1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
(*---------------------------------------------------------------------------
* Backend specific stuff. You'll need one instance of these things
* for each architecture.
*---------------------------------------------------------------------------*)
(*
* The Sparc instruction set, specialized with respect to the
* user constant and region types.
*)
structure SparcInstr = SparcInstr
(structure LabelExp = LabelExp
structure Region = UserRegion
)
(*
* How to serialize parallel copies
*)
structure SparcShuffle = SparcShuffle(SparcInstr)
(*
* The assembler
*)
structure SparcAsm = SparcAsmEmitter
(structure Instr = SparcInstr
structure Stream = Stream
structure Shuffle = SparcShuffle
val V9 = false (* we'll generate V8 instructions for now *)
)
(*
* The flowgraph (cluster) representation specialized to the sparc instruction
* set.
*)
structure SparcFlowGraph =
FlowGraph(structure I = SparcInstr
structure P = UserPseudoOps
)
(*
* Because of various Sparc related ugliness. Pseudo instructions
* related to integer multiplication/division are handled via callbacks.
* Here we can decide what actual code to generate. Here we only
* handle a subset of of the pseudo instructions.
*)
structure SparcPseudoInstrs =
struct
structure I = SparcInstr
structure C = SparcInstr.C
type format1 =
{r:C.cell, i:I.operand, d:C.cell} *
(I.operand -> I.C.cell) -> I.instruction list
type format2 =
{i:I.operand, d:C.cell} *
(I.operand -> I.C.cell) -> I.instruction list
fun error msg = MLRiscErrorMsg.impossible ("SparcPseudoInstrs."^msg)
fun umul32({r, i, d}, reduceOpnd) = [I.ARITH{a=I.UMUL,r=r,i=i,d=d}]
fun smul32({r, i, d}, reduceOpnd) = [I.ARITH{a=I.SMUL,r=r,i=i,d=d}]
fun udiv32({r,i,d},reduceOpnd) =
[I.WRY{r=C.r0,i=I.REG(C.r0)},I.ARITH{a=I.UDIV,r=r,i=i,d=d}]
fun sdiv32({r,i,d},reduceOpnd) =
let val t1 = C.newReg()
in [I.SHIFT{s=I.SRA,r=r,i=I.IMMED 31,d=t1},
I.WRY{r=t1,i=I.REG(C.r0)},
I.ARITH{a=I.SDIV,r=r,i=i,d=d}
]
end
fun cvti2d({i,d},reduceOpnd) = error "cvti2d"
(* There is no data path between integer and floating point registers.
So we actually have to use some memory location for temporary
This is commented out for now.
*)
(*
[I.STORE{s=I.ST,r=C.stackptrR,i=floatTmpOffset,d=reduceOpnd i,mem=stack},
I.FLOAD{l=I.LDF,r=C.stackptrR,i=floatTmpOffset,d=d,mem=stack},
I.FPop1{a=I.FiTOd,r=d,d=d}
]
*)
fun cvti2s _ = error "cvti2s"
fun cvti2q _ = error "cvti2q"
fun smul32trap _ = error "smul32trap"
fun sdiv32trap _ = error "sdiv32trap"
val overflowtrap32 = [] (* not needed *)
val overflowtrap64 = [] (* not needed *)
end
(*
* Instruction selection module for Sparc.
*)
structure SparcMLTreeComp =
Sparc(structure SparcInstr = SparcInstr
structure SparcMLTree = MLTree
structure PseudoInstrs = SparcPseudoInstrs
structure ExtensionComp = UserMLTreeExtComp
(structure I = SparcInstr
structure T = SparcMLTree
)
(* Some sparc specific parameters *)
val V9 = false
val muluCost = ref 5
val multCost = ref 3
val divuCost = ref 5
val divtCost = ref 5
val registerwindow = ref false
val useBR = ref false
)
(*---------------------------------------------------------------------------
* Okay. Finally, we can tie the front-end and back-end together.
*---------------------------------------------------------------------------*)
structure SparcBackEnd =
BackEnd
(structure Flowgraph = SparcFlowGraph
structure MLTreeComp = SparcMLTreeComp
structure InsnProps = SparcProps(SparcInstr)
structure Asm = SparcAsm
structure RA =
RISC_RA
(structure I = SparcInstr
structure Flowgraph = Flowgraph
structure Asm = Asm
structure InsnProps = InsnProps
structure Spill = RASpill(structure Asm = Asm
structure InsnProps = InsnProps)
structure Rewrite = SparcRewrite(SparcInstr)
structure SpillHeur = ChaitinSpillHeur
structure C = I.C
val sp = C.stackptrR
val spill = UserRegion.spill
structure SpillTable = SpillTable
(val initialSpillOffset = 0 (* This is probably wrong!!!!! *)
val spillAreaSz = 4000
val architecture = "Sparc"
)
open SpillTable
fun pure(I.ANNOTATION{i,...}) = pure i
| pure(I.LOAD _) = true
| pure(I.FLOAD _) = true
| pure(I.SETHI _) = true
| pure(I.SHIFT _) = true
| pure(I.FPop1 _) = true
| pure(I.FPop2 _) = true
| pure _ = false
(* I'm assuming only r0 and the stack pointer is dedicated *)
structure Int =
struct
val dedicated = [I.C.stackptrR, I.C.GPReg 0]
val avail =
C.SortedCells.return
(C.SortedCells.difference(
C.SortedCells.uniq(
C.Regs C.GP {from=0, to=31, step=1}),
C.SortedCells.uniq dedicated)
)
fun copy((rds as [_], rss as [_]), _) =
I.COPY{dst=rds, src=rss, impl=ref NONE, tmp=NONE}
| copy((rds, rss), I.COPY{tmp, ...}) =
I.COPY{dst=rds, src=rss, impl=ref NONE, tmp=tmp}
(* spill copy temp *)
fun spillCopyTmp(_,I.COPY{dst,src,tmp,impl},loc) =
I.COPY{dst=dst, src=src, impl=impl,
tmp=SOME(I.Displace{base=sp, disp=get loc})}
(* spill register *)
fun spillInstr{an,src,spilledCell,spillLoc} =
[I.STORE{s=I.ST, r=sp, i=I.IMMED(get spillLoc), d=src,
mem=spill}]
(* reload register *)
fun reloadInstr{an,dst,spilledCell,spillLoc} =
[I.LOAD{l=I.LD, r=sp, i=I.IMMED(get spillLoc), d=dst,
mem=spill}]
end
structure Float =
struct
val dedicated = []
val avail = C.Regs C.FP {from=0, to=31, step=2}
fun copy((fds as [_], fss as [_]), _) =
I.FCOPY{dst=fds, src=fss, impl=ref NONE, tmp=NONE}
| copy((fds, fss), I.FCOPY{tmp, ...}) =
I.FCOPY{dst=fds, src=fss, impl=ref NONE, tmp=tmp}
fun spillCopyTmp(_,I.FCOPY{dst,src,tmp,impl},loc) =
I.FCOPY{dst=dst, src=src, impl=impl,
tmp=SOME(I.Displace{base=sp, disp=getF loc})}
fun spillInstr(_, d,loc) =
[I.FSTORE{s=I.STDF, r=sp, i=I.IMMED(getF loc), d=d, mem=spill}]
fun reloadInstr(_,d,loc) =
[I.FLOAD{l=I.LDDF, r=sp, i=I.IMMED(getF loc), d=d, mem=spill}]
end
)
)
|