmove(r,d,an)
        | doCCexpr(T.CMP(ty,cond,e1,e2),d,an)  = compare(ty,cond,e1,e2,d,an) 
        | doCCexpr(T.FCMP(fty,cond,e1,e2),d,an) = error "doCCexpr"
        | doCCexpr(T.CCMARK(e,A.MARKREG f),d,an) = (f d; doCCexpr(e,d,an))
        | doCCexpr(T.CCMARK(e,a),d,an) = doCCexpr(e,d,a::an)
        | doCCexpr(T.CCEXT e,d,an) = 
             ExtensionComp.compileCCext (reducer()) {e=e, ccd=d, an=an}
        | doCCexpr _ = error "doCCexpr"

      and ccExpr(T.CC(_,r)) = r
        | ccExpr(T.FCC(_,r)) = r
        | ccExpr e = let val d = newReg()
                     in  doCCexpr(e,d,[]); d end

      (* compile a statement *)
      and stmt(s,an) =
          case s of
            T.MV(ty,r,e) => doExpr(e,r,an)
          | T.FMV(ty,r,e) => doFexpr(e,r,an)
          | T.CCMV(r,e) => doCCexpr(e,r,an)
          | T.COPY(ty,dst,src) => copy(dst,src,an)
          | T.FCOPY(ty,dst,src) => fcopy(dst,src,an)
          | T.JMP(T.LABEL lab,_) => goto(lab,an)
          | T.JMP(e,labs) => mark(I.JMPL({r=zeroR,b=expr e,d=0},labs),an)
          | T.BCC(cc,lab) => branch(cc,lab,an)
          | T.CALL{funct,targets,defs,uses,region,pops,...} => 
              call(funct,targets,defs,uses,region,[],an,pops)
          | T.FLOW_TO(T.CALL{funct,targets,defs,uses,region,pops,...},cutTo) =>
              call(funct,targets,defs,uses,region,cutTo,an,pops)
          | T.RET _ => mark(I.RET{r=zeroR,b=C.returnAddr,d=0},an)
          | T.STORE(8,ea,data,mem) => store8(ea,data,mem,an)
          | T.STORE(16,ea,data,mem) => store16(ea,data,mem,an)
          | T.STORE(32,ea,data,mem) => store(I.STL,ea,data,mem,an)
          | T.STORE(64,ea,data,mem) => store(I.STQ,ea,data,mem,an)
          | T.FSTORE(32,ea,data,mem) => fstore(I.STS,ea,data,mem,an)
          | T.FSTORE(64,ea,data,mem) => fstore(I.STT,ea,data,mem,an)
          | T.DEFINE l => defineLabel l
          | T.ANNOTATION(s,a) => stmt(s,a::an)
          | T.EXT s => ExtensionComp.compileSext (reducer()) {stm=s,an=an}
	  | T.LIVE rs => mark'(I.LIVE{regs=cellset rs, spilled=[]}, an)
	  | T.KILL rs => mark'(I.KILL{regs=cellset rs, spilled=[]}, an)
          | s => doStmts (Gen.compileStm s)

      and reducer() =
          TS.REDUCER{reduceRexp    = expr,
                     reduceFexp    = fexpr,
                     reduceCCexp   = ccExpr,
                     reduceStm     = stmt,
                     operand       = opn,
                     reduceOperand = reduceOpn,
                     addressOf     = addr,
                     emit          = emitInstruction o annotate,
                     instrStream   = instrStream,
                     mltreeStream  = self()
                    } 

      and doStmt s = stmt(s,[])
      and doStmts ss = app doStmt ss

       (* convert mlrisc to cellset:
        * condition code registers are mapped onto general registers
        *)
      and cellset mlrisc =
          let fun g([],acc) = acc
                | g(T.GPR(T.REG(_,r))::regs,acc)  = g(regs,C.addReg(r,acc))
                | g(T.FPR(T.FREG(_,f))::regs,acc) = g(regs,C.addFreg(f,acc))
                | g(T.CCR(T.CC(_,cc))::regs,acc)  = g(regs,C.addReg(cc,acc))
                | g(T.CCR(T.FCC(_,cc))::regs,acc) = g(regs,C.addReg(cc,acc))
                | g(_::regs, acc) = g(regs, acc)
          in  g(mlrisc, C.empty) end

      and self() = 
          TS.S.STREAM
         { beginCluster   = beginCluster,
           endCluster     = endCluster,
           emit           = doStmt,
           pseudoOp       = pseudoOp,
           defineLabel    = defineLabel,
           entryLabel     = entryLabel,
           comment        = comment,
           annotation     = annotation,
           getAnnotations = getAnnotations,
           exitBlock      = fn regs => exitBlock(cellset regs)
         } 
   in  self()
   end
 
end