1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
(* compute-freqs-fn.sml
*
* COPYRIGHT (c) 2002 Bell Labs, Lucent Technologies.
*
* Compute block and edge weights (frequencies) from edge probabilities.
* This algorithm uses symbolic simplification of the frequency equations.
* It handles unstructured loops.
*)
functor ComputeFreqsFn (
structure CFG : CONTROL_FLOW_GRAPH
) : COMPUTE_EXECUTION_FREQUENCIES =
struct
structure CFG = CFG
structure Prob = Probability
structure F = Format
(* flags *)
val dumpFreqs = MLRiscControl.mkFlag (
"dump-frequencies",
"when true, block and edge frequencies are output")
val dumpCFG = MLRiscControl.mkFlag (
"dump-cfg-after-frequencies",
"when true, the CFG is output after frequency computation")
fun pr s = TextIO.output(!MLRiscControl.debug_stream, s)
fun prf (fmt, items) = pr(F.format fmt items)
(* Complete edge probabilities; we use the edge weights to store this
* information.
*)
structure CompleteProbs = CompleteProbsFn (
structure CFG = CFG
fun recordProb (CFG.EDGE{w, ...}, p) = (w := p))
fun getProb (CFG.EDGE{w, ...}) = !w
(* fudge factor for infinite loops. *)
val epsilon = 1.0e~6
(***** Representation of equations *****)
type var = Graph.node_id
type term = (real * var)
type sum = {terms : term list, c : real}
datatype def = Unknown | Sum of sum
val zero = {c = 0.0, terms = []}
val one = {c = 1.0, terms = []}
(* multiply a term by a scalar *)
fun scale (coeff : real) (a, x) = (coeff*a, x)
fun compute (cfg as Graph.GRAPH methods) = let
val {in_edges, out_edges, node_info, capacity, ...} = methods
val defs = Array.array(capacity(), Unknown)
fun getVar id = Array.sub(defs, id)
fun setVar (id, s) = Array.update(defs, id, s)
(* if a node has been visited, then it has a definition *)
fun visited id = (
case Array.sub(defs, id) of Unknown => false | _ => true)
(** computations on sums **)
(* if a variable is defined, compute the normal form of its definition
* and return it. If the variable is unknown or its definition is
* already in normal form, then return NONE.
*)
fun normalizeVar v = (case getVar v
of Unknown => Unknown
| Sum s => (case normalizeSum s
of NONE => Sum s
| SOME s' => let val sum = Sum s'
in
setVar(v, sum); sum
end
(* end case *))
(* end case *))
(* normalize a sum of scaled variables; if the sum is already normalized,
* then return NONE.
*)
and normalizeSum ({terms, c} : sum) = let
fun extract ((t as (b, y))::r, ts, todo : (real * sum) list) = (
case normalizeVar y
of Unknown => extract(r, t::ts, todo)
| Sum s => extract(r, ts, (b, s)::todo)
(* end case *))
| extract ([], _, []) = NONE
| extract ([], ts, todo) =
SOME(addDefs ({terms=List.rev ts, c=c}, todo))
and addDefs (acc, []) = acc
| addDefs (acc, (coeff, sum)::r) =
addDefs (addScaled(acc, coeff, sum), r)
in
extract (terms, [], [])
end
(* compute r1 + coeff*r2, where r1 and r2 are normalized; the result
* is normalized.
*)
and addScaled (r1 : sum, coeff : real, r2 : sum) = let
fun combine ([], ts) = List.map (scale coeff) ts
| combine (ts, []) = ts
| combine (ts1 as (t1::r1), ts2 as (t2::r2)) =
if (#2 t1 < #2 t2)
then t1 :: combine(r1, ts2)
else if (#2 t1 = #2 t2)
then (#1 t1 + (coeff * #1 t2), #2 t1) :: combine (r1, r2)
else (scale coeff t2) :: combine(ts1, r2)
in
{ c = #c r1 + coeff * #c r2,
terms = combine(#terms r1, #terms r2)
}
end
(* add the term (a*x) to a normalized term; we assume that x is Undefined. *)
fun addScaledVar ({c, terms}, a : real, x) = let
fun insert [] = [(a, x)]
| insert ((t as (b, y))::r) =
if (y < x)
then t :: insert r
else if (y = x)
then (a+b, x) :: r
else (a, x) :: t :: r
in
{c = c, terms = insert terms}
end
(* given a list of incoming edges, create the rhs sum. *)
fun makeRHS preds = let
fun f ((src, _, e), acc) = let
val prob = getProb e
in
case normalizeVar src
of Unknown => addScaledVar (acc, prob, src)
| Sum sum => addScaled (acc, prob, sum)
(* end case *)
end
in
List.foldl f zero preds
end
(* Simplify the equation "x = rhs" by checking for x in rhs. We assume that
* x is undefined and that the rhs is normaized. We return the simplified
* rhs.
*)
fun simplify (x, rhs as {terms, c}) = let
fun removeX ([], _) = rhs
| removeX ((t as (a, y))::r, ts) =
if (x < y)
then rhs
else if (x = y)
then let
val s = 1.0 / Real.max(1.0 - a, epsilon)
val terms = List.revAppend(ts, r)
in
{c = s*c, terms = List.map (scale s) terms}
end
else removeX(r, t::ts)
in
removeX (terms, [])
end
(* INVARIANT: the variables corresponding to marked nodes are not Unknown
* in the rhs of any equation.
*)
fun dfs id = if (visited id)
then ()
else let
val rhs = makeRHS (in_edges id)
val rhs = simplify (id, rhs)
in
setVar (id, Sum rhs);
followEdges (out_edges id)
end
and followEdges [] = ()
| followEdges ((_, dst, _)::r) = (dfs dst; followEdges r)
val root =
case #entries methods () of
[root] => root
| _ => raise Fail "ComputeFreqsFn: root"
in
(* initialize edge probabilities *)
CompleteProbs.completeProbs cfg;
(* initialize the root *)
setVar (root, Sum one);
(* traverse the successors of the root *)
followEdges (out_edges root);
(* record block and edge frequencies in CFG *)
#forall_nodes methods (fn (id, CFG.BLOCK{freq, ...}) => (
case normalizeVar id
of Unknown => freq := 0.0
| Sum{c, terms=[]} => freq := c
| _ => raise Fail (concat[
"block ", Int.toString id, " unresolved"
])
(* end case *)));
#forall_edges methods (fn (src, _, CFG.EDGE{w, ...}) => let
val CFG.BLOCK{freq, ...} = node_info src
in
w := !w * !freq
end);
if !dumpFreqs
then let
fun bfreq (id, CFG.BLOCK{kind, freq, ...}) =
prf("\tbfreq(%s %d) = %f\n", [
F.STR(CFG.kindName kind), F.INT id, F.REAL(!freq)
])
fun freq (src, dst, info as CFG.EDGE{w, ...}) =
prf("\tfreq(%d->%d:%s) = %f\n", [
F.INT src, F.INT dst, F.STR(CFG.show_edge info),
F.REAL(!w)
])
in
pr "[ computed frequencies ]\n";
#forall_nodes methods bfreq;
#forall_edges methods freq
end
else ();
if !dumpCFG
then CFG.dump (
!MLRiscControl.debug_stream,
"after frequency computation", cfg)
else ()
end
end
|