1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
(*
* The Alpha instruction set, specialized with respect to the
* user constant and region types.
*)
structure AlphaMLTree =
MLTreeF
(structure Constant = UserConstant
structure Region = UserRegion
structure Extension = UserExtension
)
structure AlphaInstr = AlphaInstr(AlphaMLTree)
structure AlphaMLTreeEval =
MLTreeEval
(structure T = AlphaMLTree
fun eq _ _ = false
val eqRext = eq val eqFext = eq
val eqCCext = eq val eqSext = eq
)
structure AlphaMLTreeHash =
MLTreeHash
(structure T = AlphaMLTree
fun h _ _ = 0w0
val hashRext = eq val hashFext = eq
val hashCCext = eq val hashSext = eq
)
(*
* How to serialize parallel copies
*)
structure AlphaShuffle = AlphaShuffle(AlphaInstr)
(*
* The assembler
*)
structure AlphaAsm = AlphaAsmEmitter
(structure Instr = AlphaInstr
structure Stream = Stream
structure Shuffle = AlphaShuffle
val V9 = false (* we'll generate V8 instructions for now *)
)
(*
* The flowgraph (cluster) representation specialized to the sparc instruction
* set.
*)
structure AlphaFlowGraph =
FlowGraph(structure I = AlphaInstr
structure P = UserPseudoOps
)
(*
* Alpha has no integer division. So they have to be handled specially.
* The following is stolen from Fermin's C-- source code.
*)
structure AlphaPseudoInstrs : ALPHA_PSEUDO_INSTR =
struct
fun error msg = MLRiscErrorMsg.error ("AlphaPseudoInstrs", msg)
structure I = AlphaInstr
structure T = MLTree
structure C = I.C
type reduceOpnd = I.operand -> C.cell
(* reduceOpnd moves the operand to a register if it's not in one
already (handy).
div*, rem* are assembler macros. The alpha/osf assembler accepts
divl $1, 7, $1
but the alpha/linux assembler insists that the operand be a register
Sigh ...
*)
val temps = foldr C.addReg C.empty (map C.GPReg [23, 24, 25, 26, 28])
fun pseudoArith instr ({ra, rb, rc}, reduceOpnd) =
[I.PSEUDOARITH{oper=instr, ra=ra, rb=I.REGop(reduceOpnd rb), rc=rc, tmps=temps}]
fun divl operands = pseudoArith I.DIVL operands
fun divlu operands = pseudoArith I.DIVLU operands
fun divq operands = pseudoArith I.DIVQ operands
fun divqu operands = pseudoArith I.DIVQU operands
fun divlv _ = error "divlv"
fun divqv _ = error "divqv"
fun reml operands = pseudoArith I.REML operands
fun remlu operands = pseudoArith I.REMLU operands
fun remq operands = pseudoArith I.REMQ operands
fun remqu operands = pseudoArith I.REMQU operands
fun remlv _ = error "remlv"
fun remqv _ = error "remqv"
val stack = I.Region.stack
val sp = C.stackptrR
val push16 = I.LDA{r=sp, b=sp, d=I.IMMop (~16)}
val pop16 = I.LDA{r=sp, b=sp, d=I.IMMop 16}
(**** int to float ****)
(* i32 -> f32 *)
fun cvtls({opnd, fd}, reduceOpnd) =
let val ra = reduceOpnd opnd
in
[push16,
I.STORE{stOp=I.STQ, r=ra, b=sp, d=I.IMMop 0, mem=stack},
I.FLOAD{ldOp=I.LDT, r=fd, b=sp, d=I.IMMop 0, mem=stack},
pop16,
I.FUNARY{oper=I.CVTQS, fb=fd, fc=fd}]
end
(* i32 -> f64 *)
fun cvtlt({opnd, fd}, reduceOpnd) =
let val ra = reduceOpnd opnd
in
[push16,
I.STORE{stOp=I.STQ, r=ra, b=sp, d=I.IMMop 0, mem=stack},
I.FLOAD{ldOp=I.LDT, r=fd, b=sp, d=I.IMMop 0, mem=stack},
pop16,
I.FUNARY{oper=I.CVTQT, fb=fd, fc=fd}]
end
(* i64 -> f32 *)
val cvtqs = cvtls
(* i64 -> f64 *)
val cvtqt = cvtlt
(**** float to int ****)
(* TODO: These should really look at the rounding mode, and not generate
CVTTQ_C blindly *)
(* f32 -> i32 *)
fun cvtsl({mode, fs, rd}) = let
val ftmp = AlphaCells.newFreg()
in
[I.FUNARY{oper=I.CVTTQC, fb=fs, fc=ftmp},
push16,
I.FSTORE{stOp=I.STT, r=ftmp, b=sp, d=I.IMMop 0, mem=stack},
I.LOAD {ldOp=I.LDL, r=rd, b=sp, d=I.IMMop 0, mem=stack},
pop16
]
end
(* f64 -> i32 *)
val cvttl= cvtsl
(* f32 -> i64 *)
fun cvtsq({mode, fs, rd}) = let
val ftmp = AlphaCells.newFreg()
in
[I.FUNARY{oper=I.CVTTQC, fb=fs, fc=ftmp},
push16,
I.FSTORE{stOp=I.STT, r=ftmp, b=sp, d=I.IMMop 0, mem=stack},
I.LOAD {ldOp=I.LDQ, r=rd, b=sp, d=I.IMMop 0, mem=stack},
pop16
]
end
(* f64 -> i64 *)
val cvttq = cvtsq
end (* AlphaPseudoInstrs *)
(*
* Instruction selection module for Alpha.
*)
structure AlphaMLTreeComp =
Alpha(structure AlphaInstr = AlphaInstr
structure AlphaMLTree = MLTree
structure PseudoInstrs = AlphaPseudoInstrs
structure ExtensionComp = UserMLTreeExtComp
(structure I = AlphaInstr
structure T = AlphaMLTree
)
(* Some alpha specific parameters *)
val mode32bit = false (* simulate 32 bit mode *)
val multCost = ref 8 (* just guessing *)
val useMultByConst = ref false (* just guessing *)
val byteWordLoadStores = ref false
val SMLNJfloatingPoint = false (* must be true for SML/NJ *)
)
(*
* Alpha specific backend
*)
structure AlphaBackEnd =
BackEnd
(structure I = AlphaInstr
structure Flowgraph = AlphaFlowGraph
structure InsnProps = AlphaProps(AlphaInstr)
structure Asm = AlphaAsm
structure MLTreeComp = AlphaMLTreeComp
val sp = I.C.stackptrR
val spill = UserRegion.spill
(* I'm assuming only r31 and the stack pointer is dedicated *)
structure RA =
RISC_RA
(structure I = I
structure C = I.C
structure Flowgraph = Flowgraph
structure Asm = Asm
structure Rewrite = AlphaRewrite(AlphaInstr)
structure InsnProps = InsnProps
structure Spill = RASpill(structure Asm = Asm
structure InsnProps = InsnProps)
structure SpillHeur = ChaitinSpillHeur
structure SpillTable =
SpillTable
(val initialSpillOffset = 0 (* This is probably wrong!!!!! *)
val spillAreaSz = 4000
val architecture = "Alpha"
)
open SpillTable
fun pure _ = false
(* make copies *)
structure Int =
struct
val dedicated = [I.C.stackptrR, I.C.GPReg 31]
val avail =
C.SortedCells.return(
C.SortedCells.difference(
C.SortedCells.uniq(
C.Regs C.GP {from=0, to=31, step=1}),
C.SortedCells.uniq dedicated))
fun copy((rds as [_], rss as [_]), _) =
I.COPY{dst=rds, src=rss, impl=ref NONE, tmp=NONE}
| copy((rds, rss), I.COPY{tmp, ...}) =
I.COPY{dst=rds, src=rss, impl=ref NONE, tmp=tmp}
(* spill register *)
fun spillInstr{an,src,spilledCell,spillLoc} =
[I.STORE{stOp=I.STL, b=sp, d=I.IMMop(get spillLoc),
r=src, mem=spill}]
(* spill copy temp *)
fun spillCopyTmp(_,I.COPY{k,tmp,dst,src,impl},loc) =
I.COPY{k=k,tmp=SOME(I.Displace{base=sp, disp=get loc}),
dst=dst,src=src,impl=impl}
(* reload register *)
fun reloadInstr{an,dst,spilledCell,spillLoc} =
[I.LOAD{ldOp=I.LDL, b=sp, d=I.IMMop(get spillLoc), r=dst,
mem=spill}]
end
structure Float =
struct
val dedicated = [I.C.FPReg 31]
val avail = C.Regs C.FP {from=0, to=30, step=1}
fun copy((fds as [_], fss as [_]), _) =
I.FCOPY{dst=fds, src=fss, impl=ref NONE, tmp=NONE}
| copy((fds, fss), I.FCOPY{tmp, ...}) =
I.FCOPY{dst=fds, src=fss, impl=ref NONE, tmp=tmp}
fun spillCopyTmp(_,I.FCOPY{tmp,dst,src,impl},loc) =
I.FCOPY{tmp=SOME(I.Displace{base=sp, disp=getF loc}),
dst=dst,src=src,impl=impl}
fun spillInstr(_,r,loc) =
[I.FSTORE{stOp=I.STT, b=sp, d=I.IMMop(getF loc), r=r, mem=spill}]
fun reloadInstr(_,r,loc) =
[I.FLOAD{ldOp=I.LDT, b=sp, d=I.IMMop(getF loc), r=r, mem=spill}]
end
)
)
|