File: amd64MC.sml

package info (click to toggle)
mlton 20210117%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 58,464 kB
  • sloc: ansic: 27,682; sh: 4,455; asm: 3,569; lisp: 2,879; makefile: 2,347; perl: 1,169; python: 191; pascal: 68; javascript: 7
file content (920 lines) | stat: -rw-r--r-- 36,694 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
(* amd64MC.sml
 *
 * COPYRIGHT (c) 2019 The Fellowship of SML/NJ (http://www.smlnj.org)
 * All rights reserved.
 *
 * Machine code emitter for AMD64 architecture.
 *)

functor AMD64MCEmitter (

    structure Instr : AMD64INSTR
    structure Shuffle : AMD64SHUFFLE (* where I = Instr *)
                        where type I.Constant.const = Instr.Constant.const
                          and type I.Region.region = Instr.Region.region
                          and type I.T.Basis.cond = Instr.T.Basis.cond
                          and type I.T.Basis.div_rounding_mode = Instr.T.Basis.div_rounding_mode
                          and type I.T.Basis.ext = Instr.T.Basis.ext
                          and type I.T.Basis.fcond = Instr.T.Basis.fcond
                          and type I.T.Basis.rounding_mode = Instr.T.Basis.rounding_mode
                          and type ('s,'r,'f,'c) I.T.Extension.ccx = ('s,'r,'f,'c) Instr.T.Extension.ccx
                          and type ('s,'r,'f,'c) I.T.Extension.fx = ('s,'r,'f,'c) Instr.T.Extension.fx
                          and type ('s,'r,'f,'c) I.T.Extension.rx = ('s,'r,'f,'c) Instr.T.Extension.rx
                          and type ('s,'r,'f,'c) I.T.Extension.sx = ('s,'r,'f,'c) Instr.T.Extension.sx
                          and type I.T.I.div_rounding_mode = Instr.T.I.div_rounding_mode
                          and type I.T.ccexp = Instr.T.ccexp
                          and type I.T.fexp = Instr.T.fexp
                          (* and type I.T.labexp = Instr.T.labexp *)
                          and type I.T.mlrisc = Instr.T.mlrisc
                          and type I.T.oper = Instr.T.oper
                          and type I.T.rep = Instr.T.rep
                          and type I.T.rexp = Instr.T.rexp
                          and type I.T.stm = Instr.T.stm
                          (* and type I.addressing_mode = Instr.addressing_mode *)
                          and type I.binaryOp = Instr.binaryOp
                          and type I.bitOp = Instr.bitOp
                          and type I.cond = Instr.cond
                          and type I.fbin_op = Instr.fbin_op
                          and type I.fcom_op = Instr.fcom_op
                          and type I.fmove_op = Instr.fmove_op
                          and type I.fsize = Instr.fsize
                          and type I.instr = Instr.instr
                          and type I.instruction = Instr.instruction
                          and type I.isize = Instr.isize
                          and type I.move = Instr.move
                          and type I.multDivOp = Instr.multDivOp
                          and type I.operand = Instr.operand
                          and type I.shiftOp = Instr.shiftOp
                          and type I.unaryOp = Instr.unaryOp
    structure MLTreeEval : MLTREE_EVAL (* where T = Instr.T *)
                           where type T.Basis.cond = Instr.T.Basis.cond
                             and type T.Basis.div_rounding_mode = Instr.T.Basis.div_rounding_mode
                             and type T.Basis.ext = Instr.T.Basis.ext
                             and type T.Basis.fcond = Instr.T.Basis.fcond
                             and type T.Basis.rounding_mode = Instr.T.Basis.rounding_mode
                             and type T.Constant.const = Instr.T.Constant.const
                             and type ('s,'r,'f,'c) T.Extension.ccx = ('s,'r,'f,'c) Instr.T.Extension.ccx
                             and type ('s,'r,'f,'c) T.Extension.fx = ('s,'r,'f,'c) Instr.T.Extension.fx
                             and type ('s,'r,'f,'c) T.Extension.rx = ('s,'r,'f,'c) Instr.T.Extension.rx
                             and type ('s,'r,'f,'c) T.Extension.sx = ('s,'r,'f,'c) Instr.T.Extension.sx
                             and type T.I.div_rounding_mode = Instr.T.I.div_rounding_mode
                             and type T.Region.region = Instr.T.Region.region
                             and type T.ccexp = Instr.T.ccexp
                             and type T.fexp = Instr.T.fexp
                             (* and type T.labexp = Instr.T.labexp *)
                             and type T.mlrisc = Instr.T.mlrisc
                             and type T.oper = Instr.T.oper
                             and type T.rep = Instr.T.rep
                             and type T.rexp = Instr.T.rexp
                             and type T.stm = Instr.T.stm
    structure AsmEmitter : INSTRUCTION_EMITTER (* where I = Instr *)
                           where type I.addressing_mode = Instr.addressing_mode
                             and type I.ea = Instr.ea
                             and type I.instr = Instr.instr
                             and type I.instruction = Instr.instruction
                             and type I.operand = Instr.operand

  ) : MC_EMIT = struct
    structure I = Instr
    structure C = I.C
    structure W32 = Word32
    structure W8 = Word8
    structure W = LargeWord
    structure CB = CellsBasis

    val println = print o (fn s => s^"\n")
    val i2s = Int.toString
    val print_int = println o i2s

    val itow  = Word.fromInt
    val wtoi  = Word.toInt

    fun error msg = MLRiscErrorMsg.impossible ("AMD64MCEmitter: " ^ msg)
    fun unimplemented instr = MLRiscErrorMsg.impossible (concat[
	    "AMD64MCEmitter: ", instr, " unimplemented"
	  ])

  (*
   * Sanity check!
   *)
    val eax = 0   val esp = 4
    val ecx = 1   val ebp = 5
    val edx = 2   val esi = 6
    val ebx = 3   val edi = 7

    val lockPrefix : Word8.word = 0wxF0

    fun lexp le = Int32.fromInt (MLTreeEval.valueOf le)

    val toWord8 = Word8.fromLargeWord o LargeWord.fromLargeInt o Int32.toLarge
    val eBytes = Word8Vector.fromList
    fun eByte i = eBytes [W8.fromInt i]

    local
      val toLWord = (W.fromLargeInt o Int32.toLarge)
      fun shift (w,cnt) = W8.fromLargeWord(W.>>(w, cnt))
    in
    fun eShort i16 = let
	  val w = toLWord i16
	  in [
	    shift(w, 0w0), shift(w,0w8)
	  ] end
    fun eLong i32 = let
	  val w = toLWord i32
	  in [
	    shift(w, 0w0), shift(w,0w8), shift(w,0w16), shift(w,0w24)
	  ] end
    end (* local *)

    fun eLongLong i64 = let
	  val toLLWord = (Word64.fromLargeInt o Int64.toLarge)
	  val w = toLLWord i64
	  fun shift64 (w,cnt) = let
	      val shifted = Word64.>>(w, cnt)
	      val masked = Word64.andb(0w255, shifted)
	      in Word8.fromInt (Word64.toInt masked) end
	  in [shift64(w, 0w0),
	      shift64(w, 0w8),
	      shift64(w, 0w16),
	      shift64(w, 0w24),
	      shift64(w, 0w32),
	      shift64(w, 0w40),
	      shift64(w, 0w48),
	      shift64(w, 0w56)]
	  end

    fun eLongLongCut i64 = let
	  val toLLWord = (Word64.fromLargeInt o Int64.toLarge)
	  val w = toLLWord i64
	  fun shift64 (w,cnt) = let
		val shifted = Word64.>>(w, cnt)
		val masked = Word64.andb(0w255, shifted)
		in Word8.fromInt (Word64.toInt masked) end
	  in [
	    shift64(w, 0w0), shift64(w, 0w8), shift64(w, 0w16), shift64(w, 0w24)
	  ] end

    fun emitAMD64Instr instr = let
	  val error = fn msg => let
		val AsmEmitter.S.STREAM{emit,...} = AsmEmitter.makeStream []
		in
		  emit (I.INSTR instr); error msg
		end

	  datatype reg_or_opc = REG of int | OPCODE of int
	  fun rMask r = r mod 8
	  fun getRO (REG r) = rMask r
	    | getRO (OPCODE oc) = oc
	  val rNum' = rMask o CB.physicalRegisterNum
	  val rNum = CB.physicalRegisterNum
	  val fNum = CB.physicalRegisterNum
	  val isExtReg = (fn x => x > 7) o rNum
	  fun isExtReg' (REG r) = r > 7
	    | isExtReg' _ = false

	(* sizes of immediate operands *)
	  datatype size = Zero | Bits8 | Bits32
	  fun size i =
	      if i = 0 then Zero
	      else if Int32.<(i, 128) andalso Int32.<=(~128, i) then Bits8
	      else Bits32

	  fun immedOpnd (I.Immed i32) = i32
	    | immedOpnd (I.ImmedLabel le) = lexp le
	    | immedOpnd (I.LabelEA le) = lexp le
	    | immedOpnd _ = error "immedOpnd"

	  nonfix mod

	  fun scale (n, m) = Word.toIntX(Word.<<(Word.fromInt n, Word.fromInt m))
	  fun modrm {mod, reg, rm} = W8.fromInt(scale(mod,6) + scale(reg,3) + rm)
	  fun sib {ss, index, base} = W8.fromInt(scale(ss,6) + scale(index,3) + base)
	  fun eREXRegs (r, x, b) = let
	        val rb1 = if r then 0wx4 else 0wx0
		val rb2 = if x then rb1 + 0wx2 else rb1
		val rb3 = if b then rb2 + 0wx1 else rb2
		in
		  rb3
		end (* rex *)
	  fun eREX rb = 0wx40 + rb
	  fun eREX64 rb = eREX rb + 0wx8	(* sets REX.W *)

	  fun eImmedExt (_, I.Immed _) = error "eImmedExt: Immed"
	    | eImmedExt (_, I.Immed64 _) = error "eImmedExt: Immed64"
	    | eImmedExt (_, I.ImmedLabel _) = error "eImmedExt: ImmedLabel"
	    | eImmedExt (_, I.Relative _) = error "eImmedExt: Relative"
	    | eImmedExt (_, I.LabelEA _) = error "eImmedExt: LabelEA"
            | eImmedExt (r', I.Direct (_, r)) =
	      ( (isExtReg' r', false, isExtReg r),
		[modrm{mod=3, reg=getRO r', rm=rNum' r}] )
            | eImmedExt (r', I.FDirect r) =
	      ( (isExtReg' r', false, isExtReg r),
		[modrm{mod=3, reg=getRO r', rm=rNum' r}] )
	    | eImmedExt (r', I.Displace{base=base', disp, ...}) = let
	        val base = rNum' base'
		val immed = immedOpnd disp
		val rex = (isExtReg' r', false, isExtReg base')
		val r' = getRO r'
		fun displace(mod, eDisp) = if base = esp
		      then modrm{mod=mod, reg=r', rm=4}::
			sib{ss=0, index=4, base=esp}::eDisp immed
		      else modrm{mod=mod, reg=r', rm=base} :: eDisp immed
                in
		  (rex,
		   (case size immed
		     of Zero => if base = esp
			    then [modrm{mod=0, reg=r', rm=4}, sib{ss=0,index=4,base=esp}]
			  else if base = ebp
			    then [modrm{mod=1, reg=r', rm=ebp}, 0w0]
			    else [modrm{mod=0, reg=r', rm=base}]
		      | Bits8 => displace (1, fn i => [toWord8 i])
		      | Bits32 => displace (2, eLong)
		  (*esac*)) )
                end
	    | eImmedExt (r', I.Indexed{base=NONE, index, scale, disp, ...}) = let
                val rex = (isExtReg' r', isExtReg index, false)
		val r' = getRO r'
	        in
		  (rex,
		   (modrm{mod=0, reg=r', rm=4} ::
		    sib{base=5, ss=scale, index=rNum' index} ::
		    eLong (immedOpnd disp)) )
	        end
	    | eImmedExt (r', I.Indexed{base=SOME b, index, scale, disp, ...}) = let
	        val rex = (isExtReg' r', isExtReg index, isExtReg b)
		val r' = getRO r'
		val index = rNum' index
		val base = rNum' b
		val immed = immedOpnd disp
		fun indexed (mod, eDisp) =
		      modrm{mod=mod, reg=r', rm=4} ::
		      sib{ss=scale, index=index, base=base} :: eDisp immed
		in
		  (rex,
		   (case size immed
		     of Zero =>
			if base=ebp then
			    [modrm{mod=1, reg=r', rm=4},
			     sib{ss=scale, index=index, base=5}, 0w0]
			else
			    [modrm{mod=0, reg=r', rm=4},
			     sib{ss=scale, index=index, base=base}]
		      | Bits8 => indexed(1, fn i => [toWord8 i])
		      | Bits32 => indexed(2, eLong)
		   (*esac*)) )
		end

	  fun encode32' (bytes, r', opnd) = let
	        val (rex, e) = eImmedExt (r', opnd)
	        in
		  case eREXRegs rex
		   of 0w0 => bytes @ e
		    | rexByte => (eREX rexByte) :: bytes @ e
		  (* esac *)
	        end (* encode32' *)
	  fun encode64' (bytes, r', opnd) = let
	        val (rex, e) = eImmedExt (r', opnd)
	        in
		  (eREX64 (eREXRegs rex)) :: bytes @ e
	        end (* encode64' *)
	  fun encode' 32 = encode32'
	    | encode' _ = encode64'
	  fun encode32 (byte1, r', opnd) = eBytes (encode32' ([byte1], r', opnd))
	  fun encode64 (byte1, r', opnd) = eBytes (encode64' ([byte1], r', opnd))
	  fun encode sz = if sz = 64 then encode64 else encode32
	  fun encodeReg32 (byte1, r, opnd) = encode32 (byte1, REG(rNum r), opnd)
	  fun encodeReg64 (byte1, r, opnd) = encode64 (byte1, REG(rNum r), opnd)
	  fun encodeReg sz = if sz = 64 then encodeReg64 else encodeReg32
	  fun encodeLongImm32 (byte1, r', opnd, i) =
	        eBytes ((encode32' ([byte1], r', opnd)) @ eLong i)
	  fun encodeLongImm64 (byte1, r', opnd, i) =
	        eBytes ((encode64' ([byte1], r', opnd)) @ eLong i)
	  fun encodeLongImm sz = if sz = 64 then encodeLongImm64 else encodeLongImm32
	  fun encodeShortImm32 (byte1, r', opnd, w) =
	        eBytes ((encode32' ([byte1], r', opnd)) @ eShort w)
	  fun encodeShortImm64 (byte1, r', opnd, w) =
	        eBytes ((encode64' ([byte1], r', opnd)) @ eShort w)
	  fun encodeShortImm sz = if sz = 64 then encodeShortImm64 else encodeShortImm32
	  fun encodeByteImm32 (byte1, r', opnd, b) =
	        eBytes ((encode32' ([byte1], r', opnd)) @ [toWord8 b])
	  fun encodeByteImm64 (byte1, r', opnd, b) =
	        eBytes ((encode64' ([byte1], r', opnd)) @ [toWord8 b])
	  fun encodeByteImm sz = if sz = 64
		then encodeByteImm64
		else encodeByteImm32
	  fun encodeST (byte1, opc, STn) = let
	        fun reg {opc, reg} = W8.fromInt (scale (opc,3) + reg)
	        in
		  eBytes [byte1, reg{opc=opc,reg=fNum STn}]
		end

	  (* arith: only 5 cases need be considered for each size:
	   *  dst,   src	op/en
	   *  --------------------------
	   *  EAX,   imm32	I
	   *  r/m32, imm32	MI
	   *  r/m32, imm8	MI
	   *  r/m32, r32	MR
	   *  r32,   r/m32	RM
	   *)
	  fun arith (sz : int, opc1 : Word8.word, opc2 : reg_or_opc) = let
		fun f (I.ImmedLabel le, dst) = f(I.Immed(lexp le), dst)
		  | f (I.LabelEA le, dst) = f(I.Immed(lexp le), dst)
		  | f (I.Immed i, dst) = (case size i
			 of Bits32 => (case dst
			       of I.Direct (_, r) => if CB.physicalRegisterNum r = eax
				    then if sz = 32
				      then eBytes (W8.fromInt (8 * (getRO opc2) + 5) :: eLong i)
				      else eBytes (eREX64 0w0 :: W8.fromInt(8 * (getRO opc2) + 5)
						  :: eLong i)
				    else encodeLongImm sz (0wx81, opc2, dst, i)
			        | _ => encodeLongImm sz (0wx81, opc2, dst, i)
			      (*esac*))
			  | _ => encodeByteImm sz (0wx83, opc2, dst, i) (* 83 /digit ib *)
			(*esac*))
		  | f(src, I.Direct(_, r)) = encodeReg sz (opc1+0w3, r, src)
		  | f(I.Direct(_, r), dst) = encodeReg sz (opc1+0w1, r, dst)
		  | f _ = error "arith"
		in
		  f
		end (* arith *)

	  fun condCode cond = (case cond
		 of I.EQ => 0w4      | I.NE => 0w5
		  | I.LT => 0w12     | I.LE => 0w14
		  | I.GT => 0w15     | I.GE => 0w13
		  | I.A  => 0w7      | I.AE => 0w3
		  | I.B  => 0w2      | I.BE => 0w6
		  | I.C  => 0w2      | I.NC => 0w3
		  | I.P  => 0wxa     | I.NP => 0wxb
		  | I.O  => 0w0      | I.NO => 0w1
		(*esac*))

	  (* test:  the following cases need be considered:
	   *  lsrc,  rsrc
	   *  -----------
	   *  AL,    imm8  opc1 A8
	   *  EAX,   imm32 opc1 A9
	   *  r/m8,  imm8  opc2 F6/0 ib
	   *        r/m32, imm32 opc2 F7/0 id
	   *        r/m8,  r8    opc3 84/r
	   *        r/m32, r32   opc3 85/r
	   *)
	  fun test (sz, I.ImmedLabel le, lsrc) = test(sz, I.Immed(lexp le), lsrc)
	    | test (sz, I.LabelEA le, lsrc) = test(sz, I.Immed(lexp le), lsrc)
	    | test (sz, I.Immed i, lsrc) = (case (lsrc, i >= 0 andalso i < 255)
		 of (I.Direct (_, r), false) => if CB.physicalRegisterNum r = eax
		      then eBytes(0wxA9 :: eLong i)
		      else encodeLongImm sz (0wxF7, OPCODE 0, lsrc, i)
		  | (_, false)  => encodeLongImm sz (0wxF7, OPCODE 0, lsrc, i)
		  | (I.Direct (_, r), true) => let (* 8 bit *)
		      val r = CB.physicalRegisterNum r
		      in
			if r = eax
			  then eBytes[0wxA8, toWord8 i]
			else if r < 4
			      (* unfortunately, only CL, DL, BL can be encoded *)
			  then encodeByteImm sz (0wxF6, OPCODE 0, lsrc, i)
			else if sz = 8
			  then error "test.8"
			  else encodeLongImm sz (0wxF7, OPCODE 0, lsrc, i)
		      end
		 | (_, true) => encodeByteImm sz (0wxF6, OPCODE 0, lsrc, i)
		(* end case *))
	    | test (8, rsrc as I.Direct (_, r), lsrc) = if rNum r < 4
		then encodeReg32 (0wx84, r, lsrc)
		else error "test.8"
	    | test (sz, I.Direct (_, r), lsrc) = encodeReg sz (0wx85, r, lsrc)
	    | test _ = error "test"

	  fun movsd (byte3, r, opnd) =
	        eBytes (0wxf2::encode32'([0wxf, byte3], REG (rNum r), opnd))

          (* DEBUG print instructions in stdout
          fun makestream s = let
              fun write f slice = let
                  val t = f slice
                  val _ = s := (!s)^t
                  in
                  String.size t
                  end
              val writer =
                  TextPrimIO.WR
                  {
                   name = "stringout",
                   chunkSize = 512,
                   writeVec = SOME (write CharVectorSlice.vector),
                   writeArr = SOME (write CharArraySlice.vector),
                   writeVecNB = NONE,
                   writeArrNB = NONE,
                   block = NONE,
                   canOutput = NONE,
                   getPos = NONE,
                   setPos = NONE,
                   endPos = NONE,
                   verifyPos = NONE,
                   close = (fn () => ()),
                   ioDesc = NONE
                  }
              val stream =
                  TextIO.StreamIO.mkOutstream (writer, IO.NO_BUF)
              in
              TextIO.mkOutstream stream
              end

          fun instrstring () =
              let
              val s = ref ""
              val stream = makestream s
              val _ =
                  AsmStream.withStream stream
                  (fn _ => let
                      val AsmEmitter.S.STREAM{emit,...} =
                          AsmEmitter.makeStream []
                      in
                      emit (I.INSTR instr) end) ()
              val _ = TextIO.closeOut stream
              in !s end

	  val _ = print (instrstring ())
          *)

	  in
	    case instr
	     of I.NOP => eByte 0x90
	      | I.JMP(I.Relative i, _) => (
		  case size (Int32.fromInt(i-2))
		   of Bits32 => eBytes (0wxe9 :: eLong (Int32.fromInt (i-5)))
		    | _ => eBytes [0wxeb, Word8.fromInt(i-2)]
		  (*esac*))
	      | I.JMP(opnd, _) => let
                  val ty = (case opnd of I.Direct(ty,_) => ty | _ => ~1)
                  in
                    if ty = 64
                      then let
                        fun encodejmp (bytes, r', opnd) = let
			      val (rex, e) = eImmedExt (r', opnd)
			      in
				case eREXRegs rex
				 of 0w0 => bytes @ e
				  | rexByte => (eREX rexByte) :: bytes @ e
				(* end case *)
			      end
                        in
                          eBytes(encodejmp([0wxff], OPCODE 4, opnd))
                        end
                      else encode32(0wxff, OPCODE 4, opnd)
                  end
	      | I.JCC{cond, opnd=I.Relative i} => let
	          val code = condCode cond
		  val i' = Int32.fromInt i
	          in
		    case size (i'-2)
		     of Bits32 => eBytes(0wx0f :: Word8.+(0wx80, code) :: eLong(i'-6))
		      | _ => eBytes[Word8.+(0wx70,code), Word8.fromInt(i-2)]
		    (* end case *)
	          end
	      | I.CALL{opnd=I.Relative i,...} =>
	          eBytes (0wxe8 :: eLong (Int32.fromInt (i-5)))
	      | I.CALL{opnd, ...} => encode32 (0wxff, OPCODE 2, opnd)
	      | I.ENTER{src1, src2} => unimplemented "ENTER"
	      | I.LEAVE => eByte 0xc9
	      | I.RET NONE => eByte 0xc3
	      | I.MOVE{mvOp, src, dst} => let
		(* utility to compute rex and adjusted register *)
		  fun rexReg r = if r < 8
			then (0wx48, r)
			else (0wx49, r - 8)
		(* emit basic MOV operation *)
		  fun mov sz = (case (src, dst)
		         of (I.Immed i, I.Direct (_, r)) => (case sz
			       of 32 => eBytes (Word8.+(0wxb8, Word8.fromInt(rNum r))::eLong i)
				| 64 => let
				    val (rex, reg) = rexReg(rNum r)
				    in
				      eBytes(rex::0wxc7::Word8.+(0wxc0, Word8.fromInt reg)::eLong i)
				    end
				| _ => raise Fail "impossible"
			      (* end case *))
			  | (I.Immed i, _) => encodeLongImm sz (0wxc7, OPCODE 0, dst, i)
			  | (I.Immed64 i, I.Direct (_, r)) => if sz = 32
			      then let
				val (start, reg) = if rNum r < 8
				      then ([], rNum r)
				      else ([0wx41], rNum r - 8)
				in
				  eBytes(start@Word8.+(0wxb8, Word8.fromInt reg)::eLongLongCut i)
				end
			      else let
				val (rex, reg) = rexReg(rNum r)
				in
				  eBytes(rex::Word8.+(0wxb8, Word8.fromInt reg)::eLongLong i)
				end
			  | (I.Immed64 i, _) => error " Immed64 _"
			  | (I.ImmedLabel le, dst) =>
			      encodeLongImm sz (0wxc7, OPCODE 0, dst, lexp le)
			  | (I.LabelEA le, dst) => error "MOVL: LabelEA"
			  | (src, dst) => arith(sz, 0wx88, OPCODE 0) (src, dst)
			(* end case *))
		(* zero and sign-extension moves for 16/32-bit results *)
		  fun extend (opc, r) = eBytes (encode32' ([0wx0f, opc], REG(rNum r), src))
		(* zero and sign-extension moves for 64-bit results *)
		  fun extend64 (opc, r) = eBytes (encode64' ([0wx0f, opc], REG(rNum r), src))
		  in
		    case (mvOp, src, dst)
		     of (I.MOVQ, _, _) => mov 64
		      | (I.MOVL, _, _) => mov 32
(* NOTE: there is a comment by Allen in the x86 code generator stating that there is a
 * bug in the ML code generator related to sign extension, thus we ignore the range
 * check and just store the low 8 bits.
 *)
		      | (I.MOVB, I.Immed i, _) => encodeByteImm32 (0wxc6, OPCODE 0, dst, i)
(*
		      | (I.MOVB, I.Immed i, _) => (case size i
			   of Bits32 => error "MOVE: MOVB: imm8"
			    | _ => encodeByteImm32 (0wxc6, OPCODE 0, dst, i)
			  (* end case *))
*)
		      | (I.MOVB, I.Direct(_, r), _) => encodeReg32 (0wx88, r, dst)
		      | (I.MOVB, _, I.Direct(_, r)) => encodeReg32 (0wx8a, r, src)
		      | (I.MOVW, _, I.Direct(_, r)) =>
			  eBytes (0wx66 :: encode32' ([0wx89], REG (rNum r), dst))
		      | (I.MOVW, _, _) => unimplemented "MOVW"
		      | (I.MOVABSQ, I.Immed64 i, I.Direct(_, r)) => let
			  val (rex, reg) = rexReg (rNum r)
			  in
			    eBytes(rex :: (0wxb8+Word8.fromInt reg) :: eLongLong i)
			  end
		      | (I.MOVABSQ, I.ImmedLabel labexp, I.Direct(_ ,r)) => let
			  val (byte1, p) = rexReg(rNum r)
			  val byte2 = 0wxb8 + Word8.fromInt p
			  val byten = eLong (lexp labexp) (* FIXME: should be 64 bits *)
			  val hilong = if (lexp labexp) < 0
				then [0wxff, 0wxff, 0wxff, 0wxff]
				else eLong 0
			  in
			    eBytes ([byte1, byte2] @ byten @ hilong)
			  end
		      | (I.MOVABSQ, _, _) => unimplemented "MOVABSQ"
		      | (I.MOVSWQ, _, I.Direct(_, r)) => extend64 (0wxbf, r)
		      | (I.MOVZWQ, _, I.Direct(_, r)) => extend64 (0wxb7, r)
		      | (I.MOVSWL, _, I.Direct(_, r)) => extend (0wxbf, r)
		      | (I.MOVZWL, _, I.Direct(_, r)) => extend (0wxb7, r)
		      | (I.MOVSBQ, _, I.Direct(_, r)) => extend64 (0wxbe, r)
		      | (I.MOVZBQ, _, I.Direct(_, r)) => extend64 (0wxb6, r)
		      | (I.MOVSBL, _, I.Direct(_, r)) => extend (0wxbe, r)
		      | (I.MOVZBL, _, I.Direct(_, r)) => extend (0wxb6, r)
		      | (I.MOVSLQ, _, I.Direct(_, r)) => extend64 (0wx63, r)
		      | (I.CVTSD2SI, _, I.Direct(_, r)) => unimplemented "CVTSD2SI"
		      | (I.CVTSS2SI, _, I.Direct(_, r)) => unimplemented "CVTSS2SI"
		      | (I.CVTSD2SIQ, _, I.Direct(_, r)) => unimplemented "CVTSD2SIQ"
		      | (I.CVTSS2SIQ, _, I.Direct(_, r)) => unimplemented "CVTSS2SIQ"
		      | _ => error "MOVE"
		    (* end case *)
		  end
	      | I.LEAL{r32, addr} => encodeReg32(0wx8d, r32, addr)
	      | I.LEAQ{r64, addr} => encodeReg64(0wx8d, r64, addr)
	      | I.CMPQ{lsrc, rsrc} => arith(64, 0wx38, OPCODE 7) (rsrc, lsrc)
	      | I.CMPL{lsrc, rsrc} => arith(32, 0wx38, OPCODE 7) (rsrc, lsrc)
	      | I.CMPW _ => unimplemented "CMPW"
	      | I.CMPB _ => unimplemented "CMP"
	      | I.TESTQ{lsrc, rsrc} => test(64, rsrc, lsrc)
	      | I.TESTL{lsrc, rsrc} => test(32, rsrc, lsrc)
	      | I.TESTW _ => unimplemented "TESTW"
	      | I.TESTB{lsrc, rsrc} => test(8, rsrc, lsrc)
	      | I.BITOP{bitOp, lsrc, rsrc} => let
		  fun encode sz = (case lsrc
			 of I.Immed n =>
			      if ((0 <= n) andalso (n < sz))
				then let
				  val (rex, [modRM]) = eImmedExt (OPCODE 4, rsrc)
				  val ib = Word8.fromLargeInt(Int32.toLarge n)
				  in
				    if (sz = 64)
				      then [eREX64 (eREXRegs rex), 0wx0f, 0wxba, modRM, ib]
				      else [0wx0f, 0wxba, modRM, ib]
				  end
				else error "BITOP: invalid bit position"
			  | I.Direct(_, r) => let
			      val (rex, suffix) = eImmedExt (REG(rNum r), rsrc)
			      in
				if (sz = 64)
				  then eREX64 (eREXRegs rex) :: 0wx0f :: 0wxba :: suffix
				  else 0wx0f :: 0wxba :: suffix
			      end
			(* end case *))
		  in
		    case bitOp
		     of I.BTW => unimplemented "BTW"
		      | I.BTL => eBytes (encode 32)
		      | I.BTQ => eBytes (encode 64)
		      | I.LOCK_BTW => eBytes (lockPrefix :: encode 32)
		      | I.LOCK_BTL => eBytes (lockPrefix :: encode 64)
		    (* end case *)
		  end
	      | I.BINARY{binOp, src, dst} => let
		  fun shift (sz, code) = (case src
			 of I.Immed 1 => encode sz (0wxd1, OPCODE code, dst)
			  | I.Immed n => encodeByteImm sz (0wxc1, OPCODE code, dst, n)
			  | I.Direct(_, r) => if rNum r <> ecx
			      then error "shift: Direct"
			      else encode sz (0wxd3, OPCODE code, dst)
(*			  | I.MemReg _ => shift(code, memReg src) *)
			  | _  => error "shift"
		       (*esac*))
		(* signed integer multiplication
		 *   dst <- src * dst		[REX.W] 0F AF /r
		 *   dst <- src * immed8	[REX.W] 6B /r ib
		 *   dst <- src * immed32	[REX.W] 69 /r id
		 *)
		  fun imul sz = (case (src, dst)
			 of (I.Immed i, I.Direct(_, dstR)) => (case size i
			       of Bits32 => encodeLongImm sz (0wx69, REG (rNum dstR), dst, i)
			        | _ => encodeByteImm sz (0wx6b, REG (rNum dstR), dst, i)
			      (* end case *))
			  | (_, I.Direct(_, dstR)) =>
			      eBytes (encode' sz ([0wx0f, 0wxaf], REG (rNum dstR), src))
			  | _ => error "imul"
			(* end case *))
		  in
		    case binOp
		     of I.ADDQ => arith(64, 0w0, OPCODE 0) (src, dst)
		      | I.SUBQ => arith(64, 0wx28, OPCODE 5) (src, dst)
		      | I.ANDQ => arith(64, 0wx20, OPCODE 4) (src, dst)
		      | I.ORQ  => arith(64, 0w8, OPCODE 1) (src, dst)
		      | I.XORQ => arith(64, 0wx30, OPCODE 6) (src, dst)
		      | I.SHLQ => shift(64, 4)
		      | I.SARQ => shift(64, 7)
		      | I.SHRQ => shift(64, 5)
		      | I.IMULQ => imul 64
		      | I.ADCQ => unimplemented "ADCQ"
		      | I.SBBQ => unimplemented "SBBQ"
		      | I.ADDL => arith(32, 0w0, OPCODE 0) (src, dst)
		      | I.SUBL => arith(32, 0wx28, OPCODE 5) (src, dst)
		      | I.ANDL => arith(32, 0wx20, OPCODE 4) (src, dst)
		      | I.ORL  => arith(32, 0w8, OPCODE 1) (src, dst)
		      | I.XORL => arith(32, 0wx30, OPCODE 6) (src, dst)
		      | I.SHLL => shift(32, 4)
		      | I.SARL => shift(32, 7)
		      | I.SHRL => shift(32, 5)
		      | I.IMULL => imul 32
		      | I.ADCL => unimplemented "ADCL"
		      | I.SBBL => unimplemented "SBBL"
		      | I.ADDW => unimplemented "ADDW"
		      | I.SUBW => unimplemented "SUBW"
		      | I.ANDW => unimplemented "ANDW"
		      | I.ORW => unimplemented "ORW"
		      | I.XORW => unimplemented "XORW"
		      | I.SHLW => unimplemented "SHLW"
		      | I.SARW => unimplemented "SARW"
		      | I.SHRW => unimplemented "SHRW"
		      | I.IMULW => unimplemented "IMULW"
		      | I.ADDB => unimplemented "ADDB"
		      | I.SUBB => unimplemented "SUBB"
		      | I.ANDB => unimplemented "ANDB"
		      | I.ORB => unimplemented "ORB"
		      | I.XORB => unimplemented "XORB"
		      | I.SHLB => unimplemented "SHLB"
		      | I.SARB => unimplemented "SARB"
		      | I.SHRB => unimplemented "SHRB"
		      | I.IMULB => unimplemented "IMULB"
		      | I.BTSW => unimplemented "BTSW"
		      | I.BTCW => unimplemented "BTCW"
		      | I.BTRW => unimplemented "BTRW"
		      | I.BTSL => unimplemented "BTSL"
		      | I.BTCL => unimplemented "BTCL"
		      | I.BTRL => unimplemented "BTRL"
		      | I.ROLW => unimplemented "ROLW"
		      | I.RORW => unimplemented "RORW"
		      | I.ROLL => unimplemented "ROLL"
		      | I.RORL => unimplemented "RORL"
		      | I.XCHGB => unimplemented "XCHGB"
		      | I.XCHGW => unimplemented "XCHGW"
		      | I.XCHGL => unimplemented "XCHGL"
		      | I.LOCK_ADCW => unimplemented "LOCK_ADCW"
		      | I.LOCK_ADCL => unimplemented "LOCK_ADCL"
		      | I.LOCK_ADDW => unimplemented "LOCK_ADDW"
		      | I.LOCK_ADDL => unimplemented "LOCK_ADDL"
		      | I.LOCK_ANDW => unimplemented "LOCK_ANDW"
		      | I.LOCK_ANDL => unimplemented "LOCK_ANDL"
		      | I.LOCK_BTSW => unimplemented "LOCK_BTSW"
		      | I.LOCK_BTSL => unimplemented "LOCK_BTSL"
		      | I.LOCK_BTRW => unimplemented "LOCK_BTRW"
		      | I.LOCK_BTRL => unimplemented "LOCK_BTRL"
		      | I.LOCK_BTCW => unimplemented "LOCK_BTCW"
		      | I.LOCK_BTCL => unimplemented "LOCK_BTCL"
		      | I.LOCK_ORW => unimplemented "LOCK_ORW"
		      | I.LOCK_ORL => unimplemented "LOCK_ORL"
		      | I.LOCK_SBBW => unimplemented "LOCK_SBBW"
		      | I.LOCK_SBBL => unimplemented "LOCK_SBBL"
		      | I.LOCK_SUBW => unimplemented "LOCK_SUBW"
		      | I.LOCK_SUBL => unimplemented "LOCK_SUBL"
		      | I.LOCK_XORW => unimplemented "LOCK_XORW"
		      | I.LOCK_XORL => unimplemented "LOCK_XORL"
		      | I.LOCK_XADDB => unimplemented "LOCK_XADDB"
		      | I.LOCK_XADDW => unimplemented "LOCK_XADDW"
		      | I.LOCK_XADDL => unimplemented "LOCK_XADDL"
		    (* end case *)
	          end
	      | I.SHIFT{shiftOp, src, dst, count} => (case shiftOp
		   of I.SHLDL => unimplemented "SHLDL"
		    | I.SHRDL => unimplemented "SHRDL"
		  (* end case *))
	      | I.MULTDIV{multDivOp, src} => let
	          val (mulOp, sz) = (case multDivOp
			 of I.MULL1 => (4, 32) | I.IDIVL1 => (7, 32) | I.DIVL1 => (6, 32)
			  | I.MULQ1 => (4, 64) | I.IDIVQ1 => (7, 64) | I.DIVQ1 => (6, 64)
			  | I.IMULL1 => error "imull1"
			  | I.IMULQ1 => error "imulq1"
		       (* esac *))
		  in
		    encode sz (0wxf7, OPCODE mulOp, src)
		  end
	      | I.MUL3{dst, src1, src2=i} => (case src1
		   of I.Immed _ => error "mul3: Immed"
		    | I.ImmedLabel _ => error "mul3: ImmedLabel"
		    | _ => (case size i
			 of Bits32 => encodeLongImm32(0wx69, REG (rNum dst), src1, i)
			  | _ => encodeByteImm32(0wx6b, REG (rNum dst), src1, i)
		       (*esac*))
		  (*esac*))
	      | I.MULQ3{dst, src1, src2=i} => (case src1
		   of I.Immed _ => error "mul3: Immed"
		    | I.ImmedLabel _ => error "mul3: ImmedLabel"
		    | _ => (case size i
			 of Bits32 => encodeLongImm64(0wx69, REG (rNum dst), src1, i)
			  | _ => encodeByteImm64(0wx6b, REG (rNum dst), src1, i)
			(*esac*))
		  (*esac*))
	      | I.UNARY{unOp, opnd} => let
		  fun lock code = eBytes(lockPrefix :: code)
		  in
		    case unOp
		     of I.DECQ => encode64 (0wxff, OPCODE 1, opnd)
		      | I.INCQ => encode64 (0wxff, OPCODE 0, opnd)
		      | I.NEGQ => encode64 (0wxf7, OPCODE 3, opnd)
		      | I.NOTQ => encode64 (0wxff, OPCODE 2, opnd)
		      | I.DECL => encode32 (0wxff, OPCODE 1, opnd)
		      | I.NEGL => encode32 (0wxff, OPCODE 3, opnd)
		      | I.INCL => encode32 (0wxff, OPCODE 0, opnd)
		      | I.NOTL => encode32 (0wxff, OPCODE 2, opnd)
		      | I.DECW => unimplemented "DECW"
		      | I.NEGW => unimplemented "NEGW"
		      | I.INCW => unimplemented "INCW"
		      | I.NOTW => unimplemented "NOTW"
		      | I.DECB => unimplemented "DECB"
		      | I.NEGB => unimplemented "NEGB"
		      | I.INCB => unimplemented "INCB"
		      | I.NOTB => unimplemented "NOTB"
		      | I.LOCK_DECQ => lock (encode64' ([0wxff], OPCODE 1, opnd))
		      | I.LOCK_INCQ => lock (encode64' ([0wxff], OPCODE 0, opnd))
		      | I.LOCK_NEGQ => lock (encode64' ([0wxf7], OPCODE 3, opnd))
		      | I.LOCK_NOTQ => lock (encode64' ([0wxff], OPCODE 2, opnd))
		    (* esac *)
		  end
	      | I.SET{cond,opnd} =>
	          eBytes (encode32' ([0wx0f, Word8.+(0wx90,condCode cond)], REG 0, opnd))
	      | I.CMOV{cond,src,dst} =>
		  eBytes (encode32' ([0wx0f, Word8.+(condCode cond,0wx40)], REG (rNum dst), src))
	      | I.PUSH(I.Immed i) => (case size i
		   of Bits32 => eBytes(0wx68 :: eLong i)
		    | _ => eBytes [0wx6a, toWord8 i]
		  (* esac *))
	      | I.PUSH(I.Direct(_, r)) => let
		  val r = rNum r
		  in
		    if (r < 8)
		      then eByte (0x50 + r)
		      else eBytes [0wx41, 0wx50 + Word8.fromInt(r - 8)]
		  end
(* TODO: check that PUSH is correct for other operands *)
	      | I.PUSH opnd => encode32 (0wxff, OPCODE 6, opnd)
	      | I.PUSHFQ => eByte 0x9c
	      | I.POPFQ => eByte 0x9d
	      | I.POP(I.Direct(_, r)) => let
		  val r = rNum r
		  in
		    if (r < 8)
		      then eByte (0x58 + r)
		      else eBytes [0wx41, 0wx58 + Word8.fromInt(r - 8)]
		  end
(* TODO: check that POP is correct for other operands *)
	      | I.POP opnd => encode32 (0wx8f, OPCODE 0, opnd)
	      | I.CDQ => eByte 0x99
	      | I.CDO => eBytes [0wx48, 0wx99]
	      | I.INT b => eBytes [0wxcd, b]
	      | I.FMOVE {fmvOp=I.MOVSD, dst=I.FDirect r, src=src} => movsd(0wx10, r, src)
	      | I.FMOVE {fmvOp=I.MOVSD, dst=dst, src=I.FDirect r} => movsd(0wx11, r, dst)
              | I.FMOVE {fmvOp, dst, src} => (case fmvOp
		   of I.CVTSI2SD => error "CVTSI2SD not implemented"
		    | I.CVTSI2SDQ => let
			val I.FDirect r = dst
			in
			  eBytes([0wxf2] @ encode64'([0wxf,0wx2a],REG (fNum r),src))
			end
		    | I.CVTSD2SS => (case dst
		         of (I.FDirect r) =>
			      eBytes([0wxf2] @ encode32'([0wxf,0wx5a],REG (fNum r),src))
			  | _ => error "CVTSD2SS"
			(* end case *))
		    | I.CVTSS2SD => (case dst
			 of (I.FDirect r) =>
			      eBytes([0wxf3] @ encode32'([0wxf,0wx5a],REG (fNum r),src))
			  | _ => error "CVTSD2SD"
			(* end case *))
		    | I.MOVSS => (case src
			 of (I.FDirect r) =>
			      eBytes([0wxf3] @ encode32'([0wxf,0wx11],REG (fNum r),dst))
			  | _ => error "MOVSS"
			(* end case *))
		    | _ => error "FMOVE"
		  (* end case *))
              | I.FBINOP {binOp, src, dst} => let
		  fun encode2 (op1, op2) = eBytes(encode32'([op1, op2], REG(fNum dst), src))
		  fun encode (op1, op2, op3) =
			eBytes(op1 :: encode32'([op2, op3], REG(fNum dst), src))
		  in
		    case binOp
		     of I.ADDSS => encode (0wxf3, 0wx0f, 0wx58)
		      | I.ADDSD => encode (0wxf2, 0wx0f, 0wx58)
		      | I.SUBSS => encode (0wxf3, 0wx0f, 0wx5c)
		      | I.SUBSD => encode (0wxf2, 0wx0f, 0wx5c)
		      | I.MULSS => encode (0wxf3, 0wx0f, 0wx59)
		      | I.MULSD => encode (0wxf2, 0wx0f, 0wx59)
		      | I.DIVSS => encode (0wxf3, 0wx0f, 0wx5e)
		      | I.DIVSD => encode (0wxf2, 0wx0f, 0wx5e)
		      | I.XORPS => encode2 (0wx0f, 0wx57)
		      | I.XORPD => encode (0wx66, 0wx0f, 0wx57)
		      | I.ANDPS => encode2 (0wx0f, 0wx54)
		      | I.ANDPD => encode (0wx66, 0wx0f, 0wx54)
		      | I.ORPS => encode2 (0wx0f, 0wx56)
		      | I.ORPD => encode (0wx66, 0wx0f, 0wx56)
		    (* end case *)
		  end
	      | I.FCOM {comOp, src, dst} => (case comOp
		   of I.COMISS => unimplemented "COMISS"
		    | I.COMISD => unimplemented "COMISD"
		    | I.UCOMISS => unimplemented "UCOMISS"
		    | I.UCOMISD => eBytes([0wx66] @ encode32'([0wxf,0wx2e],REG (fNum dst),src))
		  (* end case *))
	      | I.FSQRTS {dst, src} => let
		  val I.FDirect r = dst
		  in
		    eBytes([0wxf3] @ encode32'([0wxf,0wx51],REG (fNum r),src))
		  end
	      | I.FSQRTD {dst, src} => let
		  val I.FDirect r = dst
		  in
		    eBytes([0wxf2] @ encode32'([0wxf,0wx51],REG (fNum r),src))
		  end
	      | I.SAHF => eByte 0x9e
	      | I.LFENCE => eBytes [0wx0f, 0wxae, 0wxe8]
	      | I.MFENCE => eBytes [0wx0f, 0wxae, 0wxf0]
	      | I.SFENCE => eBytes [0wx0f, 0wxae, 0wxf8]
	      | I.PAUSE => eBytes [0wxf3, 0wx90]
	      | I.XCHG _ => unimplemented "XCHG"
	      | I.CMPXCHG _ => unimplemented "CMPXCHG"
	      | I.XADD _ => unimplemented "XADD"
	      | I.RDTSC => unimplemented "RDTSC"
	      | I.RDTSCP => unimplemented "RDTSCP"
	      | I.LAHF => eByte 0x9f
	      | _ => error "emitInstr"
	    (* esac *)
	  end (* emitAMD64Instr *)

    fun emitInstr (I.LIVE _) = Word8Vector.fromList []
      | emitInstr (I.KILL _) = Word8Vector.fromList []
      | emitInstr (I.COPY{k, dst, src, tmp, ...}) = (case k
	   of CB.GP => emitInstrs (Shuffle.shuffle {tmp=tmp, dst=dst, src=src})
	    | CB.FP => emitInstrs (Shuffle.shufflefp {tmp=tmp, dst=dst, src=src})
	    | _ => error "COPY"
	  (*esac*))
      | emitInstr (I.INSTR instr) = emitAMD64Instr instr
(* NOTE: the general consensus on the internet is that Intel hardware ignores the
 * branch hint prefixes and just relies on dynamic techniques.  Therefore, we
 * comment this code out for now.
      | emitInstr (I.ANNOTATION{i, a}) = (case #peek MLRiscAnnotations.BRANCH_PROB a
	   of SOME prob => let
		val prob = Probability.toReal prob
		fun emit (I.ANNOTATION{i, ...}) = emit i
		  | emit (I.INSTR(instr as I.JCC _)) = let
		      val code = emitInstr i
		      in
			if prob < 0.5
			  then Word8Vector.prepend (0wx2e, code) (* add not-taken hint *)
			else if prob > 0.5
			  then Word8Vector.prepend (0wx3e, code) (* add taken hint *)
			  else code
		      end
		  | emit _ = error "bogus BRANCH_PROB annotation"
		in
		  emit i
		end
	    | NONE => emitInstr i
	  (* end case *))
 *)
      | emitInstr (I.ANNOTATION{i, a}) = emitInstr i

    and emitInstrs instrs = Word8Vector.concat(map emitInstr instrs)

  end (* AMD64MCEmitter *)