File: cfg.sig

package info (click to toggle)
mlton 20210117%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 58,464 kB
  • sloc: ansic: 27,682; sh: 4,455; asm: 3,569; lisp: 2,879; makefile: 2,347; perl: 1,169; python: 191; pascal: 68; javascript: 7
file content (318 lines) | stat: -rw-r--r-- 11,638 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
(* cfg.sig
 *
 * COPYRIGHT (c) 2001 Bell Labs, Lucent Technologies
 *
 * Control flow graph data structure used by the MLRISC IR.
 * All basic optimizations are based on this representation.
 *
 * -- Allen
 *)

signature CONTROL_FLOW_GRAPH =
sig

   structure P : PSEUDO_OPS 
   structure I : INSTRUCTIONS 

  (* used to represent frequency of execution; we use reals because some
   * static prediction methods produce such.
   *)
   type weight = real

   datatype block_kind = 
       START          (* entry node *)
     | STOP           (* exit node *)
     | NORMAL         (* normal node *)

   (*
    * NOTE 1: the instructions are listed in reverse order.
    * This choice is for a few reasons:
    *
    * i)  Clusters represent instructions in reverse order, so keeping this
    *     the same avoid having to do conversions.
    *
    * ii) This makes it easier to add instructions at the end of the block,
    *     which is more common than adding instructions to the front.
    *
    * iii) This also makes it easier to manipulate the branch/jump instruction
    *      at the end of the block.
    *
    * NOTE 2: 
    *  Alignment always appear before labels in a block.
    *)
   
   and block = 
      BLOCK of
      {  id          : int,                        (* block id *)
         kind        : block_kind,                 (* block kind *)
         freq        : weight ref,                 (* execution frequency *) 
         labels      : Label.label list ref,       (* labels on blocks *) 
         insns       : I.instruction list ref,     (* in rev order *)
	 align	     : P.pseudo_op option ref,	   (* alignment only *)
         annotations : Annotations.annotations ref (* annotations *)
      }


  (* We have the following invariant on blocks and out-edge kinds:
   *
   *	If the last instruction of the block is an unconditional jump, then
   *	there is one out edge labeled with JUMP.
   *
   *	If the last instruction of the block is a conditional jump, then
   *	there are two out edges.  The one corresponding to the jump is
   *	labeled BRANCH(true) and the other is labeled BRANCH(false).
   *
   *    If the last instruction of the block is not a jump, then there is
   *	one out edge labeled with FALLSTHRU.
   *
   *	If the block ends with a switch, then the out edges are labeled with
   *	SWITCH.
   *
   *	If the block ends with a call that has been wrapped with a FLOW_TO,
   *	then there will be one FALLSTHRU out edges and one or more FLOWSTO
   *	out edges.
   *
   *	Control-flow to outside the CFG is represented by edges to the unique
   *	STOP node.  When such edges are to labels that are defined outside
   *	the CFG, then JUMP, BRANCH, or SWITCH edges are used (as appropriate).
   *	When such edges are to unkonwn places (e.g., traps, returns, and
   *	indirect jumps), then an EXIT edge is used.  There should never be
   *	a FALLSTHRU or ENTRY edge to the STOP node.
   *)
    and edge_kind	    (* edge kinds *)
      = ENTRY			(* edge from START node *) 
      | EXIT            	(* unlabeled edge to STOP node *)
      | JUMP			(* unconditional jump *)
      | FALLSTHRU		(* falls through to next block *)  
      | BRANCH of bool		(* branch *) 
      | SWITCH of int		(* computed goto *)
      | FLOWSTO			(* FLOW_TO edge *)
   
    and edge_info = EDGE of {
	k : edge_kind,                  (* edge kind *)
	w : weight ref,                 (* edge freq *)
	a : Annotations.annotations ref (* annotations *)
      }

   type edge = edge_info Graph.edge
   type node = block Graph.node

   datatype info = 
       INFO of 
       { annotations : Annotations.annotations ref,
         firstBlock  : int ref, (* id of first block (UNUSED?) *)
         reorder     : bool ref, (* has the CFG been reordered? *)
         data        : P.pseudo_op list ref, (* reverse order of generation *)
	 decls       : P.pseudo_op list ref (* pseudo-ops before first section *)
       }

   type cfg = (block,edge_info,info) Graph.graph

  (*========================================================================
   *
   *  Various kinds of annotations on basic blocks
   *
   *========================================================================*)
   val LIVEOUT : I.C.cellset Annotations.property
                  (* escaping live out information *)
   val CHANGED : (string * (unit -> unit)) Annotations.property

  (*========================================================================
   *
   *  Methods for manipulating basic blocks
   *
   *========================================================================*)
   val newBlock          : int * weight ref -> block	(* new empty block *)
   val newNode		 : cfg -> weight -> node	(* new empty block hooked *)
							(* into the cfg *)
   val newStart          : int * weight ref -> block	(* start node *)
   val newStop           : int * weight ref -> block	(* stop node *)
   val copyBlock         : int * block -> block		(* copy a block *)
   val defineLabel       : block -> Label.label		(* define a label *)
   val insns             : block -> I.instruction list ref
   val freq              : block -> weight ref
   val edgeFreq          : edge -> weight ref
   val sumEdgeFreqs      : edge list -> weight
   val branchOf          : edge_info -> bool option

               (* emit assembly *)
   val emit       : Annotations.annotations -> block -> unit

  (*========================================================================
   *
   *  Methods for manipulating CFG
   *
   *========================================================================*)
   val cfg      : info -> cfg      (* create a new cfg *) 
   val new      : unit -> cfg      (* create a new cfg *)
   val subgraph : cfg -> cfg       (* mark as subgraph *)
   val init     : cfg -> unit      (* add start/stop nodes *)
   val changed  : cfg -> unit      (* mark cfg as changed *)  
       (* IMPORTANT note: you MUST call this function after
        * changing the topology of the CFG.  
        *)

   val annotations    : cfg -> Annotations.annotations ref
   val liveOut        : block -> I.C.cellset
   val fallsThruFrom  : cfg * Graph.node_id -> Graph.node_id option
   val fallsThruTo    : cfg * Graph.node_id -> Graph.node_id option
   val removeEdge     : cfg -> edge -> unit
   val setBranch      : cfg * Graph.node_id * bool -> I.instruction
   val edgeDir        : edge_info Graph.edge -> bool option

   val entryId : cfg -> Graph.node_id	(* the unique entry node ID *)
   val exitId : cfg -> Graph.node_id	(* the unique exit node ID *)
   val entry : cfg -> node		(* the unique entry node *)
   val exit : cfg -> node		(* the unique exit node *)

   (*=======================================================================
    *
    *  More complex methods for manipulating CFG.
    *  These methods will guarantee all CFG invariants, like frequencies,
    *  are preserved.
    * 
    *=======================================================================*)

       (* get a label from block; generate one if necessary *)
   val labelOf : cfg -> Graph.node_id -> Label.label

      (*
       *  Update the label of the branch instruction in a block
       *  to be consistent with the control flow edges.  
       *  This is an NOP if the CFG is already consistent.
       *  This is used internally after changing CFG edges, 
       *  but it could also be useful for others.
       *)
   val updateJumpLabel : cfg -> Graph.node_id -> unit

      (*
       *  Deep copy an edge info
       *)
   val copyEdge : edge_info -> edge_info

      (*
       *  Merge a control flow edge.  
       *  [See also the mustPreceed test below]
       *  Return false if merging is unsuccessful.
       *)
   val mergeEdge : cfg -> edge -> bool

      (*
       *  Eliminate the jump/insert a jump
       *     at the end of the current block if it is feasible.
       *  Return true iff it is successful.
       *)
   val eliminateJump : cfg -> Graph.node_id -> bool
   val insertJump    : cfg -> Graph.node_id -> bool

      (*
       *  Edge splitting:
       *
       *  Split n groups of control flow edges, all initially entering block j,
       *
       *     i_11 -> j,  i_12 -> j, ...         group 1
       *     i_21 -> j,  i_22 -> j, ...         group 2
       *             ....
       *     i_n1 -> j,  i_n2 -> j, ...         group n
       *  
       *  into 
       *
       *     i_11 -> k_1 
       *     i_12 -> k_1
       *        ...
       *     i_21 -> k_2
       *     i_22 -> k_2
       *        ...
       *     i_n1 -> k_n
       *     i_n2 -> k_n
       *        ...
       * 
       *  and the chain
       *      k_1 -> k_2
       *      k_2 -> k_3
       *        ...
       *      k_n -> j
       *
       *  where k_1, ..., k_n are new basic blocks.
       * 
       *  Return the new edges 
       *       k_1-> k_2, ..., k_n -> j 
       *
       *  and the new blocks 
       *       k_1, ..., k_n.
       *
       *  Each block k_1, ..., k_n can have instructions placed in them.
       *
       *  If the jump flag is true, then a jump is always placed in the 
       *  new block k_n; otherwise, we try to eliminate the jump when feasible.
       *)
   val splitEdges : cfg ->
                    { groups : (edge list * 
                                I.instruction list (* reverse order *) 
                               ) list,  
                      jump : bool
                    } -> (node * edge) list  (* k_i and k_i -> k_{i+1} *)

       (*
        *  Test if an edge is critical.  An edge i->j is critical iff 
        *  there are multiple entries into j and multiple exits out of i,
        *  i.e. it is both a merge and a split node.
        *
        *  Test if a node is a merge or split node.
        *)
    val isCriticalEdge : cfg -> edge -> bool
    val isMerge        : cfg -> Graph.node_id -> bool
    val isSplit        : cfg -> Graph.node_id -> bool


       (*
        *  Split all critical edges in the CFG.
        *  This may introduce extra jumps into the program.
        *)
    val splitAllCriticalEdges : cfg -> unit

       (*
        *  Check whether two blocks are necessary connected.
        *  Blocks i and j are connected iff i must be placed before j
        *  in all feasible layouts..
        *)
    val mustPreceed : cfg -> Graph.node_id * Graph.node_id -> bool

       (*
        *  Try to merge all edges
        *)
    val mergeAllEdges : cfg -> unit

   (*========================================================================
   *
   *  For viewing
   *
   *========================================================================*)
(*****
   val viewStyle      : cfg -> (block,edge_info,info) GraphLayout.style
   val viewLayout     : cfg -> GraphLayout.layout
   val headerText     : block -> string
   val footerText     : block -> string
   val subgraphLayout : { cfg : cfg, subgraph : cfg } -> GraphLayout.layout
*****)

  (*========================================================================
   *
   *  Miscellaneous stuff
   *
   *========================================================================*)
   val cdgEdge : edge_info -> bool (* for building a CDG *)

  (*========================================================================
   *
   *  Methods for printing CFGs
   *
   *========================================================================*)
   val kindName : block_kind -> string
   val show_block : Annotations.annotations -> block -> string 
   val show_edge  : edge_info -> string 
   val dumpBlock : (TextIO.outstream * cfg) -> node -> unit
   val dump : (TextIO.outstream * string * cfg) -> unit

end