1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
(* x86-64-svid-fn.sml
*
* C calling-sequence generator for x86-64.
*
* Mike Rainey (mrainey@cs.uchicago.edu)
*)
functor X86_64SVIDFn (
structure T : MLTREE
) = struct
structure T = T
structure C = AMD64Cells
structure CB = CellsBasis
structure CTy = CType
val wordTy = 64
val mem = T.Region.memory
val stack = T.Region.stack
fun lit i = T.LI (T.I.fromInt (wordTy, i))
fun gpr r = T.GPR (T.REG (wordTy, r))
fun fpr (ty, f) = T.FPR (T.FREG (ty, f))
fun sum ls = List.foldl (op +) 0 ls
fun szBOfCTy cTy = #sz (CSizes.sizeOfTy cTy)
fun alignBOfCTy cTy = #align (CSizes.sizeOfTy cTy)
val spReg = T.REG (wordTy, C.rsp)
fun offSp 0 = spReg
| offSp offset = T.ADD (wordTy, spReg, T.LI offset)
datatype loc_kind = datatype CLocKind.loc_kind
structure SA = StagedAllocationFn (
type reg_id = T.reg
datatype loc_kind = datatype loc_kind
val memSize = 8 (* bytes *))
structure Gen = CCallGenFn (
structure T = T
structure C = C
val wordTy = wordTy
val offSp = offSp
structure SA = SA
fun lobits {e, nBits, width} = e
fun sx {fromWidth, toWidth, e} = T.SX(toWidth, fromWidth, e)
fun f2f {fromWidth, toWidth, e} = e
)
datatype c_arg = datatype Gen.c_arg
structure CCs = X86_64CConventionFn (
structure SA = SA
type reg_id = T.reg
val rax = C.rax
val rdi = C.rdi
val rsi = C.rsi
val rdx = C.rdx
val rcx = C.rcx
val r8 = C.r8
val r9 = C.r9
val xmm0 = C.xmm0
val xmm1 = C.xmm1
val xmm2 = C.xmm2
val xmm3 = C.xmm3
val xmm4 = C.xmm4
val xmm5 = C.xmm5
val xmm6 = C.xmm6
val xmm7 = C.xmm7)
fun toGpr r = (wordTy, r)
fun toGprs gprs = List.map toGpr gprs
fun toFpr r = (64, r)
fun toFprs fprs = List.map toFpr fprs
val calleeSaveRegs = [C.rbx, C.r12, C.r13, C.r14, C.r15]
val callerSaveRegs = [C.rax, C.rcx, C.rdx, C.rsi, C.rdi, C.r8, C.r9, C.r10, C.r11]
val callerSaveFRegs = (C.Regs CB.FP {from=0, to=15, step=1})
val calleeSaveFRegs : T.reg list = []
val frameAlignB = 16
val calleeSaveRegs' = toGprs calleeSaveRegs
val callerSaveRegs' = toGprs callerSaveRegs
val calleeSaveFRegs' = toFprs calleeSaveFRegs
val callerSaveFRegs' = toFprs callerSaveFRegs
(* convert a list of C types to a list of eight bytes *)
fun eightBytesOfCTys ([], [], ebs) = List.rev (List.map List.rev ebs)
| eightBytesOfCTys ([], eb, ebs) = List.rev (List.map List.rev (eb :: ebs))
| eightBytesOfCTys (cTy :: cTys, eb, ebs) = let
val szTy = szBOfCTy cTy
val szEb = sum(List.map szBOfCTy eb)
in
if szTy + szEb = 8
then eightBytesOfCTys(cTys, [], (cTy :: eb) :: ebs)
else if szTy + szEb < 8
then eightBytesOfCTys(cTys, cTy :: eb, ebs)
else eightBytesOfCTys(cTys, [cTy], eb :: ebs)
end
(* convert a C type into its eight bytes *)
fun eightBytesOfCTy cTy = eightBytesOfCTys (CType.flattenCTy cTy, [], [])
(* classify a C type into its location kind (assuming that aggregates cannot be passed in registers) *)
fun kindOfCTy (CTy.C_float | CTy.C_double | CTy.C_long_double) = FPR
| kindOfCTy (CTy.C_ARRAY _ | CTy.C_STRUCT _ | CTy.C_UNION _) = raise Fail "impossible"
| kindOfCTy (CTy.C_unsigned _ | CTy.C_signed _ | CTy.C_PTR) = GPR
fun combineKinds (k1, k2) = if (k1 = k2)
then k1
else (case (k1, k2)
of (STK, _) => STK
| (_, STK) => STK
| (GPR, _) => GPR
| (_, GPR) => GPR
| _ => FPR
(* end case*))
(* this part of the ABI is tricky. if the eightbyte contains all floats, we use fprs, but
* otherwise we use gprs. *)
fun kindOfEightByte [] = raise Fail "impossible"
| kindOfEightByte [cTy] = kindOfCTy cTy
| kindOfEightByte (cTy1 :: cTy2 :: cTys) = let
val k1 = combineKinds (kindOfCTy cTy1, kindOfCTy cTy2)
val k2 = kindOfEightByte(cTy2 :: cTys)
in
combineKinds(k1, k2)
end
fun containsUnalignedFields cTy = (case cTy
of (CTy.C_STRUCT cTys | CTy.C_UNION cTys) => List.exists containsUnalignedFields cTys
| cTy => Int.max(8, szBOfCTy cTy) mod 8 <> 0
(* end case *))
fun reqsOfCTy (cTy as (CTy.C_STRUCT _ | CTy.C_UNION _ | CTy.C_ARRAY _)) =
if (szBOfCTy cTy > 2*8 orelse containsUnalignedFields cTy)
then List.tabulate (szBOfCTy cTy div 8, fn _ => (8*8, STK, 8))
else List.map (fn eb => (8*8, kindOfEightByte eb, 8)) (eightBytesOfCTy cTy)
| reqsOfCTy cTy = [(8*szBOfCTy cTy, kindOfCTy cTy, alignBOfCTy cTy)]
fun reqOfCTy cTy = (case reqsOfCTy cTy
of [req] => req
| _ => raise Fail "malformed C type"
(* end case *))
(* given a return type, return the locations for the return values *)
fun layoutReturn retTy = (case retTy
of CTy.C_void => ([], NONE, CCs.store0)
| retTy as CTy.C_STRUCT _ => raise Fail "todo"
| retTy => let
val (locs, store) = SA.allocateSeq CCs.returns (reqsOfCTy retTy, CCs.store0)
in
(locs, NONE, store)
end
(* end case *))
(* given a store and some parameters, return the C locations for those parameters *)
fun layoutCall (store, paramTys) = let
val paramReqs = List.map reqsOfCTy paramTys
in
SA.allocateSeqs CCs.params (paramReqs, store)
end
fun layout {conv, retTy, paramTys} = let
val (resLocs, structRetLoc, store) = layoutReturn retTy
val (paramLocss, store) = layoutCall(store, paramTys)
(* number of bytes allocated for the call *)
val frameSzB = SA.find(store, CCs.cCallStk)
val argMem = {szb=CSizes.alignAddr(frameSzB, frameAlignB), align=frameAlignB}
in
{argLocs=paramLocss, argMem=argMem, structRetLoc=structRetLoc, resLocs=resLocs}
end
fun genCall {name, proto, paramAlloc, structRet, saveRestoreDedicated, callComment, args} = let
val {argLocs, argMem, resLocs, structRetLoc} = layout proto
val argAlloc = if (#szb argMem = 0 orelse paramAlloc argMem)
then []
else [T.MV (wordTy, C.rsp, T.SUB (wordTy, spReg,
T.LI (T.I.fromInt (wordTy, #szb argMem))))]
val (copyArgs, gprUses, fprUses) = Gen.writeLocs(args, argLocs)
(* the defined registers of the call depend on the calling convention *)
val defs = (case #conv proto
of "ccall" => List.map (gpr o #2) callerSaveRegs' @ List.map fpr callerSaveFRegs'
| "ccall-bare" => []
| conv => raise Fail (concat [
"unknown calling convention \"", String.toString conv, "\""
])
(* end case *))
val uses = List.map gpr gprUses @ List.map fpr fprUses
val callStm = T.CALL {funct=name, targets=[], defs=defs, uses=uses, region=mem, pops=0}
val (resultRegs, copyResult) = Gen.readLocs resLocs
val callSeq = argAlloc @ copyArgs @ [callStm] @ copyResult
in
{callseq=callSeq, result=resultRegs}
end
end (* X86_64SVIDFn *)
|