File: hppa.mdl

package info (click to toggle)
mlton 20210117%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 58,464 kB
  • sloc: ansic: 27,682; sh: 4,455; asm: 3,569; lisp: 2,879; makefile: 2,347; perl: 1,169; python: 191; pascal: 68; javascript: 7
file content (1195 lines) | stat: -rw-r--r-- 46,253 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
(*
 *  This is the new machine description language.
 *
 *)

architecture Hppa =
struct

   superscalar

   big endian

   lowercase assembly

   (*======================================================================== 
    * On the HP, handling of delay slots is quite complicated:
    *
    *  For conditional branches:
    *  -------------------------
    *                                 Branch direction         
    *                      Forward                    Backward
    *  Nullify bit on    Nullify if branch taken   Nullify if branch not-taken
    *  Nullify bit off   Delay slot active         Delay slot active
    *
    *  For unconditional branches:
    *  ---------------------------
    *       
    *  Nullify bit on    Delay slot nullified
    *  Nullify bit off   Delay slot active       
    *========================================================================*)


   (* debug MC *)

   (*======================================================================== 
    * Storage types definitions
    *========================================================================*)
   storage
     GP = $r[32] of 32 bits where $r[0] = 0
          asm: (fn (r,_) => "%r"^Int.toString r)
   | FP = $f[32] of 64 bits where $f[0] = 0
          asm: (fn (f,_) => "%f"^Int.toString f)
   | CR = $cr[32] of 32 bits asm: (fn (cr,_) => "%cr"^Int.toString cr)
   | CC = $cc[] of 32 bits aliasing GP asm: "cc" 
   | MEM = $m[] of 8 aggregable bits asm: (fn (r,_) => "m"^Int.toString r)
   | CTRL = $ctrl[] asm: (fn (r,_) => "ctrl"^Int.toString r)

   locations
       returnPtr = $r[2]  
   and stackptrR = $r[30]
   and asmTmpR   = $r[29]
   and fasmTmp   = $f[31]
   and sar       = $cr[11]
   and r0        = $r[0]
   and f0        = $f[0]

   (*======================================================================== 
    * RTL specification.
    *========================================================================*)
   structure RTL = 
   struct
      include "Tools/basis.mdl"
      open Basis
      infix 1 ||
      infix 2 :=
      infix 5 + - 
      infix 6 << >> ~>>
      infix 6 * div mod 

      fun %% l = (l : #32 bits)

      rtl NOP{} = ()

      (* Integer loads *)
      (* On the HP, addressing modes can be scaled and/or autoincrement *)
      fun disp(r,i) = $r[r] + i
      fun fdisp(r,d) = $r[r] + d
      fun indexed(r1,r2) = $r[r1] + $r[r2]
      fun scaled(r1,r2,scale) = $r[r1] << scale + $r[r2]
      fun autoinc(r,i) = $r[r] := $r[r] + i
      fun overflowtrap{} = ()

      fun byte x = (x : #8 bits)
      fun half x = (x : #16 bits)
      fun word x = (x : #32 bits)
      fun quad x = (x : #64 bits)
      fun % x = word x

      rtl LDO{b,i,t} = $r[t] := $r[b] + %i
      rtl LDO2{i,t}  = $r[t] := i
      rtl LDIL{i,t}  = $r[t] := i << 11
      rtl MTCTL{r,t} = $cr[t] := $r[r]

      rtl LDW{r,i,t,mem}       = $r[t] := $m[disp(r,i) : mem]
      rtl LDH{r,i,t,mem}       = $r[t] := zx(half $m[disp(r,i):mem])
      rtl LDB{r,i,t,mem}       = $r[t] := zx(byte $m[disp(r,i):mem])
      rtl LDWX{r1,r2,t,mem}    = $r[t] := $m[indexed(r1,r2):mem]
      rtl LDWX_S{r1,r2,t,mem}  = $r[t] := $m[scaled(r1,r2,2):mem]
      rtl LDWX_M{r1,r2,t,mem}  = $r[t] := $m[indexed(r1,r2):mem] || autoinc(r1,1)
      rtl LDWX_SM{r1,r2,t,mem} = $r[t] := $m[scaled(r1,r2,2):mem] || autoinc(r1,4)
      rtl LDHX{r1,r2,t,mem}    = $r[t] := zx(half $m[indexed(r1,r2):mem])
      rtl LDHX_S{r1,r2,t,mem}  = $r[t] := zx(half $m[scaled(r1,r2,1):mem])
      rtl LDHX_M{r1,r2,t,mem}  = $r[t] := zx(half $m[indexed(r1,r2):mem]) || 
                                 autoinc(r1,1)
      rtl LDHX_SM{r1,r2,t,mem} = $r[t] := zx(half $m[scaled(r1,r2,1):mem]) || 
                                 autoinc(r1,2)
      rtl LDBX{r1,r2,t,mem}    = $r[t] := zx(byte $m[indexed(r1,r2):mem])
      rtl LDBX_M{r1,r2,t,mem}  = $r[t] := zx(byte $m[indexed(r1,r2):mem]) || 
                                 autoinc(r1,1)

      (* Integer stores *) 
      rtl STW{b,d,r,mem} = $m[disp(b,d):mem] := $r[r]
      rtl STH{b,d,r,mem} = $m[disp(b,d):mem] := half(zx $r[r])
      rtl STB{b,d,r,mem} = $m[disp(b,d):mem] := byte(zx $r[r])

      (* Integer opcodes *)
      rtl ADD{r1,r2,t}     = $r[t] := $r[r1] + $r[r2]
      rtl ADDL{r1,r2,t}    = $r[t] := $r[r1] + $r[r2]
      rtl ADDO{r1,r2,t}    = $r[t] := addt($r[r1], $r[r2])
      rtl SUB{r1,r2,t}     = $r[t] := $r[r1] - $r[r2]
      rtl SUBO{r1,r2,t}    = $r[t] := subt($r[r1], $r[r2])
      rtl SH1ADD{r1,r2,t}  = $r[t] := $r[r1] << 1 + $r[r2]
      rtl SH2ADD{r1,r2,t}  = $r[t] := $r[r1] << 2 + $r[r2]
      rtl SH3ADD{r1,r2,t}  = $r[t] := $r[r1] << 3 + $r[r2]
      rtl SH1ADDL{r1,r2,t} = $r[t] := $r[r1] << 1 + $r[r2]
      rtl SH2ADDL{r1,r2,t} = $r[t] := $r[r1] << 2 + $r[r2]
      rtl SH3ADDL{r1,r2,t} = $r[t] := $r[r1] << 3 + $r[r2]
      rtl SH1ADDO{r1,r2,t} = $r[t] := addt($r[r1] << 1, $r[r2])
      rtl SH2ADDO{r1,r2,t} = $r[t] := addt($r[r1] << 2, $r[r2])
      rtl SH3ADDO{r1,r2,t} = $r[t] := addt($r[r1] << 3, $r[r2])
      rtl OR{r1,r2,t}      = $r[t] := orb($r[r1], $r[r2])
      rtl AND{r1,r2,t}     = $r[t] := andb($r[r1], $r[r2])
      rtl XOR{r1,r2,t}     = $r[t] := xorb($r[r1], $r[r2])
      rtl ANDCM{r1,r2,t}   = $r[t] := andb($r[r1], notb($r[r2]))

      rtl ADDI{r,i,t}  = $r[t] := $r[r] + i
      rtl ADDIO{r,i,t} = $r[t] := addt($r[r], i)
      rtl ADDIL{r,i,t} = $r[t] := $r[r] + i
      rtl SUBI{r,i,t}  = $r[t] := $r[r] + i
      rtl SUBIO{r,i,t} = $r[t] := subt($r[r], i)

      (* Shifts *)
      rtl extru extrs zdep : #n bits * #n bits * #n bits -> #n bits
      val sar = $cr[11]
      rtl VEXTRU{r, len, t}   = $r[t] := extru($r[r], sar, len)
      rtl VEXTRS{r, len, t}   = $r[t] := extrs($r[r], sar, len)
      rtl ZVDEP{r, len, t}    = $r[t] := zdep($r[r], sar, len)
      rtl EXTRU{r, p, len, t} = $r[t] := extru($r[r], p, len)
      rtl EXTRS{r, p, len, t} = $r[t] := extrs($r[r], p, len)
      rtl ZDEP{r, p, len, t}  = $r[t] := zdep($r[r], p, len)

      val comparisons = 
           [(==),  (<),   (<=),
           (ltu), (leu), (<>),
           (>=),  (>),   (gtu), (geu)] 

      (* COMCLR/LDO composite instruction:
       *  COMCLR,cc r1, r2, t1
       *  LDO       i(b), t2
       *)
      fun COMCLR_LDO cc {r1,r2,t1,i,b,t2} =
          if cc($r[r1],$r[r2]) then $r[t1] := 0 else $r[t2] := $r[b] + i
      rtl COMCLR_LDO_ ^^ [EQ,  LT,  LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
          map COMCLR_LDO comparisons

      (* COMCLR/LDO composite instruction:
       *  COMCLR,cc r1, r2, t
       *  LDO       i(b), t
       *  This version assumes that t1 = t2.
       *)
      fun COMCLR_LDO2 cc {r1,r2,t1,i,b} =
          if cc($r[r1],$r[r2]) then $r[t1] := 0 else $r[t1] := $r[b] + i
      rtl COMCLR_LDO2_ ^^ [EQ,  LT,  LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
          map COMCLR_LDO2 comparisons

      (* COMCLR/LDO composite instruction:
       *  COMCLR,cc r1, r2, %r0
       *  LDO       i(b), t
       *  This version assumes that t1 = %r0.
       *)
      fun COMCLR_LDO3 cc {r1,r2,t2,i,b} =
          if cc($r[r1],$r[r2]) then () else $r[t2] := $r[b] + i
      rtl COMCLR_LDO3_ ^^ [EQ,  LT,  LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
          map COMCLR_LDO3 comparisons

      (* COMICLR/LDO composite instruction:
       *  COMICLR,cc i1, r2, t1
       *  LDO        i(b), t2
       *)
      fun COMICLR_LDO cc {i1,r2,t1,i2,b,t2} =
          if cc(%i1,$r[r2]) then $r[t1] := 0 else $r[t2] := $r[b] + i2
      rtl COMICLR_LDO_ ^^ [EQ,  LT,  LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
          map COMICLR_LDO comparisons

      (* COMICLR/LDO composite instruction:
       *  COMICLR,cc i1, r2, t
       *  LDO        i(b), t
       *  This version assumes that t1 = t2.
       *)
      fun COMICLR_LDO2 cc {i1,r2,t1,i2,b} =
          if cc(i1,$r[r2]) then $r[t1] := 0 else $r[t1] := $r[b] + i2
      rtl COMICLR_LDO2_ ^^ [EQ,  LT,  LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
          map COMICLR_LDO2 comparisons

      (* COMICLR/LDO composite instruction:
       *  COMICLR,cc i1, r2, %r0
       *  LDO        i(b), t
       *  This version assumes that t1 = %r0.
       *)
      fun COMICLR_LDO3 cc {i1,r2,t2,i2,b} =
          if cc(%i1,$r[r2]) then () else $r[t2] := $r[b] + i2
      rtl COMICLR_LDO3_ ^^ [EQ,  LT,  LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
          map COMICLR_LDO3 comparisons

      (* Integer branching instructions *)
      fun COMBT cmp {r1,r2,t} = 
           (if cmp($r[r1],$r[r2]) then Jmp(%%t) else ()) || $ctrl[0] := ???
      fun COMBF cmp {r1,r2,t} = 
           (if cmp($r[r1],$r[r2]) then () else Jmp(%%t)) || $ctrl[0] := ???
      fun COMIBT cmp {i,r2,t} = 
           (if cmp(%i,$r[r2]) then Jmp(%%t) else ()) || $ctrl[0] := ???
      fun COMIBF cmp {i,r2,t} = 
           (if cmp(%i,$r[r2]) then () else Jmp(%%t)) || $ctrl[0] := ???
      rtl COMBT_ ^^ [EQ,  LT,  LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
          map COMBT comparisons
      rtl COMBF_ ^^ [EQ,  LT,  LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
          map COMBF comparisons
      rtl COMIBT_ ^^ [EQ,  LT,  LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
          map COMIBT comparisons
      rtl COMIBF_ ^^ [EQ,  LT,  LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
          map COMIBF comparisons

      rtl B{lab} = Jmp(%% lab)
      rtl BV{x,b}  = Jmp($r[x] << 2 + $r[b])
           (* BB,< branch on bit set *)
      rtl BB_BSET{p,r,t} = 
           (if andb($r[r],1 << (31 - p)) <> 0 then Jmp(%%t) else ())
         || $ctrl[0] := ???
           (* BB,>= branch on bit clear *)
      rtl BB_BCLR{p,r,t} = 
           (if andb($r[r],1 << (31 - p)) == 0 then Jmp(%%t) else ())
         || $ctrl[0] := ???

      rtl BLE{d,b,defs,uses} = 
          Call($r[b] + d)     || (* call *)
          Kill $r[31]         || (* return address *)
          Kill $cellset[defs] ||
          Use  $cellset[uses] 
             
      (* Floating point loads *)
      rtl FLDDS{b,d,t,mem}    = $f[t] := $m[fdisp(b,d):mem]
      rtl FLDWS{b,d,t,mem}    = $f[t] := $m[fdisp(b,d):mem]
      rtl FLDDX{b,x,t,mem}    = $f[t] := $m[indexed(b,x):mem]
      rtl FLDDX_S{b,x,t,mem}  = $f[t] := $m[scaled(b,x,3):mem]
      rtl FLDDX_M{b,x,t,mem}  = $f[t] := $m[indexed(b,x):mem] || autoinc(b,8)
      rtl FLDDX_SM{b,x,t,mem} = $f[t] := $m[scaled(b,x,3):mem] || autoinc(b,8)
      rtl FLDWX{b,x,t,mem}    = $f[t] := $m[indexed(b,x):mem]
      rtl FLDWX_S{b,x,t,mem}  = $f[t] := $m[scaled(b,x,2):mem]
      rtl FLDWX_M{b,x,t,mem}  = $f[t] := $m[indexed(b,x):mem] || autoinc(b,4)
      rtl FLDWX_SM{b,x,t,mem} = $f[t] := $m[scaled(b,x,2):mem] || autoinc(b,4)

      (* Floating point stores *)
      rtl FSTDS{b,d,r,mem}    = $m[fdisp(b,d):mem] := $f[r] 
      rtl FSTWS{b,d,r,mem}    = $m[fdisp(b,d):mem] := $f[r]
      rtl FSTDX{b,x,r,mem}    = $m[indexed(b,x):mem] := $f[r] 
      rtl FSTDX_S{b,x,r,mem}  = $m[scaled(b,x,3):mem] := $f[r]  
      rtl FSTDX_M{b,x,r,mem}  = $m[indexed(b,x):mem] := $f[r] || autoinc(b,8)
      rtl FSTDX_SM{b,x,r,mem} = $m[scaled(b,x,3):mem] := $f[r] || autoinc(b,8)
      rtl FSTWX{b,x,r,mem}    = $m[indexed(b,x):mem] := $f[r] 
      rtl FSTWX_S{b,x,r,mem}  = $m[scaled(b,x,2):mem] := $f[r]  
      rtl FSTWX_M{b,x,r,mem}  = $m[indexed(b,x):mem] := $f[r] || autoinc(b,4)
      rtl FSTWX_SM{b,x,r,mem} = $m[scaled(b,x,2):mem] := $f[r] || autoinc(b,4)

      (* Floating point binary operators *)
      rtl FADD_S{r1,r2,t} = $f[t] := fadd($f[r1], $f[r2])
      rtl FADD_D{r1,r2,t} = $f[t] := fadd($f[r1], $f[r2])
      rtl FADD_Q{r1,r2,t} = $f[t] := fadd($f[r1], $f[r2])
      rtl FSUB_S{r1,r2,t} = $f[t] := fsub($f[r1], $f[r2])
      rtl FSUB_D{r1,r2,t} = $f[t] := fsub($f[r1], $f[r2])
      rtl FSUB_Q{r1,r2,t} = $f[t] := fsub($f[r1], $f[r2])
      rtl FMPY_S{r1,r2,t} = $f[t] := fsub($f[r1], $f[r2])
      rtl FMPY_D{r1,r2,t} = $f[t] := fmul($f[r1], $f[r2])
      rtl FMPY_Q{r1,r2,t} = $f[t] := fmul($f[r1], $f[r2])
      rtl FDIV_S{r1,r2,t} = $f[t] := fdiv($f[r1], $f[r2])
      rtl FDIV_D{r1,r2,t} = $f[t] := fdiv($f[r1], $f[r2])
      rtl FDIV_Q{r1,r2,t} = $f[t] := fdiv($f[r1], $f[r2])
      rtl XMPYU{r1,r2,t}  = $f[t] := muls($f[r1], $f[r2]) 

      (* Floating point unary operators *)
      rtl cvtf2i : #n bits -> #m bits
      rtl fsqrt  : #n bits -> #n bits
      rtl FCPY_S{f,t} = $f[t] := $f[f]
      rtl FCPY_D{f,t} = $f[t] := $f[f]
      rtl FCPY_Q{f,t} = $f[t] := $f[f]
      rtl FABS_S{f,t} = $f[t] := fabs($f[f])
      rtl FABS_D{f,t} = $f[t] := fabs($f[f]) 
      rtl FABS_Q{f,t} = $f[t] := fabs($f[f])
      rtl FSQRT_S{f,t} = $f[t] := fsqrt($f[f])
      rtl FSQRT_D{f,t} = $f[t] := fsqrt($f[f])
      rtl FSQRT_Q{f,t} = $f[t] := fsqrt($f[f])
      rtl FRND_S{f,t}  = $f[t] := cvtf2i($f[f])
      rtl FRND_D{f,t}  = $f[t] := cvtf2i($f[f])
      rtl FRND_Q{f,t}  = $f[t] := cvtf2i($f[f])

      (* Floating point/fix point conversion operators *)
      rtl fcnvff_sd fcnvff_sq fcnvff_ds fcnvff_dq
          fcnvff_qs fcnvff_qd fcnvxf_s fcnvxf_d
          fcnvxf_q fcnvfx_s fcnvfx_d fcnvfx_q
          fcnvfxt_s fcnvfxt_d fcnvfxt_q  
           : #n bits -> #n bits

      rtl FCNVFF_SD{f,t} = $f[t] := fcnvff_sd $f[f]
      rtl FCNVFF_SQ{f,t} = $f[t] := fcnvff_sq $f[f]
      rtl FCNVFF_DS{f,t} = $f[t] := fcnvff_ds $f[f]
      rtl FCNVFF_DQ{f,t} = $f[t] := fcnvff_dq $f[f]
      rtl FCNVFF_QS{f,t} = $f[t] := fcnvff_qs $f[f]
      rtl FCNVFF_QD{f,t} = $f[t] := fcnvff_qd $f[f]
         (* fixed point -> floating point *)
      rtl FCNVXF_S{f,t} = $f[t] := fcnvxf_s $f[f]
      rtl FCNVXF_D{f,t} = $f[t] := fcnvxf_d $f[f]
      rtl FCNVXF_Q{f,t} = $f[t] := fcnvxf_q $f[f]
         (* floating point -> fixed point (use current rounding mode?) *)
      rtl FCNVFX_S{f,t} = $f[t] := fcnvfx_s $f[f]
      rtl FCNVFX_D{f,t} = $f[t] := fcnvfx_d $f[f]
      rtl FCNVFX_Q{f,t} = $f[t] := fcnvfx_q $f[f]
         (* floating point -> fixed point (and truncate) *)
      rtl FCNVFXT_S{f,t} = $f[t] := fcnvfxt_s $f[f]
      rtl FCNVFXT_D{f,t} = $f[t] := fcnvfxt_d $f[f]
      rtl FCNVFXT_Q{f,t} = $f[t] := fcnvfxt_q $f[f]

      (* Floating point branch *)
      fun FBRANCH cmp {f1,f2,t} =
          if cmp($f[f1],$f[f2]) then Jmp(%%t) else ()

      (*
      rtl FBRANCH_ ^^
          [?, !<=>, ==, ?=, !<>, !?>=, <, ?<,
           !>=, !?>, <=, ?<=, !>, !?<=, >, ?>,
           !<=, !?<, >=, ?>=, !<, !?=, <>, !=,
           !?, <=>, ?<>] =
          map FBRANCH
          [|?|, |!<=>|, |==|, |?=|, |!<>|, |!?>=|, |<|, |?<|,
           |!>=|, |!?>|, |<=|, |?<=|, |!>|, |!?<=|, |>|, |?>|,
           |!<=|, |!?<|, |>=|, |?>=|, |!<|, |!?=|, |<>|, |!=|,
           |!?|, |<=>|, |?<>|]
       *)
      rtl FBRANCH_ ^^
          [?, ==, ?=, <, ?<,
           <=, ?<=, >, ?>,
           >=, ?>=, <>, 
           <=>, ?<>] =
          map FBRANCH
          [|?|, |==|, |?=|, |<|, |?<|,
           |<=|, |?<=|, |>|, |?>|,
           |>=|, |?>=|, |<>|,
           |<=>|, |?<>|]
         
   end (* RTL *)

   (*======================================================================== 
    * Instruction representation
    *========================================================================*)
   structure Instruction = 
   struct
   
      datatype fmt! = SGL 0w0 | DBL 0w1 | QUAD 0w3 
   
      datatype loadi :Op! = LDW 0x12 (* p5-28 *)
                          | LDH 0x11 (* p5-29 *)
                          | LDB 0x10 (* p5-30 *) 
   
      datatype store :Op! = STW 0x1A (* p5-31 *) 
                          | STH 0x19 (* p5-32 *)
                          | STB 0x18 (* p5-33 *) 
   
          (* addressing mode
           * when the u bit is set, the index "x" is scaled by the size 
           * when the m bit is set, the base is also auto-incremented
           *)
   
      datatype load :ext4! = 
                           (* ext4, u, m *)
        LDWX    "ldwx"    (0w2,0w0,0w0) (* p5-36 *)
      | LDWX_S  "ldwx,s"  (0w2,0w1,0w0)
      | LDWX_M  "ldwx,m"  (0w2,0w0,0w1)
      | LDWX_SM "ldwx,sm" (0w2,0w1,0w1)
      | LDHX    "ldhx"    (0w1,0w0,0w0) (* p5-37 *)
      | LDHX_S  "ldhx,s"  (0w1,0w1,0w0)
      | LDHX_M  "ldhx,m"  (0w1,0w0,0w1)
      | LDHX_SM "ldhx,sm" (0w1,0w1,0w1)
      | LDBX    "ldbx"    (0w0,0w0,0w0) (* p5-38 *)
      | LDBX_M  "ldbx,m"  (0w0,0w0,0w1) 
   
      (* All branching is done with nullification *)
      datatype cmp! = COMBT 0wx20 
                    | COMBF 0wx22
   
      datatype cmpi! = COMIBT 0wx21
                     | COMIBF 0wx23
   
      datatype arith! = 
        ADD     0x18  (* p5-83 *)
      | ADDL    0x28  (* p5-84 *)
      | ADDO    0x38  (* p5-85 *)
      | SH1ADD  0x19  (* p5-88 *)
      | SH1ADDL 0x29  (* p5-89 *)
      | SH1ADDO 0x39  (* p5-90 *)
      | SH2ADD  0x1A  (* p5-91 *)
      | SH2ADDL 0x2A  (* p5-92 *)
      | SH2ADDO 0x3A  (* p5-93 *)
      | SH3ADD  0x1B  (* p5-94 *)
      | SH3ADDL 0x2B  (* p5-95 *)
      | SH3ADDO 0x3B  (* p5-96 *)
      | SUB     0x10  (* p5-97 *)
      | SUBO    0x30  (* p5-98 *)
      | OR      0x09  (* p5-105 *)  
      | XOR     0x0A  (* p5-106 *)
      | AND     0x08  (* p5-107 *)
      | ANDCM   0x00  (* p5-108 *)
   
      datatype arithi! = 
        ADDI  (0wx2d,0w0)
      | ADDIO (0wx2d,0w1)
      | ADDIL 
      | SUBI  (0wx25,0w0) 
      | SUBIO (0wx25,0w1) 
    
      datatype shiftv! = VEXTRU | VEXTRS | ZVDEP
    
      datatype shift! = EXTRU  | EXTRS | ZDEP
    
      datatype farith! =       (* sop, fmt *)
           FADD_S  "fadd,sgl"   (0w0, 0w0) 
         | FADD_D  "fadd,dbl"   (0w0, 0w1)  
         | FADD_Q  "fadd,quad"  (0w0, 0w3)
     
         | FSUB_S  "fsub,sgl"   (0w1, 0w0)
         | FSUB_D  "fsub,dbl"   (0w1, 0w1)
         | FSUB_Q  "fsub,quad"  (0w1, 0w3)
   
         | FMPY_S  "fmpy,sgl"   (0w2, 0w0)
         | FMPY_D  "fmpy,dbl"   (0w2, 0w1)
         | FMPY_Q  "fmpy,quad"  (0w2, 0w3)
   
         | FDIV_S  "fdiv,sgl"   (0w3, 0w0)
         | FDIV_D  "fdiv,dbl"   (0w3, 0w1)
         | FDIV_Q  "fdiv,quad"  (0w3, 0w3)
   
         | XMPYU    (* ok *)
   
      datatype funary! =      (* sop, fmt *)
           (* copy *)
           FCPY_S  "fcpy,sgl"    (0w2,0w0)
         | FCPY_D  "fcpy,dbl"    (0w2,0w1)
         | FCPY_Q  "fcpy,quad"   (0w2,0w3)
   
         | FABS_S  "fabs,sgl"    (0w3,0w0)
         | FABS_D  "fabs,dbl"    (0w3,0w1)
         | FABS_Q  "fabs,quad"   (0w3,0w3)
   
         | FSQRT_S  "fsqrt,sgl"  (0w4,0w0)
         | FSQRT_D  "fsqrt,dbl"  (0w4,0w1)
         | FSQRT_Q  "fsqrt,quad" (0w4,0w3)
     
           (* round float to integer *) 
         | FRND_S  "frnd,sgl"    (0w5,0w0)
         | FRND_D  "frnd,dbl"    (0w5,0w1)
         | FRND_Q  "frnd,quad"   (0w5,0w3)
   
       (* FCNVXF --- the source is the LHS single precision floating register *)
       datatype fcnv =                   (* sop, sf, df *)
            (* floating point -> floating point *)
           FCNVFF_SD "fcnvff,sgl,dbl"    (0w0,0w0,0w1)
         | FCNVFF_SQ "fcnvff,sgl,quad"   (0w0,0w0,0w3)
         | FCNVFF_DS "fcnvff,dbl,sgl"    (0w0,0w1,0w0)
         | FCNVFF_DQ "fcnvff,dbl,quad"   (0w0,0w1,0w3)
         | FCNVFF_QS "fcnvff,quad,sgl"   (0w0,0w3,0w0)
         | FCNVFF_QD "fcnvff,quad,dbl"   (0w0,0w3,0w1)
   
            (* fixed point -> floating point *)
         | FCNVXF_S  "fcnvxf,,sgl"       (0w1,0w0,0w0)
         | FCNVXF_D  "fcnvxf,,dbl"       (0w1,0w0,0w1) 
         | FCNVXF_Q  "fcnvxf,,quad"      (0w1,0w0,0w3)
   
            (* floating point -> fixed point (use current rounding mode?) *)
         | FCNVFX_S  "fcnvfx,sgl,"       (0w2,0w0,0w0)
         | FCNVFX_D  "fcnvfx,dbl,"       (0w2,0w1,0w0)
         | FCNVFX_Q  "fcnvfx,quad,"      (0w2,0w3,0w0)
   
            (* floating point -> fixed point (and truncate) *)
         | FCNVFXT_S "fcnvfxt,sgl,"      (0w3,0w0,0w0)
         | FCNVFXT_D "fcnvfxt,dbl,"      (0w3,0w1,0w0)
         | FCNVFXT_Q "fcnvfxt,quad,"     (0w3,0w3,0w0)
   
      datatype fstore! = FSTDS 
                       | FSTWS  
                                              (* Op, uid, u, m *)
      datatype fstorex! = FSTDX    "fstdx"    (0wxb,0w0,0w0,0w0)
                        | FSTDX_S  "fstdx,s"  (0wxb,0w0,0w1,0w0)
                        | FSTDX_M  "fstdx,m"  (0wxb,0w0,0w0,0w1)
                        | FSTDX_SM "fstdx,sm" (0wxb,0w0,0w1,0w1)
                        | FSTWX    "fstwx"    (0wx9,0w1,0w0,0w0)
                        | FSTWX_S  "fstwx,s"  (0wx9,0w1,0w1,0w0)
                        | FSTWX_M  "fstwx,m"  (0wx9,0w1,0w0,0w1)
                        | FSTWX_SM "fstwx,sm" (0wx9,0w1,0w1,0w1)
   
      (* FLDWX and FLDWS -- loads the RHS of the floating register *)
                                             (* Op, uid, u, m *)
      datatype floadx! = FLDDX    "flddx"    (0wxb,0w0,0w0,0w0)
                       | FLDDX_S  "flddx,s"  (0wxb,0w0,0w1,0w0)
                       | FLDDX_M  "flddx,m"  (0wxb,0w0,0w0,0w1)
                       | FLDDX_SM "flddx,sm" (0wxb,0w0,0w1,0w1)
                       | FLDWX    "fldwx"    (0wx9,0w1,0w0,0w0)
                       | FLDWX_S  "fldwx,s"  (0wx9,0w1,0w1,0w0)
                       | FLDWX_M  "fldwx,m"  (0wx9,0w1,0w0,0w1)
                       | FLDWX_SM "fldwx,sm" (0wx9,0w1,0w1,0w1)
                                       
      datatype fload! = FLDDS   
                      | FLDWS 
   
          (* page 5-5. fields for (c,f) *)
      datatype bcond! = EQ   "="   0w1
                      | LT   "<"   0w2
                      | LE   "<="  0w3
                      | LTU  "<<"  0w4
                      | LEU  "<<=" 0w5
                      | NE   "<>"   (* unimplemented *)
                      | GE   ">="   (* ... *)
                      | GT   ">"   
                      | GTU  ">>"  
                      | GEU  ">>=" 
   
         (* table 5-7 *)
      datatype bitcond! = BSET "<"  0w2  (* bit is 1 *)
                        | BCLR ">=" 0w6  (* bit is 0 *)
   
         (* table 6-13 *)
      datatype fcond [0..31] = 
         False_ "false?" | False "false" | ? | !<=> | == | EQT "=T" | ?= | !<> 
       | !?>= | < | ?< | !>= | !?> | <= | ?<= | !> 
       | !?<= | > | ?> | !<= | !?< | >= | ?>= 
       | !< | !?= | <> | != | NET "!=T" | !? | <=> | True_ "true?" | True "true"
   
      datatype scond = ALL_ZERO | LEFTMOST_ONE | LEFTMOST_ZERO | RIGHTMOST_ONE
                     | RIGHTMOST_ZERO 
   
      datatype field_selector = F 
                              | S
                              | D
                              | R 
                              | T 
                              | P
   
      datatype ea = 
          Direct of $GP
        | FDirect of $GP
        | Displace of {base: $GP, disp: T.labexp, mem: Region.region}
   
      datatype operand =
          (* this is used only during instruction selection *)
          REG of $GP              rtl: $r[GP]
        | IMMED of int ``<int>''  rtl: int
        | LabExp of T.labexp * field_selector ``<labexp>'' rtl: labexp
        | HILabExp of T.labexp * field_selector ``<labexp>''
        | LOLabExp of T.labexp * field_selector ``<labexp>''

      datatype addressing_mode = 
        DISPea of CellsBasis.cell * operand		  (* displacement *)
      | INDXea of CellsBasis.cell * CellsBasis.cell       (* indexed *)
      | INDXSCALEDea of CellsBasis.cell * CellsBasis.cell (* indexed with scaling (b,x) *)

   end  (* Instruction *)

   (* ========================= Instruction Encoding =========================
    * 
    * HP has 41 different instruction formats.  
    * The instruction encoding is, for the lack of a better phrase, 
    * all fucked up.
    *
    * See Appendix C.
    *========================================================================*)
   instruction formats 32 bits
      (* sr=0 for load store, why? *)
     Load{Op:6,b:GP 5,t:GP 5,s:2=0,im14:signed 14}
   | Store{st:store 6,b:GP 5,r:GP 5,s:2=0,im14:signed 14}

         (* sr=3, m=0 no modify, cc=0 *)
   | IndexedLoad{Op:6,b:GP 5,x:GP 5,s:2=3,u:1,_:1=0,cc:2=0,ext4:4,m:1,t:GP 5}

   | ShortDispLoad{Op:6,b:GP 5,im5:signed 5,s:2,a:1,_:1=1,cc:2,ext4:4,m:1,t:GP 5}
   | ShoftDispShort{Op:6,b:5,r:5,s:2,a:1,_:1=1,cc:2,ext4:4,m:1,im5:signed 5}

   | LongImmed{Op:6,r:GP 5,im21:signed 21}

   | Arith{Op:6=0x2,r2:GP 5,r1:GP 5,c:3=0,f:1=0,a:arith 6,_:1=0,t:GP 5}
   | Arithi{Op:6,r:GP 5,t:GP 5,c:3=0,f:1=0,e:1,im11:signed 11}

   | Extract{Op:6,r:GP 5,t:GP 5,c:3=0,ext3:3,p:int 5,clen:int 5}

   | Deposit{Op:6,t:GP 5,r:GP 5,c:3=0,ext3:3,cp:int 5,clen:int 5}

   | Shift{Op:6,r2:GP 5,r1:GP 5,c:3=0,ext3:3,cp:5,t:GP 5}
   | ConditionalBranch{Op:6,r2:GP 5,r1:GP 5,c:bcond 3,w1:11,n:bool 1,w:1}
   | ConditionalBranchi{Op:6,r2:GP 5,im5:5,c:bcond 3,w1:11,n:bool 1,w:1}
   | BranchExternal{Op:6,b:GP 5,w1:5,s:3,w2:11,n:bool 1,w:1}
   | BranchAndLink{Op:6,t:GP 5,w1:5,ext3:3,w2:11,n:bool 1,w:1}
   | BranchVectored{Op:6,t:GP 5,x:GP 5,ext3:3,_:11=0,n:bool 1,w:1=0}
   | Break{Op:6,im13:signed 13,ext8:8,im5:signed 5}
   | BranchOnBit{Op:6=0x31,p:int 5,r:GP 5,c:3,w1:11,n:bool 1,w:1}

   | MoveToControlReg{Op:6,t:CR 5,r:GP 5,rv:3,ext8:8,_:5=0}
   | CompareClear{Op:6=0wx2,r2:GP 5,r1:GP 5,c:3,f:1,ext:6,_:1=0,t:GP 5}  
   | CompareImmClear{Op:6=0wx24,r:GP 5,t:GP 5,c:3,f:1,_:1=0,im11:signed 11}

     (* floating point loads and stores *)
   | CoProcShort{Op:6,b:GP 5,im5:5,s:2,a:1,_:1=1,cc:2=0,
                 ls:1,uid:3,m:1=0,rt:FP 5}
   | CoProcIndexed{Op:6,b:GP 5,x:GP 5,s:2,u:1,_:1=0,cc:2=0,
                   ls:1,uid:3,m:1,rt:FP 5}

        (* OR r0,r0,r0 *)
   | NOP{Op:6=0x2,r2:5=0,r1:5=0,c:3=0,f:1=0,a:6=0x9,_:1=0,t:5=0}

   | Nop{nop} = if nop then NOP{} else ()

     (* floating point ops *)
   | FloatOp0Maj0C{Op:6=0x0C,r:FP 5,_:5=0,sop:3,fmt:2,_:6=0,t:FP 5}
   | FloatOp1Maj0C{Op:6=0x0C,r:FP 5,_:4=0,sop:2,df:2,sf:2,_:2=1,_:4=0,t:FP 5}
   | FloatOp2Maj0C{Op:6=0x0C,r1:FP 5,r2:FP 5,sop:3,fmt:2,_:2=2,_:3=0,n:1,c:5}
   | FloatOp3Maj0C{Op:6=0x0C,r1:FP 5,r2:FP 5,sop:3,fmt:2,_:2=3,_:3=0,n:1,t:FP 5}

   | FloatOp0Maj0E{Op:6=0x0E,r:FP 5,_:5=0,sop:3,fmt:2,_:3=0,r2:1,t2:1,_:1=0,
                   t:FP 5}
   | FloatOp1Maj0E{Op:6=0x0E,r:FP 5,_:4=0,sop:2,df:2,sf:2,_:2=1,_:1=0,r2:1,t2:1,
                   _:1=0,t:FP 5}
   | FloatOp2Maj0E{Op:6=0x0E,r1:FP 5,r2:FP 5,sop:3,r22:1,f:1,_:2=2,_:1=0,
                   r11:1,_:2=0,c:5}
   | FloatOp3Maj0E{Op:6=0x0E,r1:FP 5,r2:FP 5,sop:3,r22:1,f:1,_:2=3,_:1=0,
                   r11:1,_:2=0,t:FP 5}
   | FloatMultiOp{Op:6=0x0E,rm1:5,rm2:5,ta:5,ra:5,f:1,tm:5}

     (* page 6-62 *)
   | FTest{Op:6=0x0C,r1:5=0,r2:5=0,sop:3=1,_:2=0,_:2=2,_:3=0,_:1=1,c:5=0}

   structure Assembly = 
   struct
      fun emit_n false = () | emit_n true = emit ",n"
      fun emit_nop false = () | emit_nop true = emit "\n\tnop"
   end

   (*======================================================================== 
    * Various utility functions for emitting assembly code
    *========================================================================*) 
   structure MC =
   struct
      val zeroR = Option.valOf(C.zeroReg CellsBasis.GP)
      fun opn opnd = 
      let fun hi21 n  = (itow n) >> 0w11
          fun hi21X n = (itow n) ~>> 0w11
          fun lo11 n  = (itow n) && 0wx7ff 
          (* BUG: should respect the field selectors instead of ignoring them *)
      in  case opnd of
            I.HILabExp(lexp, _) => hi21X(MLTreeEval.valueOf lexp)
          | I.LOLabExp(lexp, _) => lo11(MLTreeEval.valueOf lexp)
          | I.LabExp(lexp, _)   => itow(MLTreeEval.valueOf lexp)
          | I.IMMED i           => itow i 
          | I.REG _             => error "REG"
      end

     (* compute displacement address *)
     fun disp lab = itow((Label.addrOf lab) - !loc - 8) ~>> 0w2
     fun low_sign_ext_im14 n = ((n &&0wx1fff) << 0w1)||((n && 0wx2000) >> 0w13)
     fun low_sign_ext_im11 n = ((n && 0wx3ff) << 0w1)||((n &&  0wx400) >> 0w10)
     fun low_sign_ext_im5 n  = ((n &&   0wxf) << 0w1)||((n &&   0wx10) >>  0w4)

     fun assemble_3 n = 
     let val w1 = (n && 0w4) >> 0w2
         val w2 = (n && 0w3) << 0w1
     in  w1 || w2 end 

     fun assemble_12 n = 
     let val w = (n && 0wx800) >> 0w11
         val w1 = ((n && 0wx3ff) << 0w1) || ((n && 0wx400) >> 0w10)
     in  (w1, w) end

     fun assemble_17 n = 
     let val w = (n && 0wx10000) >> 0w16
         val w1 = (n && 0wxf800) >> 0w11
         val w2 =  (((n && 0wx3ff) << 0w1) || ((n && 0wx400) >> 0w10))
     in (w, w1, w2) end

     fun assemble_21 disp = 
     let val w =
          (((disp && 0wx000003) << 0w12) ||
          ((disp && 0wx00007c) << 0w14) ||
          ((disp && 0wx000180) << 0w7) ||
          ((disp && 0wx0ffe00) >> 0w8) ||
          ((disp && 0wx100000) >> 0w20))
     in  w end 

     fun branchLink(Op,t,lab,ext3,n) =
     let val (w,w1,w2) = assemble_17(disp lab)
     in  BranchAndLink{Op,t,w1,w2,w,ext3,n} end

     fun bcond(cmp,bc,r1,r2,n,t,nop) =
     let val (w1,w) = assemble_12(disp t)
     in  ConditionalBranch{Op=emit_cmp cmp,c=bc,r1,r2,n,w,w1}; Nop{nop} end

     fun bcondi(cmpi,bc,i,r2,n,t,nop) = 
     let val (w1,w) = assemble_12(disp t)
     in  ConditionalBranchi{Op=emit_cmpi cmpi,c=bc,
                            im5=low_sign_ext_im5(itow i),r2,n,w,w1}; Nop{nop}
     end
     fun branchOnBit(bc,r,p,n,t,nop) = 
     let val (w1,w) = assemble_12(disp t)
     in  BranchOnBit{p=p,r=r,c=emit_bitcond bc,w1=w1,n=n,w=w}; Nop{nop} 
     end

     fun cmpCond cond =
        case cond of
          I.EQ   => (0w1,0w0)
        | I.LT   => (0w2,0w0)
        | I.LE   => (0w3,0w0)
        | I.LTU  => (0w4,0w0)
        | I.LEU  => (0w5,0w0)
        | I.NE   => (0w1,0w1)
        | I.GE   => (0w2,0w1)
        | I.GT   => (0w3,0w1)
        | I.GTU  => (0w4,0w1)
        | I.GEU  => (0w5,0w1)

   end (* MC *)

   (*======================================================================== 
    * Reservation tables and pipeline definitions for scheduling.
    * All information are (uneducated) guesses.
    * But see http://www.cpus.hp.com/techreports/parisc.shtml 
    *========================================================================*) 

   (* 
    * Function units.
    *
    *)
   resource mem    (* load/store *)
        and alu    (* integer alu *) 
        and falu   (* floating point alu *)
        and fmul   (* floating point multiplier *)
        and fdiv   (* floating point divider (also sqrt on the HP) *)
        and branch (* branch unit *)

   (* 
    *  Different implementations of cpus. 
    *                   Max
    *  Name   Aliases Issues    Function units 
    *)
   cpu PA_700            2 [1 mem, 1 alu, 1 falu, 1 fmul, 1 branch]
   and PA_7100           2 [1 mem, 1 alu, 2 fmul, 2 falu, 1 fdiv, 1 branch]
   and PA_7100LC         2 [1 mem, 1 alu, 2 fmul, 2 falu, 1 fdiv, 1 branch]
   and PA_7200           2 [1 mem, 1 alu, 2 fmul, 2 falu, 1 fdiv, 1 branch]
   and PA_8000           4 [2 mem, 2 alu, 2 fmul, 2 falu, 2 fdiv, 1 branch]
   and PA_8200 "default" 4 [2 mem, 2 alu, 2 fmul, 2 falu, 2 fdiv, 1 branch]
   and PA_8500           4 [2 mem, 2 alu, 2 fmul, 2 falu, 2 fdiv, 1 branch]

   (* Definitions of various reservation tables *) 
   pipeline NOP _         = [] 
        and ARITH (PA_700 | PA_7100 | PA_7100LC | PA_7200) = [alu]
          | ARITH (PA_8000 | PA_8200 | PA_8500) = [alu]
        and LOAD _        = [mem]
        and STORE _       = [mem] 
        and FARITH (PA_700 | PA_7100 | PA_7100LC | PA_7200) = [falu,falu]
          | FARITH (PA_8000 | PA_8200 | PA_8500) = [falu]
        and FMPY (PA_700 | PA_7100 | PA_7100LC | PA_7200) = [fmul,fmul]
          | FMPY (PA_8000 | PA_8200 | PA_8500) = [fmul]
            (* division is apparently non-pipelined, so we have to
             * hog up the pipeline for a bunch of cycles
             *)
        and FDIV PA_700   = [fmul*10] (* multiplier does division too *)
          | FDIV (PA_7100 | PA_7100LC | PA_7200) = [fdiv*15]
          | FDIV (PA_8000 | PA_8200 | PA_8500) = [fdiv,fdiv*14]
        and BRANCH (PA_700 | PA_7100 | PA_7100LC | PA_7200) = [branch,branch]
          | BRANCH (PA_8000 | PA_8200 | PA_8500) = [branch,branch]

   (* 
    * Latencies 
    * Note: the number refers the *additional* delay, so 0 means that
    * the result computed in cycle t is available in cycle t+1. 
    *) 
   latency  NOP _           = 0
       and  ARITH _         = 0
       and  LOAD  _         = 1
       and  FARITH PA_700   = 2
         |  FARITH _        = 1
       and  FMPY  PA_700    = 2
         |  FMPY  PA_7100   = 2
         |  FMPY  _         = 2
       and  FDIV  PA_700    = 9
         |  FDIV  PA_7100   = 14
         |  FDIV  _         = 14
       and  FSQRT PA_700    = 17
         |  FSQRT PA_7100   = 14
         |  FSQRT _         = 14

   (*======================================================================== 
    * Instruction definitions 
    *========================================================================*) 
   (* FLDWS, FLDWX = define the R half of the FP register.
    * FSTWS = uses the R half of the FP register.
    *)
   instruction 
      LOADI of {li:loadi, r: $GP, i:operand, t: $GP, mem:Region.region}
        asm: ``<li>\t<i>(<r>), <t><mem>'' 
        mc:  Load{Op=emit_loadi li,b=r,im14=low_sign_ext_im14(opn i),t=t}
        rtl: ``<li>''
	latency:  LOAD
	pipeline: LOAD

    | LOAD of {l:load, r1: $GP, r2: $GP, t: $GP, mem:Region.region}
        asm: ``<l>\t<r2>(<r1>), <t><mem>''
        mc:  let val (ext4,u,m) = emit_load l
             in  IndexedLoad{Op=0w3,b=r1,x=r2,ext4,u,t,m} 
             end
        rtl: ``<l>''
	latency:  LOAD
	pipeline: LOAD

    | STORE of {st:store,b: $GP,d:operand,r: $GP, mem:Region.region}
        asm: ``<st>\t<r>, <d>(<b>)<mem>''
        mc:  Store{st,b=b,im14=low_sign_ext_im14(opn d),r=r}
        rtl: ``<st>''
	pipeline: STORE

    | ARITH of {a:arith,r1: $GP, r2: $GP, t: $GP}
        asm: ``<a>\t<r1>, <r2>, <t>''
        mc:  Arith{a,r1,r2,t}
        rtl: ``<a>''
	latency:  ARITH
	pipeline: ARITH

    | ARITHI  of {ai:arithi, i:operand, r: $GP, t: $GP}
        asm: ``<ai>\t<i>, <r>, <t>''
        mc:  (case ai of
                I.ADDIL => LongImmed{Op=0wxa,r=r,im21=assemble_21(opn i)}
              | _ => let val (Op,e) = emit_arithi ai
                     in  Arithi{Op,r,t,im11=low_sign_ext_im11(opn i),e}
                     end
             )
        rtl: ``<ai>''
	latency:  ARITH
	pipeline: ARITH

      (* This is a composite instruction. 
       * The effect is the same as t <- if r1 cc r2 then i+b else 0
       *   if t1 = t2
       * COMCLR,cc r1, r2, t1
       * LDO       i(b),  t2 
       *)
    | COMCLR_LDO of {cc:bcond, r1: $GP, r2: $GP, t1 : $GP, 
                     i:int, b: $GP, t2: $GP}
        asm: (``comclr,<cc>\t<r1>, <r2>, <t1>\n\t'';
              ``ldo\t<i>(<b>), <t2>''
             )
        mc: let val (c,f) = cmpCond cc
            in  CompareClear{r1,r2,t=t1,c,f,ext=0wx22};
                Load{Op=0wx0d,b,im14=low_sign_ext_im14(itow i),t=t2}
            end
	rtl: if t1 = t2 then ``COMCLR_LDO2_<cc>''
	     else if t1 = 0 then ``COMCLR_LDO3_<cc>''
             else ``<COMCLR_LDO_<cc>''
	latency:  ARITH
	pipeline: ARITH

    | COMICLR_LDO of {cc:bcond, i1:operand, r2: $GP, t1 : $GP, 
                      i2:int, b: $GP, t2: $GP}
        asm: (``comiclr,<cc>\t<r2>, <i1>, <t1>\n\t'';
              ``ldo\t<i2>(<b>), <t2>''
             )
        mc: let val (c,f) = cmpCond cc
            in  CompareImmClear{r=r2,t=t1,c,f,im11=low_sign_ext_im11(opn i1)};
                Load{Op=0wx0d,b,im14=low_sign_ext_im14(itow i2),t=t2}
            end
	rtl: if t1 = t2 then ``COMICLR_LDO2_<cc>''
	     else if t1 = 0 then ``COMICLR_LDO3_<cc>''
             else ``COMICLR_LDO_<cc>''
	latency:  ARITH
	pipeline: ARITH

    | SHIFTV  of {sv:shiftv, r: $GP, len:int, t: $GP}
        asm: ``<sv>\t<r>, <len>, <t>''
        mc:  (case sv of
               I.VEXTRU => Extract{Op=0wx34,r,t,ext3=0w4,p=0,clen=32-len}
             | I.VEXTRS => Extract{Op=0wx34,r,t,ext3=0w5,p=0,clen=32-len}
             | I.ZVDEP  => Deposit{Op=0wx35,t,r,ext3=0w0,cp=0,clen=32-len}
             )
        rtl: ``<sv>''
	latency:  ARITH
	pipeline: ARITH

    | SHIFT   of {s:shift, r: $GP,  p:int,  len:int, t: $GP}
        asm: ``<s>\t<r>, <p>, <len>, <t>''
        mc:  (case s of
               I.EXTRU => Extract{Op=0wx34,r,t,ext3=0w6,p=p,clen=32-len}
             | I.EXTRS => Extract{Op=0wx34,r,t,ext3=0w7,p=p,clen=32-len}
             | I.ZDEP  => Deposit{Op=0wx35,t,r,ext3=0w2,cp=31-p,clen=32-len}
             )
        rtl: ``<s>''
	latency:  ARITH
	pipeline: ARITH

    | BCOND   of {cmp: cmp, bc:bcond,r1: $GP,r2: $GP,n:bool,nop:bool,
                  t:Label.label, f:Label.label}
        asm: ``<cmp>,<bc><n>\t<r1>, <r2>, <t><nop>''
        mc:  bcond(cmp,bc,r1,r2,n,t,nop)
	rtl: ``<cmp>_<bc>''
        padding: nop = true
        nullified: n = true
        delayslot: not nullified orelse
                   (branching forwards andalso taken orelse
                    branching backwards andalso not taken
                   )
        delayslot candidate: false
	pipeline: BRANCH

    | BCONDI  of {cmpi: cmpi, bc:bcond, i:int,  r2: $GP, n:bool, nop:bool,
                  t:Label.label, f:Label.label}
        asm: ``<cmpi>,<bc><n>\t<i>, <r2>, <t><nop>''
        mc: bcondi(cmpi,bc,i,r2,n,t,nop)
	rtl: ``<cmpi>_<bc>''
        padding: nop = true
        nullified:  n = true
        delayslot: not nullified orelse
                   (branching forwards andalso taken orelse
                    branching backwards andalso not taken
                   )
        delayslot candidate: false
	pipeline: BRANCH

         (* bc must be either < or >= *)
    | BB of {bc:bitcond,r: $GP, p:int, n:bool, nop:bool,
             t:Label.label, f:Label.label}
        asm: ``bb,<bc><n>\t<r>, <p>, <t><nop>''
        mc: branchOnBit(bc,r,p,n,t,nop)
	rtl: ``BB_<bc>''
        padding: nop = true
        nullified: n = true
        delayslot: not nullified orelse
                   (branching forwards andalso taken orelse
                    branching backwards andalso not taken
                   )
        delayslot candidate: false
	pipeline: BRANCH

    | B of {lab:Label.label, n:bool}
        asm: ``b<n>\t<lab>''
        mc:  branchLink(0wx3a,zeroR,lab,0w0,n)
	rtl: ``B''
        nullified: n = true
        delayslot candidate: false
	pipeline: BRANCH

      (* 
       * This composite instruction is generated only during span dependence
       * resolution when trying to resolve conditional branches.
       * The expanded sequence is 12 bytes long.
       * Basically, the branch and link instruction jumps directly to 
       * the next instruction at tmpLab, and put the address of tmpLab + 4
       * into register tmp. The offset computation in addil computes the 
       * actual address of lab.  
       *)
    | LONGJUMP of {lab:Label.label, n:bool, tmp: $GP, tmpLab:Label.label}  
        asm: (``bl,n\t<tmpLab>, <tmp>\n'';
              ``<tmpLab>:\n\t'';
              ``addil <lab>-(<tmpLab>+4), <tmp>\n\t'';
              ``bv<n>\t%r0(<tmp>)''
             ) 
        mc:  let val offset = 
                    T.SUB(32,T.LABEL lab, 
                        T.ADD(32,T.LABEL tmpLab, T.LI(IntInf.fromInt 4)))
             in (* set the location of tmpLab *)
                 Label.setAddr(tmpLab, !loc+4); 
                 branchLink(0wx3a,tmp,tmpLab,0w0,n);
                 LongImmed{Op=0wxa,r=tmp,
                           im21=assemble_21(itow(MLTreeEval.valueOf offset))};
                 BranchVectored{Op=0wx3a,t=tmp,x=zeroR,ext3=0w6,n=n}
             end
	rtl: ``B''
        nullified: n = true
        delayslot candidate: false
	pipeline: BRANCH

    | BE of {b: $GP, d:operand, sr:int, n:bool, labs: Label.label list}
        asm: ``be<n>\t<d>(<sr>,<b>)''
        mc:  let val (w,w1,w2) = assemble_17(opn d)
             in  BranchExternal{Op=0wx38,b=b,w1=w1,s=assemble_3(itow sr),
                                w2=w2,n=n,w=w}
                end
        nullified: n = true
        delayslot candidate: false
	pipeline: BRANCH

    | BV of {x: $GP, b: $GP, labs: Label.label list, n:bool}
        asm: ``bv<n>\t<x>(<b>)''
        mc: BranchVectored{Op=0wx3a,t=b,x=x,ext3=0w6,n=n}
	rtl: ``BV''
        nullified: n = true
        delayslot candidate: false
	pipeline: BRANCH

    | BLR of {x: $GP, t: $GP, labs: Label.label list, n:bool}
        asm: ``blr<n>\t<x>(<t>)''
        mc:  BranchVectored{Op=0wx3a,t=t,x=x,ext3=0w2,n=n}
        nullified: n = true
        delayslot candidate: false
	pipeline: BRANCH

    | BL of {lab:Label.label ,t: $GP, defs: $cellset, uses: $cellset, 
             cutsTo: Label.label list, mem:Region.region, n:bool}
        asm: ``bl<n>\t<lab>, <t><mem><emit_defs(defs)><emit_uses(uses)><emit_cutsTo cutsTo>''
        mc:  branchLink(0wx3a,t,lab,0w0,n)
        nullified: n = true
        delayslot candidate: false
	pipeline: BRANCH

    | BLE of {d:operand,b: $GP, sr:int, t: $GP,
              defs: $cellset, uses: $cellset, cutsTo: Label.label list,
              mem:Region.region}
        asm: ``ble\t<d>(<emit_int sr>,<b>)<mem><
               emit_defs(defs)><emit_uses(uses)><emit_cutsTo cutsTo>''
        mc:  (case (d,CellsBasis.registerId t) of
               (I.IMMED 0,31) =>
                 BranchExternal{Op=0wx39,b=b,w1=0w0,s=assemble_3(itow sr),
                                w2=0w0,n=true,w=0w0}
             | _ => error "BLE: not implemented"
             )
	rtl: ``BLE''
        nullified: false
        delayslot candidate: false
	pipeline: BRANCH

      (* BLE implicitly defines %r31. The destination register t 
       * is assigned in the delay slot.
       *)
    | LDIL of {i:operand,  t: $GP}
        asm: ``ldil\t<i>, <t>''
        mc:  LongImmed{Op=0wx8,r=t,im21=assemble_21(opn i)}
	rtl: ``LDIL''
	latency:  ARITH
	pipeline: ARITH

    | LDO of {i:operand,  b: $GP, t: $GP}
        asm: ``ldo\t<i>(<b>), <t>''
        mc:  Load{Op=0wx0d,b,im14=low_sign_ext_im14(opn i),t=t}
	rtl: if b = 0 then ``LDO2'' else ``LDO''
	latency:  ARITH
	pipeline: ARITH

    | MTCTL of {r: $GP, t: $CR}
        asm: ``mtctl\t<r>, <t>''
        mc:  MoveToControlReg{Op=0w0,t,r,rv=0w0,ext8=0wxc2}
	rtl: ``MTCTL''
	latency:  ARITH
	pipeline: ARITH

    | FSTORE  of {fst:fstore,b: $GP, d:int, r: $FP,mem:Region.region}
        asm: ``<fst>\t<r>, <d>(<b>)<mem>''
        mc: (case fst of
              I.FSTDS => CoProcShort{Op=0wxb,b,im5=low_sign_ext_im5(itow d),
                                     s=0w0,a=0w0,ls=0w1,uid=0w0,rt=r}
            | I.FSTWS => CoProcShort{Op=0wx9,b,im5=low_sign_ext_im5(itow d),
                                     s=0w0,a=0w0,ls=0w1,uid=0w1,rt=r}
            )
        rtl: ``<fst>''
	pipeline: STORE

    | FSTOREX of {fstx:fstorex, b: $GP, x: $GP,r: $FP,mem:Region.region}
        asm: ``<fstx>\t<r>, <x>(<b>)<mem>''
        mc:  let val (Op,uid,u,m) = emit_fstorex fstx   
             in  CoProcIndexed{Op=Op,b,x,s=0w0,u,m,ls=0w1,uid=uid,rt=r}
             end
        rtl: ``<fstx>''
	pipeline: STORE

    | FLOAD   of {fl:fload, b: $GP, d:int, t: $FP, mem:Region.region}
        asm: ``<fl>\t<d>(<b>), <t><mem>''
        mc:  (case fl of
               I.FLDDS => CoProcShort{Op=0wxb,b,im5=low_sign_ext_im5(itow d),
                                      s=0w0,a=0w0,ls=0w0,uid=0w0,rt=t}
             | I.FLDWS => CoProcShort{Op=0wx9,b,im5=low_sign_ext_im5(itow d),
                                      s=0w0,a=0w0,ls=0w0,uid=0w1,rt=t}
             )
        rtl: ``<fl>''
	latency:  LOAD
	pipeline: LOAD

    | FLOADX of {flx:floadx, b: $GP, x: $GP, t: $FP, mem:Region.region}
        asm: ``<flx>\t<x>(<b>), <t><mem>''
        mc:  let val (Op,uid,u,m) = emit_floadx flx
             in  CoProcIndexed{Op=Op,b,x,s=0w0,u,m,ls=0w0,uid=uid,rt=t}
             end
        rtl: ``<flx>''
	latency:  LOAD
	pipeline: LOAD

    | FARITH of {fa:farith,r1: $FP, r2: $FP,t: $FP}
        asm: ``<fa>\t<r1>, <r2>, <t>''
        mc:  (case fa of
               I.XMPYU => FloatOp3Maj0E{sop=0w2,f=0w1,r1,r2,t,r11=0w0,r22=0w0}
             | _ => let val (sop,fmt) = emit_farith fa 
                    in  FloatOp3Maj0C{sop,r1,r2,t,n=0w0,fmt} end
             )
	rtl: ``<fa>''
        latency:  (case fa of
                     (I.FMPY_S | I.FMPY_D | I.FMPY_Q) => FMPY
                   | (I.FDIV_S | I.FDIV_D | I.FDIV_Q) => FDIV
                   | _ => FARITH
                  )
	pipeline: (case fa of
                     (I.FMPY_S | I.FMPY_D | I.FMPY_Q) => FMPY
                   | (I.FDIV_S | I.FDIV_D | I.FDIV_Q) => FDIV
                   | _ => FARITH
                  )

    | FUNARY of {fu:funary,f: $FP, t: $FP}
        asm: ``<fu>\t<f>, <t>''
        mc:  let val (sop,fmt) = emit_funary fu
             in  FloatOp0Maj0C{r=f,t=t,sop=sop,fmt=fmt}
             end
	rtl: ``<fu>''
	latency:  FARITH
	pipeline: FARITH

    | FCNV of {fcnv:fcnv, f: $FP, t: $FP}
        asm: ``<fcnv>\t<f>, <t>''
        mc:  let val (sop,sf,df) = emit_fcnv fcnv
             in  FloatOp1Maj0E{r=f,t=t,sop=sop,sf=sf,df=df,r2=0w1,t2=0w0}
             end
	rtl: ``<fcnv>'' 
	latency:  FARITH
	pipeline: FARITH

 (* The following three instructions have been replaced by FBRANCH.
    This make life much easier for instruction schedulers.
    | FCMP    of fcond * int * int
    | FTEST
    | FBCC    of {t:Label.label, f:Label.label, n:bool}
 *)
    | FBRANCH of {cc:fcond, fmt:fmt, f1: $FP, f2: $FP,
                  t:Label.label, f:Label.label, n:bool, long:bool}
        asm: (``fcmp,<fmt>,<cc>\t<f1>, <f2>\n\t'';
              ``ftest\n\t'';
              ``b<n>\t<t>''
             )
         (* fmt = 1 means double precision; will have to extend later *)
        mc: (FloatOp2Maj0C{r1=f1,r2=f2,sop=0w0,fmt=emit_fmt fmt,
                       n=0w0,c=emit_fcond cc};
             FTest{};
             branchLink(0wx3a,zeroR,t,0w0,n) (* B,n t *)
            )
	rtl: ``FBRANCH_<cc>''
        nullified: n
        delayslot candidate: false
	pipeline: BRANCH

    | BREAK   of {code1:int, code2:int}
        asm: ``break\t<code1>, <code2>''
        delayslot candidate: false

    | NOP
        asm: ``nop''
        mc: NOP{}
	rtl: ``NOP''
	pipeline: NOP

    | SOURCE of {}
	asm: ``source''
	mc:  ()

    | SINK of {}
	asm: ``sink''
        mc:  ()

    | PHI of {}
        asm: ``phi''
        mc:  ()

   structure SSA =
   struct

      fun operand(ty,I.REG r) = T.REG(ty, r)
        | operand(ty,I.IMMED i) = T.LI(IntInf.fromInt i)
        (*| operand(ty,I.LabExp(le,_)) = T.LABEL le*)
        | operand _ = error "operand"

   end

end