File: amd64-gen.sml

package info (click to toggle)
mlton 20210117%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 58,464 kB
  • sloc: ansic: 27,682; sh: 4,455; asm: 3,569; lisp: 2,879; makefile: 2,347; perl: 1,169; python: 191; pascal: 68; javascript: 7
file content (1572 lines) | stat: -rw-r--r-- 60,668 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
(* amd64-gen.sml
 *
 * COPYRIGHT (c) 2016 The Fellowship of SML/NJ (http://www.smlnj.org)
 * All rights reserved.
 *
 * Translate MLRISC trees into AMD64 instructions.
 *)

functor AMD64Gen (

    structure I : AMD64INSTR
    structure MLTreeUtils : MLTREE_UTILS (* where T = I.T *)
                            where type T.Basis.cond = I.T.Basis.cond
                              and type T.Basis.div_rounding_mode = I.T.Basis.div_rounding_mode
                              and type T.Basis.ext = I.T.Basis.ext
                              and type T.Basis.fcond = I.T.Basis.fcond
                              and type T.Basis.rounding_mode = I.T.Basis.rounding_mode
                              and type T.Constant.const = I.T.Constant.const
                              and type ('s,'r,'f,'c) T.Extension.ccx = ('s,'r,'f,'c) I.T.Extension.ccx
                              and type ('s,'r,'f,'c) T.Extension.fx = ('s,'r,'f,'c) I.T.Extension.fx
                              and type ('s,'r,'f,'c) T.Extension.rx = ('s,'r,'f,'c) I.T.Extension.rx
                              and type ('s,'r,'f,'c) T.Extension.sx = ('s,'r,'f,'c) I.T.Extension.sx
                              and type T.I.div_rounding_mode = I.T.I.div_rounding_mode
                               and type T.Region.region = I.T.Region.region
                              and type T.ccexp = I.T.ccexp
                              and type T.fexp = I.T.fexp
                              (* and type T.labexp = I.T.labexp *)
                              and type T.mlrisc = I.T.mlrisc
                              and type T.oper = I.T.oper
                              and type T.rep = I.T.rep
                              and type T.rexp = I.T.rexp
                              and type T.stm = I.T.stm
    structure ExtensionComp : MLTREE_EXTENSION_COMP (* where I = I and T = I.T *)
                              where type I.addressing_mode = I.addressing_mode
                                and type I.ea = I.ea
                                and type I.instr = I.instr
                                and type I.instruction = I.instruction
                                and type I.operand = I.operand
                              where type T.Basis.cond = I.T.Basis.cond
                                and type T.Basis.div_rounding_mode = I.T.Basis.div_rounding_mode
                                and type T.Basis.ext = I.T.Basis.ext
                                and type T.Basis.fcond = I.T.Basis.fcond
                                and type T.Basis.rounding_mode = I.T.Basis.rounding_mode
                                and type T.Constant.const = I.T.Constant.const
                                and type ('s,'r,'f,'c) T.Extension.ccx = ('s,'r,'f,'c) I.T.Extension.ccx
                                and type ('s,'r,'f,'c) T.Extension.fx = ('s,'r,'f,'c) I.T.Extension.fx
                                and type ('s,'r,'f,'c) T.Extension.rx = ('s,'r,'f,'c) I.T.Extension.rx
                                and type ('s,'r,'f,'c) T.Extension.sx = ('s,'r,'f,'c) I.T.Extension.sx
                                and type T.I.div_rounding_mode = I.T.I.div_rounding_mode
                                and type T.Region.region = I.T.Region.region
                                and type T.ccexp = I.T.ccexp
                                and type T.fexp = I.T.fexp
                                (* and type T.labexp = I.T.labexp *)
                                and type T.mlrisc = I.T.mlrisc
                                and type T.oper = I.T.oper
                                and type T.rep = I.T.rep
                                and type T.rexp = I.T.rexp
                                and type T.stm = I.T.stm

    (* Take a number of bits and returns an rexp that points to a literal with the high bit set.
     * We need this literal value for floating-point negation and absolute value (at least
     * until SSE4).
     *)
    val signBit : int -> MLTreeUtils.T.rexp
    (* Same as signBit, except the high bit is zero and the low bits are 1s. *)
    val negateSignBit : int -> MLTreeUtils.T.rexp

   (* guaranteeing that floats are stored at 16-byte aligned addresses reduces the number of instructions *)
    val floats16ByteAligned : bool

   ) : MLTREECOMP = struct

    structure TS = ExtensionComp.TS
    structure T = I.T
    structure I = I
    structure CFG = ExtensionComp.CFG
    structure C = I.C
    structure CB = CellsBasis
    structure A = MLRiscAnnotations
    structure TRS = MLTreeSize (structure T = T
                                val intTy = 64)
    structure Shuffle = Shuffle (I)
    structure O = AMD64Opcodes (structure I = I)
    structure Gen = MLTreeGen (
            structure T = T
            structure Cells = C
            val intTy = 64
            val naturalWidths = [32, 64]
            datatype rep = SE | ZE | NEITHER
            val rep = NEITHER)

    structure W32 = Word32

    fun error msg = MLRiscErrorMsg.error ("AMD64Gen", msg)

    type instrStream = (I.instruction,C.cellset,CFG.cfg) TS.stream
    type mltreeStream = (T.stm,T.mlrisc list,CFG.cfg) TS.stream

  (* label where the shared trap is generated -- one per cluster *)
    val trapLabel = ref (NONE: (I.instruction * Label.label) option)

  (* flag to control merging of overflow traps *)
    val mergeTraps = ref true

    fun gpr (ty, r) = I.Direct (ty, r)
    val fpr = I.FDirect

    fun rax ty = I.Direct(ty,C.rax)
    fun rcx ty = I.Direct(ty,C.rcx)
    fun rdx ty = I.Direct(ty,C.rdx)

    fun signExtend ty = if ty = 64 then I.CDO else I.CDQ

    val readonly = I.Region.readonly

    val newReg  = C.newReg
    val newFreg = C.newFreg

    (* convert mlrisc to cellset: *)
    fun cellset mlrisc = let
	val addCCReg = CB.CellSet.add
        fun g([],acc) = acc
          | g(T.GPR(T.REG(_,r))::regs,acc)  = g(regs,C.addReg(r,acc))
          | g(T.FPR(T.FREG(_,f))::regs,acc) = g(regs,C.addFreg(f,acc))
          | g(T.CCR(T.CC(_,cc))::regs,acc)  = g(regs,addCCReg(cc,acc))
          | g(T.CCR(T.FCC(_,cc))::regs,acc)  = g(regs,addCCReg(cc,acc))
          | g(_::regs, acc) = g(regs, acc)
      in
	g(mlrisc, C.empty)
      end

  (* conversions to fixed-precision integers*)
    fun toInt32 i = T.I.toInt32(32, i)
    fun toInt64 i = T.I.toInt64(64, i)

(* 64BIT: workaround for compiler bug *)
    val minInt32 = Word64.toLargeIntX 0wxFFFFFFFF80000000
    val maxInt32 = Word64.toLargeInt 0wx80000000

  (* is an immediate operand representable as a signed 32-bit 2's complement value?
   * Note that values get sign extended when loaded into a 64-bit register.
   *)
    fun fitsIn32Bits (z : IntInf.int) = (minInt32 <= z) andalso (z < maxInt32)
(*
    fun fitsIn32Bits (z : IntInf.int) = (~0x80000000 <= z) andalso (z < 0x80000000)
*)

    fun move64 (src, dst) = I.move {mvOp=I.MOVABSQ, src=src, dst=dst}

    (* analyze for power-of-two-ness; this does not handle values that do not fit
     * in 32 bits.
     *)
    fun analyze i' = if fitsIn32Bits i'
	  then let
	    val i = toInt32 i'
	    in
	      let
	      val (isneg, a, w) = if i >= 0
		    then (false, i, T.I.toWord32 (32, i'))
		    else (true, ~i, T.I.toWord32 (32, T.I.NEG (32,  i')))
	      fun log2 (0w1, p) = p
		| log2 (w, p) = log2 (W32.>> (w, 0w1), p + 1)
	      in
		if w > 0w1 andalso W32.andb (w - 0w1, w) = 0w0
		  then SOME(i, isneg, a, T.LI (T.I.fromInt32 (32, log2 (w, 0))))
		  else NONE
	       end handle _ => NONE
	    end
	  else NONE
(* a 64-bit version that we might want to use in the future
    fun analyze i' = let
	  val i = toInt64 i'
	  val (isneg, a, w) = if i >= 0
		then (false, i, T.I.toWord64 (64, i'))
		else (true, ~i, T.I.toWord64 (64, T.I.NEG (64,  i')))
	       fun log2 (0w1, p) = p
		 | log2 (w, p) = log2 (W64.>> (w, 0w1), p + 1)
	  in
	    if w > 0w1 andalso W64.andb (w - 0w1, w) = 0w0
	      then (i, SOME (isneg, a, T.LI (T.I.fromInt64 (64, log2 (w, 0)))))
	      else (i, NONE)
	  end
	    handle _ => (toInt64 i', NONE)
*)

    (* translate MLTREE condition codes to amd64 condition codes *)
    fun cond T.LT = I.LT | cond T.LTU = I.B
      | cond T.LE = I.LE | cond T.LEU = I.BE
      | cond T.EQ = I.EQ | cond T.NE  = I.NE
      | cond T.GE = I.GE | cond T.GEU = I.AE
      | cond T.GT = I.GT | cond T.GTU = I.A
      | cond cc = error(concat["cond(", T.Basis.condToString cc, ")"])

      (* Is the expression zero? *)
    fun isZero (T.LI 0) = true
      | isZero (T.MARK(e, _)) = isZero e
      | isZero _ = false

    fun setZeroBit(T.ANDB _)     = true
      | setZeroBit(T.ORB _)      = true
      | setZeroBit(T.XORB _)     = true
      | setZeroBit(T.SRA _)      = true
      | setZeroBit(T.SRL _)      = true
      | setZeroBit(T.SLL _)      = true
      | setZeroBit(T.SUB _)      = true
      | setZeroBit(T.ADDT _)     = true
      | setZeroBit(T.SUBT _)     = true
      | setZeroBit(T.MARK(e, _)) = setZeroBit e
      | setZeroBit _             = false

    fun setZeroBit2(T.ANDB _)     = true
      | setZeroBit2(T.ORB _)      = true
      | setZeroBit2(T.XORB _)     = true
      | setZeroBit2(T.SRA _)      = true
      | setZeroBit2(T.SRL _)      = true
      | setZeroBit2(T.SLL _)      = true
      | setZeroBit2(T.ADD(_, _, _)) = true (* can't use leal! *)
      | setZeroBit2(T.SUB _)      = true
      | setZeroBit2(T.ADDT _)     = true
      | setZeroBit2(T.SUBT _)     = true
      | setZeroBit2(T.MARK(e, _)) = setZeroBit2 e
      | setZeroBit2 _             = false

    and isMemOpnd opnd = (case opnd
        of  I.Displace _ => true
          | I.Indexed _  => true
          | I.LabelEA _  => true
          | I.FDirect f  => true
          | _            => false
          (* end case *))

    fun selectInstructions (instrStream as TS.S.STREAM{
          emit=emitInstr, defineLabel, entryLabel, pseudoOp, annotation,
          getAnnotations, beginCluster, endCluster, exitBlock,
          comment, ...
	}) = let
	val emit = emitInstr o I.INSTR
	val emits = app emitInstr
	(* mark an expression with a list of annotations *)
	fun mark' (i, []) = emitInstr i
  	  | mark' (i, a::an) = mark'(I.ANNOTATION{i=i,a=a},an)
	(* annotate an expression and emit it *)
	fun mark (i, an) = mark' (I.INSTR i, an)
	(* annotated 64-bit move *)
	fun move64' (src, dst, an) = mark' (move64(src, dst), an)
	(* move with annotation *)
	fun move' (ty, dst as I.Direct (_, s), src as I.Direct (_, d), an) =
	      if CB.sameColor (s, d)
		then ()
		else mark' (I.COPY {k=CB.GP, sz=ty, src=[s], dst=[d], tmp=NONE}, an)
	  | move' (ty, I.Immed 0, dst as I.Direct _, an) =
	      mark' (I.binary {binOp=O.xorOp ty, src=dst, dst=dst}, an)
	  | move' (ty, src as I.Immed64 n, dst, an) = move64' (src, dst, an)
	  | move' (ty, src as I.ImmedLabel _ , dst as I.Direct _, an) = move64' (src, dst, an)
	  | move' (ty, src as I.ImmedLabel _ , dst, an) = let
	      val tmp = newReg ()
	      val tmpR = I.Direct (64, tmp)
	      in
		move64' (src, tmpR, an);
		emitInstr (I.move {mvOp=I.MOVQ, src=tmpR, dst=dst})
	      end
	  | move' (ty, src, dst, an) =
	      mark' (I.move {mvOp=O.movOp ty, src=src, dst=dst}, an)
	(* move without annotation *)
	fun move (ty, src, dst) = move' (ty, src, dst, [])

        fun zero (ty, dst) = emit (I.BINARY{binOp=O.xorOp ty, src=dst, dst=dst})

	fun copy (ty, [], [], an) = ()
	  | copy (ty, dst, src, an) = let
	    fun mvInstr {dst=I.Direct (_,rd), src=I.Direct (_,rs)} =
	        if CB.sameColor (rd, rs)
	          then []
	          else [I.COPY {k=CB.GP, sz=ty, dst=[rd], src=[rs], tmp=NONE}]
	      | mvInstr {dst, src} = [I.move {mvOp=O.movOp ty, src=src, dst=dst}]
	    val stms = Shuffle.shuffle {mvInstr=mvInstr, ea=fn r => gpr (ty, r)}
                         {tmp=SOME (I.Direct (ty, newReg ())), dst=dst, src=src}
	    in
	      emits stms
	    end (* copy *)

        (* Add an overflow trap *)
	fun trap () = if !mergeTraps
	      then let
		val jmp = (case !trapLabel
		       of NONE => let
			    val label = Label.label "trap" ()
			    val jmp = I.ANNOTATION{
				    i = I.jcc{cond=I.O, opnd=I.ImmedLabel(T.LABEL label)},
				    a = MLRiscAnnotations.BRANCHPROB Probability.unlikely
				  }
			    in
			      trapLabel := SOME(jmp, label);
			      jmp
			    end
			| SOME(jmp, _) => jmp
		      (* end case *))
		in
		  emitInstr jmp
		end (* trap *)
	      else let
		val label = Label.anon()
		val jmp = I.ANNOTATION{
			i = I.jcc{cond=I.NO, opnd = I.ImmedLabel(T.LABEL label)},
			a = MLRiscAnnotations.BRANCHPROB Probability.likely
		      }
		in
		  emitInstr jmp;
		(* signal an overflow exception (code 4) *)
		  emit(I.INT 0w4);
		  defineLabel label
		end

	exception EA

        fun address' ty (ea : T.rexp, mem) = let
            fun makeAddressingMode (NONE, NONE, _, disp) = disp
	      | makeAddressingMode (SOME base, NONE, _, disp) =
                  I.Displace{base=base, disp=disp, mem=mem}
              | makeAddressingMode (base, SOME index, scale, disp) =
                  I.Indexed{base=base, index=index, scale=scale, disp=disp, mem=mem}

  	    (* Keep building a bigger and bigger effective address expressions
	     * The input is a list of trees
	     * b -- base
	     * i -- index
	     * s -- scale
	     * d -- immed displacement
	     *)
	    fun doEA ([], b, i, s, d) = makeAddressingMode(b, i, s, d)
  	      | doEA (t::trees, b, i, s, d) = (case t
	        of T.LI n => if fitsIn32Bits n
		    then doEAImmed (trees, toInt32 n, b, i, s, d)
		    else error "doEA: immediate too large"
		 | T.CONST _ => doEALabel(trees, t, b, i, s, d)
		 | T.LABEL _ => doEALabel(trees, t, b, i, s, d)
		 | T.LABEXP le => doEALabel(trees, le, b, i, s, d)
		 | T.ADD(ty, t1, t2 as T.REG(_,r)) =>
		     doEA(t1::t2::trees, b, i, s, d)
		 | T.ADD(ty, t1, t2) => doEA(t1::t2::trees, b, i, s, d)
		 | T.SUB(ty, t1, T.LI n) =>
		     doEA(t1::T.LI(T.I.NEG(ty,n))::trees, b, i, s, d)
		 | T.SLL(ty, t1, T.LI n) => let
		   val n = T.I.toInt(ty, n)
                   in
	             case n
		       of 0 => displace(trees, t1, b, i, s, d)
	  		| 1 => indexed(trees, t1, t, 1, b, i, s, d)
	                | 2 => indexed(trees, t1, t, 2, b, i, s, d)
      	                | 3 => indexed(trees, t1, t, 3, b, i, s, d)
			| _ => displace(trees, t, b, i, s, d)
                   end
	         | t => displace(trees, t, b, i, s, d)
		(* esac *))

	  (* Add a 32-bit immed constant *)
            and doEAImmed (trees, 0, b, i, s, d) = doEA(trees, b, i, s, d)
 	      | doEAImmed (trees, n, b, i, s, I.Immed m) =
                  doEA(trees, b, i, s, I.Immed(n+m))
              | doEAImmed (trees, n, b, i, s, I.ImmedLabel le) =
                  doEA(trees, b, i, s,
                       I.ImmedLabel(T.ADD(ty,le,T.LI(T.I.fromInt32(ty, n)))))
              | doEAImmed (trees, n, b, i, s, _) = error "doEAImmed"

            (* Add a label expression.
	     * NOTE: Labels in the AMD64 can be 64 bits, but operands can only handle 32-bit constants.
	     * We have to spill label expressions to temporaries to be correct.
	     * TODO: eliminate the extra register-register move from genExpr
	     *)
            (* Added below pattern to stop infinite loop where (genExpr le)
               below called addition and addition called address again. *)
	    and doEALabel (trees, le, SOME base, i, s, I.Immed 0) = let
                val r = newReg ()
                val _ = expr (le, r, [])
                val _ = mark (I.BINARY{binOp=(O.addOp ty), src=operand ty (T.REG(ty,base)), dst=operand ty (T.REG(ty,r))}, [])
                in
                  doEA(trees, SOME r, i, s, I.Immed 0)
                end
	      | doEALabel (trees, le, b, i, s, d) = let
		val le = (case b
			    of NONE => le
			     | SOME base => T.ADD (ty, T.REG (ty, base), le)
                          (* end case *))
	        in
		  (case d
		    of I.Immed 0 => doEA(trees, SOME (genExpr le), i, s, I.Immed 0)
		     | I.Immed m => (doEA (trees,
		              SOME (genExpr (T.ADD (ty, le, T.LI(T.I.fromInt32(ty, m))))),
		         i, s, I.Immed 0)
		       handle Overflow => error "doEALabel: constant too large")
		     | I.ImmedLabel le' => doEA (trees,
		              SOME (genExpr (T.ADD (ty, le', le))),
		         i, s, I.Immed 0)
		     | _ => error "doEALabel"
                  (* end case *))
	        end

            (* generate code for tree and ensure that it is not in %rsp *)
            and exprNotRsp tree = let
		val r = genExpr tree
		in
		  if CB.sameColor(r, C.rsp) then let
		     val tmp = newReg()
	             in
		       move(ty, I.Direct (ty,r), I.Direct (ty,tmp));
		       tmp
		     end
                  else r
		end

            (* Add a base register *)
            and displace(trees, t, NONE, i, s, d) =  (* no base yet *)
		doEA(trees, SOME(genExpr t), i, s, d)
              | displace(trees, t, b as SOME base, NONE, _, d) = (* no index *)
                (* make t the index, but make sure that it is not %rsp! *)
		let val i = genExpr t
		in  if CB.sameColor(i, C.rsp) then
	               (* swap base and index *)
	               if CB.sameColor(base, C.rsp) then
			  doEA(trees, SOME i, b, 0, d)
		       else  (* base and index = %rsp! *)
			  let val index = newReg()
			  in
			     move(ty, I.Direct (ty,i), I.Direct (ty,index));
		             doEA(trees, b, SOME index, 0, d)
			  end
                    else doEA(trees, b, SOME i, 0, d)
		end
             | displace(trees, t, SOME base, i, s, d) = (* base and index *)
	       let val b = genExpr (T.ADD(ty,T.REG(ty,base),t))
	       in
	       	 doEA(trees, SOME b, i, s, d)
	       end

            (* Add an indexed register *)
            and indexed(trees, t, t0, scale, b, NONE, _, d) = (* no index yet *)
		doEA(trees, b, SOME(exprNotRsp t), scale, d)
              | indexed(trees, _, t0, _, NONE, i, s, d) = (* no base *)
  		doEA(trees, SOME(genExpr t0), i, s, d)
              | indexed(trees, _, t0, _, SOME base, i, s, d) = (*base and index*)
  		let val b = genExpr (T.ADD(ty, t0, T.REG(ty, base)))
		in
		  doEA(trees, SOME b, i, s, d)
		end
	  in
	    case doEA ([ea], NONE, NONE, 0, I.Immed 0)
	     of I.Immed _ => raise EA
	      | I.ImmedLabel le => I.Displace {base=genExpr le, disp=I.Immed 0, mem=mem} (* I.LabelEA le*)
	      | ea => ea
	  end (* address' *)

        and address (ea, mem) = address' 64 (ea, mem)

      (* load the label into a temp register. this operation is necessary, since most instructions
       * can only handle 32-bit immediates
       *)
	and loadLabel src = let
	      val tmp = newReg ()
	      val tmpR = I.Direct (64, tmp)
	      in
		emitInstr (move64 (src, tmpR));
		tmpR
	      end

        (* reduce an expression into an operand *)
        and operand ty (T.LI i) = if (fitsIn32Bits i)
	      then I.Immed (toInt32 i)
	      else let
		(* i is a 64-bit operand *)
		 val dstR = newReg ()
		 val dst = I.Direct (ty, dstR)
		 val i' = T.I.signed (64, i)
		 in
		   move (ty, I.Immed64 (Int64.fromLarge i'), dst);
		   dst
		 end
          | operand _ (x as (T.CONST _ | T.LABEL _)) = loadLabel (I.ImmedLabel x)
          | operand _ (T.LABEXP le) = loadLabel (I.ImmedLabel le)
          | operand _ (T.REG(ty,r)) = gpr (ty, r)
          | operand _ (T.LOAD(ty,ea,mem)) = address (ea, mem)
          | operand ty t = I.Direct(ty, genExpr t)

	and immedLabel lab = I.ImmedLabel(T.LABEL lab)

	(* ensure that the operand is either an immed or register *)
	and immedOrReg(ty, opnd as I.Displace _) = moveToReg (ty, opnd)
	  | immedOrReg(ty, opnd as I.Indexed _)  = moveToReg (ty, opnd)
	  | immedOrReg(ty, opnd as I.LabelEA _)  = moveToReg (ty, opnd)
	  | immedOrReg (ty, opnd)  = opnd

	and regOrMem (ty, opnd as (I.Immed _ | I.ImmedLabel _)) = moveToReg (ty, opnd)
	  | regOrMem (ty, opnd) = opnd

	and getExpr (exp as T.REG(_, rd)) = rd
          | getExpr exp = genExpr exp

	and moveToReg (ty, opnd) = let
	    val dst = I.Direct (ty, newReg ())
	    in
	      move (ty, opnd, dst);
	      dst
	    end

	and isImmediate(I.Immed _) = true
(*	  | isImmediate(I.ImmedLabel _) = true *)
	  | isImmediate _ = false

        (* generate an expression, and return its result in a register *)
        and genExpr (T.REG (_, r)) = r
          | genExpr e = let
	      val r = newReg ()
	      in
		expr (e, r, []);
		r
	      end

	and expr' (ty, e, dst, an) = let
              val dstOpnd = gpr (ty, dst)
	      fun equalDst (I.Direct (_,r)) = CB.sameColor(r, dst)
		| equalDst _ = false
	      fun dstMustBeReg f = f (dst, dstOpnd)
	      fun genLoad (mvOp, ea, mem) = dstMustBeReg (fn (_, dst) =>
		  mark (I.MOVE {mvOp=mvOp, src=address (ea, mem), dst=dst},an))
	      fun unknownExp exp = expr (Gen.compileRexp exp, dst, an)

	      (* Generate a unary operator *)
	      fun unary(ty, unOp, e) = let
		  val opnd = operand ty e
		  in
		    if isMemOpnd opnd then let
		       val tmp = I.Direct(ty, newReg())
		       in
			 move(ty, opnd, tmp);
			 move(ty, tmp, dstOpnd)
		       end
		    else move(ty, opnd, dstOpnd);
			 mark(I.UNARY{unOp=unOp ty, opnd=dstOpnd}, an)
		  end

	      fun genBinary (ty, binOp, opnd1, opnd2) =
		    if (isMemOpnd opnd1 orelse isMemOpnd opnd2) orelse
		       equalDst(opnd2) then let
		       val tmpR = newReg()
		       val tmp  = I.Direct (ty,tmpR)
		       in
			 move (ty, opnd1, tmp);
			 mark (I.BINARY{binOp=binOp ty, src=opnd2, dst=tmp}, an);
			 move (ty, tmp, dstOpnd)
		       end
		    else (move (ty, opnd1, dstOpnd);
			 mark(I.BINARY{binOp=binOp ty, src=opnd2, dst=dstOpnd}, an))
	      (* generate a binary operator that may commute *)
	      fun binaryComm (ty, binOp, e1, e2) = let
		  val (opnd1, opnd2) = (case (operand ty e1, operand ty e2)
		      of (x as I.Immed _, y)      => (y, x)
		       | (x as I.ImmedLabel _, y) => (y, x)
		       | (x, y as I.Direct _)     => (y, x)
		       | (x, y)                   => (x, y)
		      (* end case *))
		  in
		    genBinary(ty, binOp, opnd1, opnd2)
		  end
	      (* Generate a binary operator; non-commutative *)
	      fun binary(ty, binOp, e1, e2) =
		  genBinary(ty, binOp, operand ty e1, operand ty e2)
	      (* Add n to dst *)
	      fun addN (addOp, n) = let
		  val n = operand ty n
		  in
		    mark (I.BINARY{binOp=addOp, src=n, dst=dstOpnd}, an)
		  end
	      (* Generate addition *)
	      fun addition (ty, e1, e2) = (case e1
		  of T.REG(_,rs) =>
		     if CB.sameColor(rs,dst)
			then addN (O.addOp ty, e2)
			else addition1 (ty, e1,e2)
		   | _ => addition1(ty, e1,e2)
		  (* end case *))
	      and addition1 (ty, e1, e2) = (case e2
		  of T.REG(_,rs) =>
		     if CB.sameColor(rs,dst)
			then addN (O.addOp ty, e1)
			else addition2(ty, e1,e2)
		   | _ => addition2 (ty, e1,e2)
		  (* end case *))
	      and addition2 (32, e1, e2) = (
		    (* try *)
		    dstMustBeReg(fn (dstR, _) =>
		      mark(I.LEAL{r32=dstR, addr=address' 32 (e, readonly)}, an))
		    (* catch *)
		      handle EA => binaryComm(ty, O.addOp, e1, e2))
		| addition2 (64, e1, e2) = let
		    fun isBigImmed (T.LI n) = not(fitsIn32Bits n)
		      | isBigImmed _ = false
		    fun lea (dstR, _) = mark(I.LEAQ{r64=dstR, addr=address' 64 (e, readonly)}, an)
		    in
		      if isBigImmed e1 orelse isBigImmed e2
			then binaryComm(ty, O.addOp, e1, e2)
			else (dstMustBeReg lea) handle EA => binaryComm(ty, O.addOp, e1, e2)
		    end
              (* the shift amount must be a constant or in %rcx *)
              fun shift(ty, opcode, e1, e2) = let
                  val (opnd1, opnd2) = (operand ty e1, operand ty e2)
                  in
                    (case opnd2
                      of I.Immed _ => genBinary(ty, opcode, opnd1, opnd2)
                       | _ =>
                         if equalDst(opnd2) then
                         let val tmpR = newReg()
                             val tmp  = I.Direct (ty,tmpR)
                         in
                           move(ty, opnd1, tmp);
                           move(ty, opnd2, rcx ty);
                           mark(I.BINARY{binOp=opcode ty, src=rcx ty,
                                   dst=tmp},an);
                           move(ty, tmp, dstOpnd)
                         end
                         else
                           (move(ty, opnd1, dstOpnd);
                            move(ty, opnd2, rcx ty);
                            mark(I.BINARY{binOp=opcode ty, src=rcx ty,
                                 dst=dstOpnd},an))
		    (* end case *))
                  end

	      (* division with rounding towards negative infinity *)
	      fun divinf0 (ty, e1, e2) = let
		  val o1 = operand ty e1
		  val o2 = operand ty e2
		  val l = Label.anon ()
	      in
		  move (ty, o1, rax ty);
		  emit (signExtend ty);
		  mark (I.MULTDIV { multDivOp = O.idivOp ty,
		                     src = regOrMem (ty, o2) },
			an);
(* NOTE: on the x86-64, the IDIV instruction traps on overflow
		  if overflow then trap() else ();
*)
		  app emit [(O.cmpOp ty) { lsrc = rdx ty, rsrc = I.Immed 0 },
			    I.JCC { cond = I.EQ, opnd = immedLabel l },
			    I.BINARY { binOp = O.xorOp ty,
				       src = regOrMem (ty, o2),
				       dst = rdx ty },
			    I.JCC { cond = I.GE, opnd = immedLabel l },
			    I.UNARY { unOp = O.decOp ty, opnd = rax ty }];
		  defineLabel l;
		  move (ty, rax ty, dstOpnd)
	      end

	      (* Division by a power of two when rounding to neginf is the
	       * same as an arithmetic right shift. *)
	      fun divinf (ty, e1, e2 as T.LI n') = (case analyze n'
		     of NONE => divinf0 (ty, e1, e2)
		      | SOME(_, false, _, p) =>
		          shift (ty, O.sarOp, T.REG (ty, getExpr e1), p)
		      | SOME(_, true, _, p) => let
			  val reg = getExpr e1
			  in
			    emit(I.UNARY { unOp = O.negOp ty, opnd = I.Direct (ty,reg) });
			    shift (ty, O.sarOp, T.REG (ty, reg), p)
			  end
		    (* eed case *))
		| divinf (ty, e1, e2) = divinf0 (ty, e1, e2)

	      fun reminf0 (ty, e1, e2) = let
		  val o1 = operand ty e1
		  val o2 = operand ty e2
		  val l = Label.anon ()
	      in
		  move (ty, o1, rax ty);
		  emit (signExtend ty);
		  mark (I.MULTDIV { multDivOp = O.idiv1Op ty,
		                    src = regOrMem (ty, o2) },
			an);
		  app emit [(O.cmpOp ty) { lsrc = rdx ty, rsrc = I.Immed 0 },
			    I.JCC { cond = I.EQ, opnd = immedLabel l }];
		  move (ty, rdx ty, rax ty);
		  app emit [I.BINARY { binOp = O.xorOp ty,
				       src = regOrMem (ty, o2), dst = rax ty },
			    I.JCC { cond = I.GE, opnd = immedLabel l },
			    I.BINARY { binOp = O.addOp ty,
				       src = regOrMem (ty, o2), dst = rdx ty }];
		  defineLabel l;
		  move (ty, rdx ty, dstOpnd)
	      end

	      (* n mod (power-of-2) corrrsponds to a bitmask (AND).
	       * If the power is negative, then we must first negate
	       * the argument and then again negate the result. *)
	      fun reminf (ty, e1, e2 as T.LI n') = (case analyze n'
		     of NONE => reminf0 (ty, e1, e2)
		      | SOME(_, false, a, _) =>
		          binaryComm (ty, O.andOp, e1, T.LI (T.I.fromInt32 (ty, a - 1)))
		      | SOME(_, true, a, _) => let
			  val r1 = getExpr e1
			  val o1 = I.Direct (ty,r1)
			  in
			    emit (I.UNARY { unOp = O.negOp ty, opnd = o1 });
			    emit (I.BINARY { binOp = O.andOp ty,
					     src = I.Immed (a - 1),
					     dst = o1 });
			    unary (ty, O.negOp, T.REG (ty, r1))
			  end
		    (* end case *))
		| reminf (ty, e1, e2) = reminf0 (ty, e1, e2)

              (* Division or remainder: divisor must be in %rdx:%rax pair *)
              fun divrem (ty, signed, e1, e2, resultReg) = let
		    val (opnd1, opnd2) = (operand ty e1, operand ty e2)
		    val _ = move(ty, opnd1, rax ty)
		    val oper = if signed
			  then (emit(signExtend ty); O.idiv1Op ty)
			  else (zero (ty, rdx ty); O.div1Op ty)
		    in
		      mark(I.MULTDIV{multDivOp=oper, src=regOrMem (ty, opnd2)},an);
                      move(ty, resultReg, dstOpnd)
(* NOTE: on the x86-64, the IDIV instruction traps on overflow
                      if overflow then trap() else ()
*)
		    end

              (* Optimize the special case for division *)
              fun divide (ty, signed, e1, e2 as T.LI n') = (case analyze n'
		     of SOME(n, isneg, a, p) =>
		       if signed then
			   let val label = Label.anon ()
			       val reg1 = getExpr e1
			       val opnd1 = I.Direct (ty,reg1)
			   in
			       if isneg then
				   emit (I.UNARY { unOp = O.negOp ty,
						   opnd = opnd1 })
			       else if setZeroBit e1 then ()
			       else emit (O.cmpOp ty { lsrc = opnd1,
						   rsrc = I.Immed 0 });
			       emit (I.JCC { cond = I.GE,
					     opnd = immedLabel label });
			       emit (if a = 2 then
					 I.UNARY { unOp = O.incOp ty,
						   opnd = opnd1 }
				     else
					 I.BINARY { binOp = O.addOp ty,
						    src = I.Immed (a - 1),
						    dst = opnd1 });
			       defineLabel label;
			       shift (ty, O.sarOp, T.REG (ty, reg1), p)
			   end
		       else shift (ty, O.shrOp, e1, p)
		     | NONE =>
		       divrem(ty, signed, e1, e2, rax ty))
		| divide (ty, signed, e1, e2) =
		  divrem (ty, signed, e1, e2, rax ty)

	      (* rem never causes overflow *)
              fun rem (ty, signed, e1, e2 as T.LI n') = (case analyze n'
		     of SOME(n, isneg, a, _) =>
		       if signed then
			   (* The following logic should work uniformely
			    * for both isneg and not isneg.  It only uses
			    * the absolute value (a) of the divisor.
			    * Here is the formula:
			    *    let p be a power of two and a = abs(p):
			    *
			    *    x % p = x - ((x < 0 ? x + a - 1 : x) & (-a))
			    *
			    * (That's what GCC seems to do.)
			    *)
			   let val r1 = getExpr e1
			       val o1 = I.Direct (ty,r1)
			       val rt = newReg ()
			       val tmp = I.Direct (ty,rt)
			       val l = Label.anon ()
			   in
			       move (ty, o1, tmp);
			       if setZeroBit e1 then ()
			       else emit ((O.cmpOp ty) { lsrc = o1,
						   rsrc = I.Immed 0 });
			       emit (I.JCC { cond = I.GE,
					     opnd = immedLabel l });
			       emit (I.BINARY { binOp = O.addOp ty,
						src = I.Immed (a - 1),
						dst = tmp });
			       defineLabel l;
			       emit (I.BINARY { binOp = O.andOp ty,
						src = I.Immed (~a),
						dst = tmp });
			       binary (ty, O.subOp, T.REG (ty, r1), T.REG (ty, rt))
			   end
		       else
			   if isneg then
			       (* this is really strange... *)
			       divrem (ty, false, e1, e2, rdx ty)
			   else
(* 64BIT: FIXME what if n-1 does not fit in 32 bits? *)
			       binaryComm (ty, O.andOp, e1,
					   T.LI (T.I.fromInt32 (ty, n - 1)))
		     | NONE => divrem (ty, signed, e1, e2, rdx ty))
		| rem(ty, signed, e1, e2) =
                    divrem(ty, signed, e1, e2, rdx ty)


	      (* unsigned integer multiplication *)
              fun uMultiply0 (ty, e1, e2) =
                  (* note e2 can never be (I.Direct rdx) *)
                  (move(ty, operand ty e1, rax ty);
                   mark(I.MULTDIV{multDivOp=O.mul1Op ty,
                                  src=regOrMem(ty, operand ty e2)},an);
                   move(ty, rax ty, dstOpnd)
                  )

	      fun uMultiply (ty, e1, e2 as T.LI n') = (case analyze n'
		     of SOME(_, false, _, p) => shift (ty, O.shlOp, e1, p)
		      | NONE => uMultiply0 (ty, e1, e2))
		| uMultiply (ty, e1 as T.LI _, e2) = uMultiply (ty, e2, e1)
		| uMultiply (ty, e1, e2) = uMultiply0 (ty, e1, e2)

              (* signed integer multiplication:
               * The only forms that are allowed that also sets the
               * OF and CF flags are:
               *
               *          (dst)  (src1)  (src2)
               *      imul r64, r64/m64, imm8
               *          (dst)  (src)
               *      imul r64, imm8
               *      imul r64, imm32
               *      imul r64, r32/m64
               * Note: destination must be a register!
               *)
              fun multiply (ty, e1, e2) =
              dstMustBeReg(fn (dst, dstOpnd) =>
              let fun doit(i1 as I.Immed _, i2 as I.Immed _) =
                      (move(ty, i1, dstOpnd);
                       mark(I.BINARY{binOp=O.imulOp ty, dst=dstOpnd, src=i2},an))
                    | doit(rm, i2 as I.Immed _) = doit(i2, rm)
                    | doit(imm as I.Immed i, rm) =
                      (case ty
			of 32 => mark(I.MUL3{dst=dst, src1=rm, src2=i},an)
			 | 64 => mark(I.MULQ3{dst=dst, src1=rm, src2=i},an)
		      (* esac *))
                    | doit(r1 as I.Direct _, r2 as I.Direct _) =
                      (move(ty, r1, dstOpnd);
                       mark(I.BINARY{binOp=O.imulOp ty, dst=dstOpnd, src=r2},an))
                    | doit(r1 as I.Direct _, rm) =
                      (move(ty, r1, dstOpnd);
                       mark(I.BINARY{binOp=O.imulOp ty, dst=dstOpnd, src=rm},an))
                    | doit(rm, r as I.Direct _) = doit(r, rm)
                    | doit(rm1, rm2) =
                       if equalDst rm2 then
                       let val tmpR = newReg()
                           val tmp  = I.Direct (ty,tmpR)
                       in move(ty, rm1, tmp);
                          mark(I.BINARY{binOp=O.imulOp ty, dst=tmp, src=rm2},an);
                          move(ty, tmp, dstOpnd)
                       end
                       else
                         (move(ty, rm1, dstOpnd);
                          mark(I.BINARY{binOp=O.imulOp ty, dst=dstOpnd, src=rm2},an)
                         )
                  val (opnd1, opnd2) = (operand ty e1, operand ty e2)
              in  doit(opnd1, opnd2)
              end
              )

	      fun multiply_notrap (ty, e1, e2 as T.LI n') = (case analyze n'
		     of SOME(_, isneg, _, p) => let
			  val r1 = getExpr e1
			  val o1 = I.Direct (ty,r1)
			  in
			    if isneg
			      then emit (I.UNARY { unOp = O.negOp ty, opnd = o1 })
			      else ();
			    shift (ty, O.shlOp, T.REG (ty, r1), p)
			  end
		      | NONE => multiply (ty, e1, e2))
		| multiply_notrap (ty, e1 as T.LI _, e2) = multiply_notrap (ty, e2, e1)
		| multiply_notrap (ty, e1, e2) = multiply (ty, e1, e2)

	      (* NOTE: cmovcc encodes its operand lengths implicitly in the operand names: i.e.,
	       * cmove %rax, %rbx
	       * *)
	      fun cmovcc (tyCond, tyCmp, cc, t1, t2, y, n) = let
		  fun gen (dstR, _) = let
		      val _ = expr' (tyCond, n, dstR, [])  (* false branch *)
		      val src = regOrMem (tyCond, operand tyCond y)  (* yes branch (note the ordering ) *)
		      val cc = cmp (true, tyCmp, cc, t1, t2, []) (* compare *)
		      in
		        mark (I.CMOV {cond=cond cc, src=src, dst=dstR}, an)
		      end
	          in
		    dstMustBeReg gen
	          end

	      (* conditional move for float comparisons *)
              fun fcmovcc (tyCond, fty, cc, t1, t2, y, n) = dstMustBeReg (fn (dstR, _) => let
 		  val _ = expr' (tyCond, n, dstR, [])                 (* false branch *)
                  val src = regOrMem (tyCond, operand tyCond y)       (* true branch *)
                  fun j cc = mark (I.CMOV {cond=cc, src=src, dst=dstR}, an)
                  in
		      fbranch' (fty, cc, t1, t2, j)
		  end)

	    in
	      (case e
		of T.REG (ty, r) => move' (ty, gpr (ty, r), dstOpnd, an)
		 | T.LI z => if (fitsIn32Bits z)
		     then move' (ty, I.Immed(toInt32 z), dstOpnd, an)
		     else move64' (I.Immed64(toInt64 z), dstOpnd, an)
		 | (T.CONST _ | T.LABEL _) =>
                   move' (ty, I.ImmedLabel e, dstOpnd, an)
		 | T.LABEXP le => move' (ty, I.ImmedLabel le, dstOpnd, an)
		 (* arithmetic operations *)
		 | T.ADD(ty, e1, e2 as T.LI n) => (case n
		      of 1  => unary(ty, O.incOp, e1)
		       | ~1 => unary(ty, O.decOp, e1)
		       | _ => addition (ty, e1, e2)
		     (* end case *))
		 | T.ADD(ty, e1 as T.LI n, e2) => (case n
		      of  1 => unary(ty, O.incOp, e2)
		       | ~1 => unary(ty, O.decOp, e2)
		       | _ => addition (ty, e1, e2)
		     (* end case *))
		 | T.ADD(ty, e1, e2) => addition (ty, e1, e2)
		 | T.SUB(ty, e1, e2 as T.LI n) => (case n
		      of 0 => expr' (ty, e1, dst, an)
		       | 1 => unary(ty, O.decOp, e1)
		       | ~1 => unary(ty, O.incOp, e1)
		       | _ => binary(ty, O.subOp, e1, e2)
		     (* end case *))
		 | T.SUB(ty, e1 as T.LI n, e2) => if n = 0
		      then unary(ty, O.negOp, e2)
		      else binary(ty, O.subOp, e1, e2)
		 | T.SUB(ty, e1, e2) => binary(ty, O.subOp, e1, e2)
		 (* unsigned *)
		 | T.MULU(ty, x, y) => uMultiply(ty, x, y)
		 | T.DIVU(ty, x, y) => divide(ty, false, x, y)
		 | T.REMU(ty, x, y) => rem(ty, false, x, y)
		 (* signed *)
		 | T.MULS(ty, x, y) => multiply_notrap (ty, x, y)
		 | T.DIVS(T.DIV_TO_ZERO, ty, x, y) => divide(ty, true, x, y)
		 | T.DIVS(T.DIV_TO_NEGINF, ty, x, y) => divinf (ty, x, y)
		 | T.REMS(T.DIV_TO_ZERO, ty, x, y) => rem(ty, true, x, y)
		 | T.REMS(T.DIV_TO_NEGINF, ty, x, y) => reminf (ty, x, y)
		 (* trapping *)
		 | T.ADDT(ty, x, y) => (binaryComm(ty, O.addOp, x, y); trap())
		 | T.SUBT(ty, T.LI 0, y) => (unary(ty, O.negOp, y); trap())
		 | T.SUBT(ty, x, y) => (binary(ty, O.subOp, x, y); trap())
		 | T.MULT(ty, x, y) => (multiply (ty, x, y); trap ())
		 | T.DIVT(T.DIV_TO_ZERO, ty, x, y) => divide(ty, true, x, y)
		 | T.DIVT(T.DIV_TO_NEGINF, ty, x, y) => divinf (ty, x, y)
		 (* bitwise operations *)
		 | T.ANDB(ty, x, y) => binaryComm(ty, O.andOp, x, y)
		 | T.ORB(ty, x, y)  => binaryComm(ty, O.orOp, x, y)
		 | T.XORB(ty, x, y) => binaryComm(ty, O.xorOp, x, y)
		 | T.NOTB(ty, x)    => unary(ty, O.notOp, x)
		 | T.SRA(ty, x, y)  => shift(ty, O.sarOp, x, y)
		 | T.SRL(ty, x, y)  => shift(ty, O.shrOp, x, y)
		 | T.SLL(ty, x, y)  => shift(ty, O.shlOp, x, y)
		 (* loads *)
 		 | T.LOAD (8, ea, mem) => genLoad (O.loadZXOp (8, 64), ea, mem)
		 | T.LOAD (16, ea, mem) => genLoad (O.loadZXOp (16, 64), ea, mem)
		 | T.LOAD (32, ea, mem) => genLoad (I.MOVL, ea, mem)
		 | T.LOAD (64, ea, mem) => genLoad (I.MOVQ, ea, mem)
		 (* sign-extended loads *)
		 | T.SX (tTy, fTy, x) =>
		   mark (I.MOVE {mvOp=O.loadSXOp (fTy, tTy), src=regOrMem(fTy, operand fTy x), dst=I.Direct(tTy, dst)},an)
		 (* there is no movslq instruction, but movl suffices. *)
		 | T.ZX(64, 32, e) =>
		   mark (I.MOVE {mvOp=I.MOVL, src=operand 32 e, dst=I.Direct(32, dst)},an)
		 (* zero-extended loads *)
		 | T.ZX(tTy, fTy, e) =>
		   mark (I.MOVE {mvOp=O.loadZXOp (fTy, tTy), src=regOrMem(fTy, operand fTy e), dst=I.Direct(tTy, dst)},an)
		 | T.CVTF2I (ty, roundingMd, fty, fExp) => let
		  (* FIXME: handle the rounding mode *)
                   val mvOp = (case (fty, ty)
                       of (64, 32) => I.CVTSD2SI
			| (32, 32) => I.CVTSS2SI
			| (64, 64) => I.CVTSD2SIQ
			| (32, 64) => I.CVTSS2SIQ
                       (* end case *))
                   in
		       mark' (I.move {mvOp=mvOp, src=foperand(fty, fExp), dst=dstOpnd}, an)
                   end
		 | T.COND (tyCond, T.CMP (tyCmp, cc, t1, t2), y, n) =>
		   cmovcc (tyCond, tyCmp, cc, t1, t2, y, n)
		 | T.COND (tyCond, T.FCMP (fty, cc, t1, t2), y, n) =>
		   fcmovcc (tyCond, fty, cc, t1, t2, y, n)
		 | T.NEG (ty, x) => unary (ty, O.negOp, x)
		 | T.LET (s, e) => (stmt s; expr (e, dst, an))
		 | T.MARK (e, A.MARKREG f) => (f dst; expr' (ty, e, dst, an))
		 | T.MARK (e, a) => expr' (ty, e, dst, a :: an)
		 | T.PRED (e, c) => expr' (ty, e, dst, A.CTRLUSE c :: an)
		 | _ => raise Fail("Unsupported rexp: " ^ MLTreeUtils.rexpToString e)
	      (* end case *))
	    end (* expr' *)

	and expr (e, dst, an) = expr' (TRS.size e, e, dst, an)

	and fcopy (fty, ds, rs, an) = let
	    fun mvInstr {dst, src} =
	    	[I.fmove {fmvOp=O.fmovOp fty, dst=dst, src=src}]
	    (* eliminate unnecessary copies *)
	    val (ds, rs) = ListPair.unzip (List.filter (not o CB.sameColor) (ListPair.zip (ds, rs)))
	    val stms = Shuffle.shuffle {mvInstr=mvInstr, ea=fpr} {dst=ds, src=rs, tmp=NONE}
	    in
	      emits stms
	    end

	(* put a floating-point expression into a register *)
	and fexpToReg (fty, e) = (case e
	    of T.FREG (fty', r) => r
	     | e => let
	       val r = newFreg ()
	       in
	         fexpr (fty, r, e, []);
	         r
	       end
	    (* end case *))

	(* put a floating-point expression into an operand *)
	and foperand (fty, e) = (case e
	    of T.FLOAD (fty, ea, mem) => address (ea, mem)
	     | T.FREG (fty, r) => I.FDirect r
	     | e => I.FDirect (fexpToReg (fty, e))
	    (* end case *))

	and falignedOperand (fty, e) = if floats16ByteAligned
            then foperand (fty, e)
            else I.FDirect (fexpToReg (fty, e))

       (* SSE binary ops
	*         (src)      (dst)
	* binOp   freg/m64, freg
	*)
	and fbinop (fty, binOp, a, b, d, an) = let
           (* try to move memory operands to src rather than dst if binOp is commutative *)
	    val (a, b) = (case (binOp, a, b)
                of ( (I.ADDSS | I.ADDSD | I.MULSS | I.MULSD | I.XORPS | I.XORPD | I.ANDPS | I.ANDPD | I.ORPS | I.ORPD),
		     T.FLOAD _,
		     T.FREG _) => (b, a)
		 | _ => (a, b)
   	       (* end case *))
	    val src = foperand (fty, b)
	    in
	      fexpr (fty, d, a, []);
	      mark (I.FBINOP {binOp=binOp, dst=d, src=src}, an)
	    end

	and fsqrt (fty, d, a, an) = let
	    val s = falignedOperand (fty, a)
	    (* TODO: allow the source operand to be a memory location
	     * val aOpnd = foperand (fty, a)
	     *)
	    val oper = (case fty
	          of 32 => I.FSQRTS
	           | 64 => I.FSQRTD
	           | _ => error "fsqrt"
	          (* end case *))
	    in
	      mark (oper {src=s, dst=I.FDirect d}, an)
	    end

	and convertf2f (fromTy, toTy, e, d, an) = let
	    val fmvOp = (case (fromTy, toTy)
	    of (32, 64) => I.CVTSS2SD
	     | (64, 32) => I.CVTSD2SS
	     | _ => error "convertf2f"
	    (* end case *))
	    in
	      mark (I.FMOVE {fmvOp=fmvOp, dst=I.FDirect d, src=foperand (fromTy, e)}, an)
	    end (* convertf2f *)

	and converti2f (fty, ity, e, d, an) = let
	    val fmvOp = (case (ity, fty)
	                  of (32, 32) => I.CVTSI2SS
	                   | (32, 64) => I.CVTSI2SD
	                   | (64, 32) => I.CVTSI2SSQ
	                   | (64, 64) => I.CVTSI2SDQ
	                 (* end case *))
	    val src = regOrMem (ity, operand ity e)
	    in
	      mark (I.FMOVE {fmvOp=fmvOp, dst=I.FDirect d, src=src}, an)
	    end (* converti2f *)

	and fexpr (fty, d, e, an) = ( (*floatingPointUsed := true;*)
	     case e
	      of T.FREG (_, r) => fcopy (fty, [d], [r], an)
	       (* binary operators *)
	       | T.FADD (_, a, b) => fbinop (fty, O.faddOp fty, a, b, d, an)
	       | T.FSUB (_, a, b) => fbinop (fty, O.fsubOp fty, a, b, d, an)
	       | T.FMUL (_, a, b) => fbinop (fty, O.fmulOp fty, a, b, d, an)
	       | T.FDIV (_, a, b) => fbinop (fty, O.fdivOp fty, a, b, d, an)
	       (* unary operators *)
	       | T.FNEG (_, a) => let
		 val fop = (case fty
		     of 32 => I.XORPS
		      | 64 => I.XORPD
 	             (* end case *))
		 val r = newFreg ()
		 val s = falignedOperand (fty, a)
		 in
(* Two old versions of this code: pre-r3081 and r3081+
		     fload (fty, T.LABEL l, I.Region.memory, r, an);
		     fload (fty, T.ADD (64, T.REG (64, C.rsp), T.LI 208), I.Region.memory, r, an);
*)
                     fload (fty, signBit fty, I.Region.memory, r, an);
		     mark (I.FBINOP {binOp=fop, dst=r, src=s}, an);
		     fcopy (fty, [d], [r], an)
		 end
	       | T.FABS (_, a) => let
		 val fop = (case fty
		     of 32 => I.ANDPS
		      | 64 => I.ANDPD
 	             (* end case *))
		 val r = newFreg ()
		 val s = falignedOperand (fty, a)
		 in
(* Two old versions of this code: pre-r3081 and r3081+
		     fload (fty, T.LABEL l, I.Region.memory, r, an);
		     fload (fty, T.ADD (64, T.REG (64, C.rsp), T.LI 216), I.Region.memory, r, an);
*)
                     fload (fty, negateSignBit fty, I.Region.memory, r, an);
		     mark (I.FBINOP {binOp=fop, dst=r, src=s}, an);
		     fcopy (fty, [d], [r], an)
		 end
	       | T.FSQRT (fty, a) => fsqrt (fty, d, a, an)
	       (* conversions *)
	       | T.CVTF2F (fTy, tTy, e) => convertf2f (fTy, tTy, e, d, an)
	       | T.CVTI2F (fty, ty, e) => converti2f (fty, ty, e, d, an)
	       (* load *)
	       | T.FLOAD (fty, ea, mem) => fload (fty, ea, mem, d, an)
	       (* misc *)
	       | T.FMARK (e, A.MARKREG f) => (f d; fexpr (fty, d, e, an))
	       | T.FMARK (e, a) => fexpr (fty, d, e, a::an)
	       | T.FPRED (e, c) => fexpr (fty, d, e, A.CTRLUSE c::an)
	       | T.FEXT fexp => ExtensionComp.compileFext (reducer()) {e=fexp, fd=d, an=an}
	       | _ => error "fexpr"
	      (* end case *))

	and fload (fty, ea, mem, d, an) = mark (
	    I.FMOVE {fmvOp=O.fmovOp fty, dst=I.FDirect d,
	             src=address (ea, mem)}, an)

	and fstore (fty, ea, mem, e, an) = mark (
	    I.FMOVE {fmvOp=O.fmovOp fty, dst=address (ea, mem),
	             src=I.FDirect (fexpToReg (fty, e))}, an)

	and call (ea, flow, def, use, mem, cutsTo, an, pops) = let
	    fun return(set, []) = set
	      | return(set, a::an) = (case #peek A.RETURN_ARG a
	        of SOME r => return(CB.CellSet.add(r, set), an)
		 | NONE => return(set, an)
		(* end case *))
	    val dst = (case ea
		   of T.LABEL lab => I.ImmedLabel ea
		    | T.LABEXP le => I.ImmedLabel le
		    | _ => operand 64 ea
		  (* end case *))
	    in
	      mark(I.CALL{
		  opnd=dst, defs=cellset def, uses=cellset use,
		  return=return (C.empty, an), cutsTo=cutsTo, mem=mem,
		  pops=pops
		}, an)
	    end (* call *)

	and jmp (lexp as T.LABEL lab, labs, an) =
            mark (I.JMP (I.ImmedLabel lexp, [lab]), an)
	  | jmp (T.LABEXP le, labs, an) = mark (I.JMP (I.ImmedLabel le, labs), an)
          | jmp (ea, labs, an) = mark (I.JMP (operand 64 ea, labs), an)

      (* 8-bit store operations must use one of %al, %bl, %cl, or %dl as the source;
       * we chose %al (aka %rax).
       *)
	and doStore 8 (ea, d, mem, an) = let
	      val src = (case immedOrReg (8, operand 8 d)
		     of src as I.Direct(_, r) => if CB.sameColor(r, C.rax)
			  then src
			  else (move(64, src, rax 64); rax 8)
		      | src => src
		    (* end case *))
	      in
		move' (8, src, address (ea, mem), an)
	      end
	  | doStore ty (ea, d, mem, an) =
	      move' (ty, immedOrReg (ty, operand ty d), address (ea, mem), an)

	and binaryMem(ty, binOp, src, dst, mem, an) =
	    mark(I.BINARY{binOp=binOp, src=immedOrReg(ty, operand ty src),
				dst=address (dst,mem)}, an)
	and unaryMem(ty, unOp, opnd, mem, an) =
	    mark(I.UNARY{unOp=unOp, opnd=address (opnd,mem)}, an)
        and isOne (T.LI 1) = true
          | isOne _ = false

	and store (ty, ea, d, mem, opcodes : O.opcodes, doStore, an) = let
	      val {INC,DEC,ADD,SUB,NOT,NEG,SHL,SHR,SAR,OR,AND,XOR, ...} = opcodes
	      fun default () = doStore (ea, d, mem, an)
	      fun binary1 (t, t', unary, binary, ea', x) =
		  if t = ty andalso t' = ty then
		     if MLTreeUtils.eqRexp(ea, ea') then
			if isOne x then unaryMem(ty, unary, ea, mem, an)
			else binaryMem(ty, binary, x, ea, mem, an)
		      else default()
		  else default()
              fun unary(t,unOp, ea') =
                  if t = ty andalso MLTreeUtils.eqRexp(ea, ea') then
                     unaryMem(ty, unOp, ea, mem, an)
                  else default()
              fun binary(t,t',binOp,ea',x) =
                  if t = ty andalso t' = ty andalso
                     MLTreeUtils.eqRexp(ea, ea') then
                      binaryMem(ty, binOp, x, ea, mem, an)
                  else default()
              fun binaryCom1(t,unOp,binOp,x,y) =
             	  if t = ty then let
             	     fun again() = (case y
             	         of T.LOAD(ty',ea',_) =>
                            if ty' = ty andalso MLTreeUtils.eqRexp(ea, ea') then
                               if isOne x then unaryMem(ty, unOp, ea, mem, an)
                               else binaryMem(ty, binOp,x,ea,mem,an)
                            else default()
                          | _ => default()
                         (* end case *))
                     in
                       (case x
                         of T.LOAD(ty',ea',_) => if ty' = ty
                             andalso MLTreeUtils.eqRexp(ea, ea') then
                                if isOne y then unaryMem(ty, unOp, ea, mem, an)
                                else binaryMem(ty, binOp,y,ea,mem,an)
                             else again()
                          | _ => again()
                        (* end case *))
                     end
                   else default()
              fun binaryCom(t,binOp,x,y) = if t = ty then
                  let fun again() = (case y
                      of T.LOAD(ty',ea',_) =>
                         if ty' = ty andalso MLTreeUtils.eqRexp(ea, ea') then
                           binaryMem(ty, binOp,x,ea,mem,an)
                          else default()
                        | _ => default()
                      (* end case *))
                  in
                    (case x
                      of T.LOAD(ty',ea',_) =>
                         if ty' = ty andalso MLTreeUtils.eqRexp(ea, ea') then
     	                    binaryMem(ty, binOp,y,ea,mem,an)
                         else again()
                       | _ => again()
                    (* end case *))
                  end
                  else default()
	      in
		case d
		 of T.ADD(t,x,y) => binaryCom1(t,INC,ADD,x,y)
		  | T.SUB(t,T.LOAD(t',ea',_),x) => binary1(t,t',DEC,SUB,ea',x)
		  | T.ORB(t,x,y) => binaryCom(t,OR,x,y)
		  | T.ANDB(t,x,y) => binaryCom(t,AND,x,y)
		  | T.XORB(t,x,y) => binaryCom(t,XOR,x,y)
		  | T.SLL(t,T.LOAD(t',ea',_),x) => binary(t,t',SHL,ea',x)
		  | T.SRL(t,T.LOAD(t',ea',_),x) => binary(t,t',SHR,ea',x)
		  | T.SRA(t,T.LOAD(t',ea',_),x) => binary(t,t',SAR,ea',x)
		  | T.NEG(t,T.LOAD(t',ea',_)) => unary(t,NEG,ea')
		  | T.NOTB (t, T.LOAD(t',ea',_)) => unary(t,NOT,ea')
		  | _ => default ()
		(* end case *)
	      end (* store *)

	(* floating-point branch for
	 *   if (t1 fcc t2)
	 *      goto lab
	 *)
	and fbranch (fty, fcc, t1, t2, lab, an) = let
	      fun j cc = mark (I.JCC {cond=cc, opnd=immedLabel lab}, an)
	      in
		fbranch' (fty, fcc, t1, t2, j)
	      end

	and fbranch' (fty, fcc, x, y, j) = let
	    (* the condition code bits are set as follows:
	     *
	     *			P  Z  C
	     *   x < y		0  0  1
	     *   x > y		0  0  0
	     *   x = y		0  1  0
	     *   unordered	1  1  1
 	     *
	     * and the AMD64 condition tests are as follows:
	     *
	     *   A		-  0  0		-- implies ordered
	     *   AE		-  -  0
	     *   B		-  -  1
	     *   BE		-  1  -
	     *              or  -  -  1
	     *   EQ		-  1  -
	     *   NE		-  0  -
	     *   NP		0  -  -
	     *   P		1  -  -
	     *)
            fun branch fcc = (case fcc
		  of T.==   => orderedOnly I.EQ
		   | T.?<>  => (j I.P; j I.NE)
		   | T.?    => j I.P
		   | T.<=>  => j I.NP
		   | T.>    => j I.A
		   | T.?<=  => (j I.P; j I.BE)
		   | T.>=   => orderedOnly I.AE
		   | T.?<   => (j I.P; j I.BE)
		   | T.<    => orderedOnly I.B
		   | T.?>=  => (j I.P; j I.AE)
		   | T.<=   => orderedOnly I.BE
		   | T.?>   => (j I.P; j I.A)
		   | T.<>   => orderedOnly I.NE
		   | T.?=   => j I.EQ
		   | _      => error(concat["fbranch(", T.Basis.fcondToString fcc, ")"])
		 (* end case *))
	  (* branch on condition if ordered *)
(* FIXME: the emitted jump does not have annotations! *)
	    and orderedOnly fcc = let
		  val lab = Label.anon()
		  in
		    emit (I.JCC{cond=I.P, opnd=immedLabel lab});
		    j fcc;
                    defineLabel lab
		  end
	    (* compare for condition  (x op y)
	     *
	     *              (y)          (x)
	     * ucomiss/d    xmm1/m32,  xmm2
	     *)
               fun compare () = let
		   val x = foperand (fty, x)
		   val y = foperand (fty, y)
                   fun cmp (x, y, fcc) = (
                       emit (I.FCOM {comOp=O.ucomOp fty, src=y, dst=x});
                       fcc)
                   in
                     (case (x, y)
                       of (I.FDirect xReg, I.FDirect _) => cmp (xReg, y, fcc)
                        | (mem, I.FDirect yReg) =>
                          cmp (yReg, x, T.Basis.swapFcond fcc)
                        | (I.FDirect xReg, mem) => cmp (xReg, y, fcc)
                        | _ => let
                          val xReg = newFreg ()
                          val xTmp = I.FDirect xReg
                          in
                            emit (I.FMOVE {fmvOp=O.fmovOp fty, src=x, dst=xTmp});
                            cmp (xReg, y, fcc)
                          end
                     (* end case *))
                   end (* compare *)
	    in
	      branch (compare ())
	    end (* fbranch' *)

		(* %eflags <- src *)
	and moveToEflags src =
	    if CB.sameColor(src, C.eflags) then ()
	    else (move(32, I.Direct (32,src), rax 32); emit(I.LAHF))

	(* dst <- %eflags *)
	and moveFromEflags dst =
	    if CB.sameColor(dst, C.eflags) then ()
	    else (emit(I.SAHF); move(32, rax 32, I.Direct (32,dst)))

	(* Emit a test.
         *   The available modes are
         *      r/m, r
         *      r/m, imm
         * On selecting the right instruction: TESTQ/TESTL/TESTW/TESTB.
         * When anding an operand with a constant
         * that fits within 8 (or 16) bits, it is possible to use TESTB,
         * (or TESTW) instead of TESTL.   Because amd64 is little endian,
         * this works for memory operands too.  However, with TESTB, it is
         * not possible to use registers other than
         * AL, CL, BL, DL, and AH, CH, BH, DH.  So, the best way is to
         * perform register allocation first, and if the operand registers
         * are one of RAX, RCX, RBX, or RDX, replace the TESTL instruction
         * by TESTB.
         *)
        and test(ty, testopcode, a, b, an) = let
            val (_, opnd1, opnd2) = commuteComparison(ty, T.EQ, true, a, b)
              (* translate r, r/m => r/m, r *)
            val (opnd1, opnd2) =
                  if isMemOpnd opnd2 then (opnd2, opnd1) else (opnd1, opnd2)
            in
              mark (testopcode {lsrc=opnd1, rsrc=opnd2}, an)
            end

        (* generate a real comparison; return the real cc used *)
        and genCmp (ty, swapable, cc, a, b, an) = let
	      val (cc, opnd1, opnd2) = commuteComparison(ty, cc, swapable, a, b)
	      in
		  (case ty
		    of 8 => mark(I.CMPB{lsrc=opnd1, rsrc=opnd2}, an)
		     | 16 => mark(I.CMPW{lsrc=opnd1, rsrc=opnd2}, an)
		     | 32 => mark(I.CMPL{lsrc=opnd1, rsrc=opnd2}, an)
		     | 64 => mark(I.CMPQ{lsrc=opnd1, rsrc=opnd2}, an)
		  (* esac *));
		  cc
	      end

       (* Give a and b which are the operands to a comparison (or test)
	* Return the appropriate condition code and operands.
	*   The available modes are:
	*        r/m, imm
	*        r/m, r
	*        r,   r/m
	*)
	and commuteComparison (ty, cc, swapable, a, b) = let
	      val (opnd1, opnd2) = (operand ty a, operand ty b)
	      in  (* Try to fold in the operands whenever possible *)
	        case (isImmediate opnd1, isImmediate opnd2)
		 of (true, true) => (cc, moveToReg (ty, opnd1), opnd2)
		  | (true, false) => if swapable
		      then (T.Basis.swapCond cc, opnd2, opnd1)
		      else (cc, moveToReg (ty, opnd1), opnd2)
		  | (false, true) => (cc, opnd1, opnd2)
		  | (false, false) => (case (opnd1, opnd2)
		       of (_, I.Direct _) => (cc, opnd1, opnd2)
			| (I.Direct _, _) => (cc, opnd1, opnd2)
			| (_, _)          => (cc, moveToReg (ty, opnd1), opnd2)
		      (* end case *))
		(* end case *)
	      end  (* commuteComparison *)

	(* generate a condition code expression
	 * The zero is for setting the condition code!
	 * I have no idea why this is used.
	 *)
	and doCCexpr(T.CMP(ty, cc, t1, t2), dst, an) = (
	    cmp(false, ty, cc, t1, t2, an);
	    moveFromEflags dst)
 	  | doCCexpr(T.CC(cond,rs), dst, an) =
	    if CB.sameColor(rs,C.eflags) orelse CB.sameColor(dst,C.eflags)
	    then (moveToEflags rs; moveFromEflags dst)
	    else move'(64, I.Direct (64,rs), I.Direct (64,dst), an)
	  | doCCexpr(T.CCMARK(e,A.MARKREG f),dst,an) = (f dst; doCCexpr(e,dst,an))
	  | doCCexpr(T.CCMARK(e,a), dst, an) = doCCexpr(e,dst,a::an)
	  | doCCexpr(T.CCEXT e, cd, an) =
	    ExtensionComp.compileCCext (reducer()) {e=e, ccd=cd, an=an}
	  | doCCexpr _ = error "doCCexpr"

	(* Compare an expression with zero.
	 * On the amd64, TEST is superior to AND for doing the same thing,
	 * since it doesn't need to write out the result in a register.
	 *)
	and cmpWithZero(cc as (T.EQ | T.NE), e as T.ANDB(ty, a, b), an) =
		(case ty
		  of 8 => test(ty, I.TESTB, a, b, an)
		  | 16 => test(ty, I.TESTW, a, b, an)
		  | 32 => test(ty, I.TESTL, a, b, an)
		  | 64 => test(ty, I.TESTQ, a, b, an)
		  | _  => expr (e, newReg(), an);
		cc)
	 | cmpWithZero(cc, e, an) = (expr (e, newReg(), an); cc)

        (* generate a comparison and sets the condition code;
         * return the actual cc used.  If the flag swapable is true,
         * we can also reorder the operands.
         *)
        and cmp (swapable, ty, cc, t1, t2, an) = let
            (* == and <> can be always be reordered *)
            val swapable = swapable orelse cc = T.EQ orelse cc = T.NE
            in (* Sometimes the comparison is not necessary because
                * the bits are already set!
                *)
              if isZero t1 andalso setZeroBit2 t2 then
                 if swapable then
                    cmpWithZero(T.Basis.swapCond cc, t2, an)
                 else (* can't reorder the comparison! *)
                    genCmp(ty, false, cc, t1, t2, an)
	      else if isZero t2 andalso setZeroBit2 t1 then
		 cmpWithZero(cc, t1, an)
	      else genCmp(ty, swapable, cc, t1, t2, an)
            end

	and branch (T.CMP(ty, cc, t1, t2), lab, an) = let
            val cc = cmp (true, ty, cc, t1, t2, [])
            in
              mark (I.JCC{cond=cond cc, opnd=immedLabel lab}, an)
            end
          | branch (T.FCMP(fty, fcc, t1, t2), lab, an) =
            fbranch (fty, fcc, t1, t2, lab, an)
          | branch (ccexp, lab, an) = (
            doCCexpr(ccexp, C.eflags, []);
            mark(I.JCC{cond=cond(Gen.condOf ccexp), opnd=immedLabel lab}, an))

	and stmt' (s, an) = (case s
	    of T.MV (ty, d, e) => expr' (ty, e, d, an)
	     | T.FMV (fty, d, e) => fexpr (fty, d, e, an)
	     | T.CCMV (ccd, e) => doCCexpr (e, ccd, an)
	     | T.COPY (ty, dst, src) => copy (ty, dst, src, an)
	     | T.FCOPY (fty, dst, src) => fcopy (fty, dst, src, an)
	     | T.JMP (e, labs) => jmp (e, labs, an)
	     | T.CALL {funct, targets, defs, uses, region, pops, ...} =>
	       call (funct, targets, defs, uses, region, [], an, pops)
	     | T.FLOW_TO(T.CALL{funct, targets, defs, uses, region, pops, ...},
                         cutTo) =>
               call (funct, targets, defs, uses, region, cutTo, an, pops)
             | T.RET _ => mark (I.RET NONE, an)
             | T.STORE (ty, ea, d, mem) =>
               store (ty, ea, d, mem, O.opcodes ty, doStore ty, an)
             | T.FSTORE (fty, ea, e, mem) => fstore (fty, ea, mem, e, an)
             | T.BCC(cc, lab) => branch (cc, lab, an)
             | T.DEFINE l => defineLabel l
             | T.LIVE s => mark' (I.LIVE{regs=cellset s,spilled=C.empty},an)
             | T.KILL s => mark' (I.KILL{regs=cellset s,spilled=C.empty},an)
             | T.ANNOTATION(s, a) => stmt' (s, a::an)
             | T.EXT s =>
               ExtensionComp.compileSext (reducer ()) {stm=s, an=an}
             | s => app stmt (Gen.compileStm s)
	    (* end case *))
	and stmt s = stmt' (s, [])

	and beginCluster' _ = (
	    trapLabel := NONE;
	    beginCluster 0)

	and endCluster' a = (
	      case !trapLabel
	       of NONE => ()
		| SOME(_, lab) => (
		    defineLabel lab;
		  (* signal an overflow exception (code 4) *)
		    emit(I.INT 0w4))
              (* end case *);
            (* If floating point has been used allocate an extra
             * register just in case we didn't use any explicit register *)
	      ignore (newFreg ());
	      endCluster a)

	and ccExpr e = error "ccExpr"

	and reduceOpnd (I.Direct(ty, r)) = r
	  | reduceOpnd opnd = let
	      val dst = newReg()
	      in
		move(64, opnd, I.Direct(64, dst)); dst
	      end

	and reducer () = TS.REDUCER{
		reduceRexp    = genExpr,
		reduceFexp    = fn e => fexpToReg (64, e),
		reduceCCexp   = ccExpr,
		reduceStm     = stmt',
		operand       = operand 64,
		reduceOperand = reduceOpnd,
		addressOf     = fn e => address(e, I.Region.memory), (*XXX*)
		emit          = mark',
		instrStream   = instrStream,
		mltreeStream  = self()
	      }

	and self () = TS.S.STREAM {
	    beginCluster=beginCluster',
	    endCluster=endCluster',
	    emit=stmt,
	    pseudoOp=pseudoOp,
	    defineLabel=defineLabel,
	    entryLabel=entryLabel,
   	    comment=comment,
            annotation=annotation,
	    getAnnotations=getAnnotations,
            exitBlock=exitBlock o cellset}
	in
	  self ()
	end (* selectInstructions *)

  end (* AMD64Gen *)