1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
|
(*
* This is the new machine description language.
*
*)
architecture Hppa =
struct
superscalar
big endian
lowercase assembly
(*========================================================================
* On the HP, handling of delay slots is quite complicated:
*
* For conditional branches:
* -------------------------
* Branch direction
* Forward Backward
* Nullify bit on Nullify if branch taken Nullify if branch not-taken
* Nullify bit off Delay slot active Delay slot active
*
* For unconditional branches:
* ---------------------------
*
* Nullify bit on Delay slot nullified
* Nullify bit off Delay slot active
*========================================================================*)
(* debug MC *)
(*========================================================================
* Storage types definitions
*========================================================================*)
storage
GP = $r[32] of 32 bits where $r[0] = 0
asm: (fn (r,_) => "%r"^Int.toString r)
| FP = $f[32] of 64 bits where $f[0] = 0
asm: (fn (f,_) => "%f"^Int.toString f)
| CR = $cr[32] of 32 bits asm: (fn (cr,_) => "%cr"^Int.toString cr)
| CC = $cc[] of 32 bits aliasing GP asm: "cc"
| MEM = $m[] of 8 aggregable bits asm: (fn (r,_) => "m"^Int.toString r)
| CTRL = $ctrl[] asm: (fn (r,_) => "ctrl"^Int.toString r)
locations
returnPtr = $r[2]
and stackptrR = $r[30]
and asmTmpR = $r[29]
and fasmTmp = $f[31]
and sar = $cr[11]
and r0 = $r[0]
and f0 = $f[0]
(*========================================================================
* RTL specification.
*========================================================================*)
structure RTL =
struct
include "Tools/basis.mdl"
open Basis
infix 1 ||
infix 2 :=
infix 5 + -
infix 6 << >> ~>>
infix 6 * div mod
fun %% l = (l : #32 bits)
rtl NOP{} = ()
(* Integer loads *)
(* On the HP, addressing modes can be scaled and/or autoincrement *)
fun disp(r,i) = $r[r] + i
fun fdisp(r,d) = $r[r] + d
fun indexed(r1,r2) = $r[r1] + $r[r2]
fun scaled(r1,r2,scale) = $r[r1] << scale + $r[r2]
fun autoinc(r,i) = $r[r] := $r[r] + i
fun overflowtrap{} = ()
fun byte x = (x : #8 bits)
fun half x = (x : #16 bits)
fun word x = (x : #32 bits)
fun quad x = (x : #64 bits)
fun % x = word x
rtl LDO{b,i,t} = $r[t] := $r[b] + %i
rtl LDO2{i,t} = $r[t] := i
rtl LDIL{i,t} = $r[t] := i << 11
rtl MTCTL{r,t} = $cr[t] := $r[r]
rtl LDW{r,i,t,mem} = $r[t] := $m[disp(r,i) : mem]
rtl LDH{r,i,t,mem} = $r[t] := zx(half $m[disp(r,i):mem])
rtl LDB{r,i,t,mem} = $r[t] := zx(byte $m[disp(r,i):mem])
rtl LDWX{r1,r2,t,mem} = $r[t] := $m[indexed(r1,r2):mem]
rtl LDWX_S{r1,r2,t,mem} = $r[t] := $m[scaled(r1,r2,2):mem]
rtl LDWX_M{r1,r2,t,mem} = $r[t] := $m[indexed(r1,r2):mem] || autoinc(r1,1)
rtl LDWX_SM{r1,r2,t,mem} = $r[t] := $m[scaled(r1,r2,2):mem] || autoinc(r1,4)
rtl LDHX{r1,r2,t,mem} = $r[t] := zx(half $m[indexed(r1,r2):mem])
rtl LDHX_S{r1,r2,t,mem} = $r[t] := zx(half $m[scaled(r1,r2,1):mem])
rtl LDHX_M{r1,r2,t,mem} = $r[t] := zx(half $m[indexed(r1,r2):mem]) ||
autoinc(r1,1)
rtl LDHX_SM{r1,r2,t,mem} = $r[t] := zx(half $m[scaled(r1,r2,1):mem]) ||
autoinc(r1,2)
rtl LDBX{r1,r2,t,mem} = $r[t] := zx(byte $m[indexed(r1,r2):mem])
rtl LDBX_M{r1,r2,t,mem} = $r[t] := zx(byte $m[indexed(r1,r2):mem]) ||
autoinc(r1,1)
(* Integer stores *)
rtl STW{b,d,r,mem} = $m[disp(b,d):mem] := $r[r]
rtl STH{b,d,r,mem} = $m[disp(b,d):mem] := half(zx $r[r])
rtl STB{b,d,r,mem} = $m[disp(b,d):mem] := byte(zx $r[r])
(* Integer opcodes *)
rtl ADD{r1,r2,t} = $r[t] := $r[r1] + $r[r2]
rtl ADDL{r1,r2,t} = $r[t] := $r[r1] + $r[r2]
rtl ADDO{r1,r2,t} = $r[t] := addt($r[r1], $r[r2])
rtl SUB{r1,r2,t} = $r[t] := $r[r1] - $r[r2]
rtl SUBO{r1,r2,t} = $r[t] := subt($r[r1], $r[r2])
rtl SH1ADD{r1,r2,t} = $r[t] := $r[r1] << 1 + $r[r2]
rtl SH2ADD{r1,r2,t} = $r[t] := $r[r1] << 2 + $r[r2]
rtl SH3ADD{r1,r2,t} = $r[t] := $r[r1] << 3 + $r[r2]
rtl SH1ADDL{r1,r2,t} = $r[t] := $r[r1] << 1 + $r[r2]
rtl SH2ADDL{r1,r2,t} = $r[t] := $r[r1] << 2 + $r[r2]
rtl SH3ADDL{r1,r2,t} = $r[t] := $r[r1] << 3 + $r[r2]
rtl SH1ADDO{r1,r2,t} = $r[t] := addt($r[r1] << 1, $r[r2])
rtl SH2ADDO{r1,r2,t} = $r[t] := addt($r[r1] << 2, $r[r2])
rtl SH3ADDO{r1,r2,t} = $r[t] := addt($r[r1] << 3, $r[r2])
rtl OR{r1,r2,t} = $r[t] := orb($r[r1], $r[r2])
rtl AND{r1,r2,t} = $r[t] := andb($r[r1], $r[r2])
rtl XOR{r1,r2,t} = $r[t] := xorb($r[r1], $r[r2])
rtl ANDCM{r1,r2,t} = $r[t] := andb($r[r1], notb($r[r2]))
rtl ADDI{r,i,t} = $r[t] := $r[r] + i
rtl ADDIO{r,i,t} = $r[t] := addt($r[r], i)
rtl ADDIL{r,i,t} = $r[t] := $r[r] + i
rtl SUBI{r,i,t} = $r[t] := $r[r] + i
rtl SUBIO{r,i,t} = $r[t] := subt($r[r], i)
(* Shifts *)
rtl extru extrs zdep : #n bits * #n bits * #n bits -> #n bits
val sar = $cr[11]
rtl VEXTRU{r, len, t} = $r[t] := extru($r[r], sar, len)
rtl VEXTRS{r, len, t} = $r[t] := extrs($r[r], sar, len)
rtl ZVDEP{r, len, t} = $r[t] := zdep($r[r], sar, len)
rtl EXTRU{r, p, len, t} = $r[t] := extru($r[r], p, len)
rtl EXTRS{r, p, len, t} = $r[t] := extrs($r[r], p, len)
rtl ZDEP{r, p, len, t} = $r[t] := zdep($r[r], p, len)
val comparisons =
[(==), (<), (<=),
(ltu), (leu), (<>),
(>=), (>), (gtu), (geu)]
(* COMCLR/LDO composite instruction:
* COMCLR,cc r1, r2, t1
* LDO i(b), t2
*)
fun COMCLR_LDO cc {r1,r2,t1,i,b,t2} =
if cc($r[r1],$r[r2]) then $r[t1] := 0 else $r[t2] := $r[b] + i
rtl COMCLR_LDO_ ^^ [EQ, LT, LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
map COMCLR_LDO comparisons
(* COMCLR/LDO composite instruction:
* COMCLR,cc r1, r2, t
* LDO i(b), t
* This version assumes that t1 = t2.
*)
fun COMCLR_LDO2 cc {r1,r2,t1,i,b} =
if cc($r[r1],$r[r2]) then $r[t1] := 0 else $r[t1] := $r[b] + i
rtl COMCLR_LDO2_ ^^ [EQ, LT, LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
map COMCLR_LDO2 comparisons
(* COMCLR/LDO composite instruction:
* COMCLR,cc r1, r2, %r0
* LDO i(b), t
* This version assumes that t1 = %r0.
*)
fun COMCLR_LDO3 cc {r1,r2,t2,i,b} =
if cc($r[r1],$r[r2]) then () else $r[t2] := $r[b] + i
rtl COMCLR_LDO3_ ^^ [EQ, LT, LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
map COMCLR_LDO3 comparisons
(* COMICLR/LDO composite instruction:
* COMICLR,cc i1, r2, t1
* LDO i(b), t2
*)
fun COMICLR_LDO cc {i1,r2,t1,i2,b,t2} =
if cc(%i1,$r[r2]) then $r[t1] := 0 else $r[t2] := $r[b] + i2
rtl COMICLR_LDO_ ^^ [EQ, LT, LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
map COMICLR_LDO comparisons
(* COMICLR/LDO composite instruction:
* COMICLR,cc i1, r2, t
* LDO i(b), t
* This version assumes that t1 = t2.
*)
fun COMICLR_LDO2 cc {i1,r2,t1,i2,b} =
if cc(i1,$r[r2]) then $r[t1] := 0 else $r[t1] := $r[b] + i2
rtl COMICLR_LDO2_ ^^ [EQ, LT, LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
map COMICLR_LDO2 comparisons
(* COMICLR/LDO composite instruction:
* COMICLR,cc i1, r2, %r0
* LDO i(b), t
* This version assumes that t1 = %r0.
*)
fun COMICLR_LDO3 cc {i1,r2,t2,i2,b} =
if cc(%i1,$r[r2]) then () else $r[t2] := $r[b] + i2
rtl COMICLR_LDO3_ ^^ [EQ, LT, LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
map COMICLR_LDO3 comparisons
(* Integer branching instructions *)
fun COMBT cmp {r1,r2,t} =
(if cmp($r[r1],$r[r2]) then Jmp(%%t) else ()) || $ctrl[0] := ???
fun COMBF cmp {r1,r2,t} =
(if cmp($r[r1],$r[r2]) then () else Jmp(%%t)) || $ctrl[0] := ???
fun COMIBT cmp {i,r2,t} =
(if cmp(%i,$r[r2]) then Jmp(%%t) else ()) || $ctrl[0] := ???
fun COMIBF cmp {i,r2,t} =
(if cmp(%i,$r[r2]) then () else Jmp(%%t)) || $ctrl[0] := ???
rtl COMBT_ ^^ [EQ, LT, LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
map COMBT comparisons
rtl COMBF_ ^^ [EQ, LT, LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
map COMBF comparisons
rtl COMIBT_ ^^ [EQ, LT, LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
map COMIBT comparisons
rtl COMIBF_ ^^ [EQ, LT, LE, LTU, LEU, NE, GE, GT, GTU, GEU] =
map COMIBF comparisons
rtl B{lab} = Jmp(%% lab)
rtl BV{x,b} = Jmp($r[x] << 2 + $r[b])
(* BB,< branch on bit set *)
rtl BB_BSET{p,r,t} =
(if andb($r[r],1 << (31 - p)) <> 0 then Jmp(%%t) else ())
|| $ctrl[0] := ???
(* BB,>= branch on bit clear *)
rtl BB_BCLR{p,r,t} =
(if andb($r[r],1 << (31 - p)) == 0 then Jmp(%%t) else ())
|| $ctrl[0] := ???
rtl BLE{d,b,defs,uses} =
Call($r[b] + d) || (* call *)
Kill $r[31] || (* return address *)
Kill $cellset[defs] ||
Use $cellset[uses]
(* Floating point loads *)
rtl FLDDS{b,d,t,mem} = $f[t] := $m[fdisp(b,d):mem]
rtl FLDWS{b,d,t,mem} = $f[t] := $m[fdisp(b,d):mem]
rtl FLDDX{b,x,t,mem} = $f[t] := $m[indexed(b,x):mem]
rtl FLDDX_S{b,x,t,mem} = $f[t] := $m[scaled(b,x,3):mem]
rtl FLDDX_M{b,x,t,mem} = $f[t] := $m[indexed(b,x):mem] || autoinc(b,8)
rtl FLDDX_SM{b,x,t,mem} = $f[t] := $m[scaled(b,x,3):mem] || autoinc(b,8)
rtl FLDWX{b,x,t,mem} = $f[t] := $m[indexed(b,x):mem]
rtl FLDWX_S{b,x,t,mem} = $f[t] := $m[scaled(b,x,2):mem]
rtl FLDWX_M{b,x,t,mem} = $f[t] := $m[indexed(b,x):mem] || autoinc(b,4)
rtl FLDWX_SM{b,x,t,mem} = $f[t] := $m[scaled(b,x,2):mem] || autoinc(b,4)
(* Floating point stores *)
rtl FSTDS{b,d,r,mem} = $m[fdisp(b,d):mem] := $f[r]
rtl FSTWS{b,d,r,mem} = $m[fdisp(b,d):mem] := $f[r]
rtl FSTDX{b,x,r,mem} = $m[indexed(b,x):mem] := $f[r]
rtl FSTDX_S{b,x,r,mem} = $m[scaled(b,x,3):mem] := $f[r]
rtl FSTDX_M{b,x,r,mem} = $m[indexed(b,x):mem] := $f[r] || autoinc(b,8)
rtl FSTDX_SM{b,x,r,mem} = $m[scaled(b,x,3):mem] := $f[r] || autoinc(b,8)
rtl FSTWX{b,x,r,mem} = $m[indexed(b,x):mem] := $f[r]
rtl FSTWX_S{b,x,r,mem} = $m[scaled(b,x,2):mem] := $f[r]
rtl FSTWX_M{b,x,r,mem} = $m[indexed(b,x):mem] := $f[r] || autoinc(b,4)
rtl FSTWX_SM{b,x,r,mem} = $m[scaled(b,x,2):mem] := $f[r] || autoinc(b,4)
(* Floating point binary operators *)
rtl FADD_S{r1,r2,t} = $f[t] := fadd($f[r1], $f[r2])
rtl FADD_D{r1,r2,t} = $f[t] := fadd($f[r1], $f[r2])
rtl FADD_Q{r1,r2,t} = $f[t] := fadd($f[r1], $f[r2])
rtl FSUB_S{r1,r2,t} = $f[t] := fsub($f[r1], $f[r2])
rtl FSUB_D{r1,r2,t} = $f[t] := fsub($f[r1], $f[r2])
rtl FSUB_Q{r1,r2,t} = $f[t] := fsub($f[r1], $f[r2])
rtl FMPY_S{r1,r2,t} = $f[t] := fsub($f[r1], $f[r2])
rtl FMPY_D{r1,r2,t} = $f[t] := fmul($f[r1], $f[r2])
rtl FMPY_Q{r1,r2,t} = $f[t] := fmul($f[r1], $f[r2])
rtl FDIV_S{r1,r2,t} = $f[t] := fdiv($f[r1], $f[r2])
rtl FDIV_D{r1,r2,t} = $f[t] := fdiv($f[r1], $f[r2])
rtl FDIV_Q{r1,r2,t} = $f[t] := fdiv($f[r1], $f[r2])
rtl XMPYU{r1,r2,t} = $f[t] := muls($f[r1], $f[r2])
(* Floating point unary operators *)
rtl cvtf2i : #n bits -> #m bits
rtl fsqrt : #n bits -> #n bits
rtl FCPY_S{f,t} = $f[t] := $f[f]
rtl FCPY_D{f,t} = $f[t] := $f[f]
rtl FCPY_Q{f,t} = $f[t] := $f[f]
rtl FABS_S{f,t} = $f[t] := fabs($f[f])
rtl FABS_D{f,t} = $f[t] := fabs($f[f])
rtl FABS_Q{f,t} = $f[t] := fabs($f[f])
rtl FSQRT_S{f,t} = $f[t] := fsqrt($f[f])
rtl FSQRT_D{f,t} = $f[t] := fsqrt($f[f])
rtl FSQRT_Q{f,t} = $f[t] := fsqrt($f[f])
rtl FRND_S{f,t} = $f[t] := cvtf2i($f[f])
rtl FRND_D{f,t} = $f[t] := cvtf2i($f[f])
rtl FRND_Q{f,t} = $f[t] := cvtf2i($f[f])
(* Floating point/fix point conversion operators *)
rtl fcnvff_sd fcnvff_sq fcnvff_ds fcnvff_dq
fcnvff_qs fcnvff_qd fcnvxf_s fcnvxf_d
fcnvxf_q fcnvfx_s fcnvfx_d fcnvfx_q
fcnvfxt_s fcnvfxt_d fcnvfxt_q
: #n bits -> #n bits
rtl FCNVFF_SD{f,t} = $f[t] := fcnvff_sd $f[f]
rtl FCNVFF_SQ{f,t} = $f[t] := fcnvff_sq $f[f]
rtl FCNVFF_DS{f,t} = $f[t] := fcnvff_ds $f[f]
rtl FCNVFF_DQ{f,t} = $f[t] := fcnvff_dq $f[f]
rtl FCNVFF_QS{f,t} = $f[t] := fcnvff_qs $f[f]
rtl FCNVFF_QD{f,t} = $f[t] := fcnvff_qd $f[f]
(* fixed point -> floating point *)
rtl FCNVXF_S{f,t} = $f[t] := fcnvxf_s $f[f]
rtl FCNVXF_D{f,t} = $f[t] := fcnvxf_d $f[f]
rtl FCNVXF_Q{f,t} = $f[t] := fcnvxf_q $f[f]
(* floating point -> fixed point (use current rounding mode?) *)
rtl FCNVFX_S{f,t} = $f[t] := fcnvfx_s $f[f]
rtl FCNVFX_D{f,t} = $f[t] := fcnvfx_d $f[f]
rtl FCNVFX_Q{f,t} = $f[t] := fcnvfx_q $f[f]
(* floating point -> fixed point (and truncate) *)
rtl FCNVFXT_S{f,t} = $f[t] := fcnvfxt_s $f[f]
rtl FCNVFXT_D{f,t} = $f[t] := fcnvfxt_d $f[f]
rtl FCNVFXT_Q{f,t} = $f[t] := fcnvfxt_q $f[f]
(* Floating point branch *)
fun FBRANCH cmp {f1,f2,t} =
if cmp($f[f1],$f[f2]) then Jmp(%%t) else ()
(*
rtl FBRANCH_ ^^
[?, !<=>, ==, ?=, !<>, !?>=, <, ?<,
!>=, !?>, <=, ?<=, !>, !?<=, >, ?>,
!<=, !?<, >=, ?>=, !<, !?=, <>, !=,
!?, <=>, ?<>] =
map FBRANCH
[|?|, |!<=>|, |==|, |?=|, |!<>|, |!?>=|, |<|, |?<|,
|!>=|, |!?>|, |<=|, |?<=|, |!>|, |!?<=|, |>|, |?>|,
|!<=|, |!?<|, |>=|, |?>=|, |!<|, |!?=|, |<>|, |!=|,
|!?|, |<=>|, |?<>|]
*)
rtl FBRANCH_ ^^
[?, ==, ?=, <, ?<,
<=, ?<=, >, ?>,
>=, ?>=, <>,
<=>, ?<>] =
map FBRANCH
[|?|, |==|, |?=|, |<|, |?<|,
|<=|, |?<=|, |>|, |?>|,
|>=|, |?>=|, |<>|,
|<=>|, |?<>|]
end (* RTL *)
(*========================================================================
* Instruction representation
*========================================================================*)
structure Instruction =
struct
datatype fmt! = SGL 0w0 | DBL 0w1 | QUAD 0w3
datatype loadi :Op! = LDW 0x12 (* p5-28 *)
| LDH 0x11 (* p5-29 *)
| LDB 0x10 (* p5-30 *)
datatype store :Op! = STW 0x1A (* p5-31 *)
| STH 0x19 (* p5-32 *)
| STB 0x18 (* p5-33 *)
(* addressing mode
* when the u bit is set, the index "x" is scaled by the size
* when the m bit is set, the base is also auto-incremented
*)
datatype load :ext4! =
(* ext4, u, m *)
LDWX "ldwx" (0w2,0w0,0w0) (* p5-36 *)
| LDWX_S "ldwx,s" (0w2,0w1,0w0)
| LDWX_M "ldwx,m" (0w2,0w0,0w1)
| LDWX_SM "ldwx,sm" (0w2,0w1,0w1)
| LDHX "ldhx" (0w1,0w0,0w0) (* p5-37 *)
| LDHX_S "ldhx,s" (0w1,0w1,0w0)
| LDHX_M "ldhx,m" (0w1,0w0,0w1)
| LDHX_SM "ldhx,sm" (0w1,0w1,0w1)
| LDBX "ldbx" (0w0,0w0,0w0) (* p5-38 *)
| LDBX_M "ldbx,m" (0w0,0w0,0w1)
(* All branching is done with nullification *)
datatype cmp! = COMBT 0wx20
| COMBF 0wx22
datatype cmpi! = COMIBT 0wx21
| COMIBF 0wx23
datatype arith! =
ADD 0x18 (* p5-83 *)
| ADDL 0x28 (* p5-84 *)
| ADDO 0x38 (* p5-85 *)
| SH1ADD 0x19 (* p5-88 *)
| SH1ADDL 0x29 (* p5-89 *)
| SH1ADDO 0x39 (* p5-90 *)
| SH2ADD 0x1A (* p5-91 *)
| SH2ADDL 0x2A (* p5-92 *)
| SH2ADDO 0x3A (* p5-93 *)
| SH3ADD 0x1B (* p5-94 *)
| SH3ADDL 0x2B (* p5-95 *)
| SH3ADDO 0x3B (* p5-96 *)
| SUB 0x10 (* p5-97 *)
| SUBO 0x30 (* p5-98 *)
| OR 0x09 (* p5-105 *)
| XOR 0x0A (* p5-106 *)
| AND 0x08 (* p5-107 *)
| ANDCM 0x00 (* p5-108 *)
datatype arithi! =
ADDI (0wx2d,0w0)
| ADDIO (0wx2d,0w1)
| ADDIL
| SUBI (0wx25,0w0)
| SUBIO (0wx25,0w1)
datatype shiftv! = VEXTRU | VEXTRS | ZVDEP
datatype shift! = EXTRU | EXTRS | ZDEP
datatype farith! = (* sop, fmt *)
FADD_S "fadd,sgl" (0w0, 0w0)
| FADD_D "fadd,dbl" (0w0, 0w1)
| FADD_Q "fadd,quad" (0w0, 0w3)
| FSUB_S "fsub,sgl" (0w1, 0w0)
| FSUB_D "fsub,dbl" (0w1, 0w1)
| FSUB_Q "fsub,quad" (0w1, 0w3)
| FMPY_S "fmpy,sgl" (0w2, 0w0)
| FMPY_D "fmpy,dbl" (0w2, 0w1)
| FMPY_Q "fmpy,quad" (0w2, 0w3)
| FDIV_S "fdiv,sgl" (0w3, 0w0)
| FDIV_D "fdiv,dbl" (0w3, 0w1)
| FDIV_Q "fdiv,quad" (0w3, 0w3)
| XMPYU (* ok *)
datatype funary! = (* sop, fmt *)
(* copy *)
FCPY_S "fcpy,sgl" (0w2,0w0)
| FCPY_D "fcpy,dbl" (0w2,0w1)
| FCPY_Q "fcpy,quad" (0w2,0w3)
| FABS_S "fabs,sgl" (0w3,0w0)
| FABS_D "fabs,dbl" (0w3,0w1)
| FABS_Q "fabs,quad" (0w3,0w3)
| FSQRT_S "fsqrt,sgl" (0w4,0w0)
| FSQRT_D "fsqrt,dbl" (0w4,0w1)
| FSQRT_Q "fsqrt,quad" (0w4,0w3)
(* round float to integer *)
| FRND_S "frnd,sgl" (0w5,0w0)
| FRND_D "frnd,dbl" (0w5,0w1)
| FRND_Q "frnd,quad" (0w5,0w3)
(* FCNVXF --- the source is the LHS single precision floating register *)
datatype fcnv = (* sop, sf, df *)
(* floating point -> floating point *)
FCNVFF_SD "fcnvff,sgl,dbl" (0w0,0w0,0w1)
| FCNVFF_SQ "fcnvff,sgl,quad" (0w0,0w0,0w3)
| FCNVFF_DS "fcnvff,dbl,sgl" (0w0,0w1,0w0)
| FCNVFF_DQ "fcnvff,dbl,quad" (0w0,0w1,0w3)
| FCNVFF_QS "fcnvff,quad,sgl" (0w0,0w3,0w0)
| FCNVFF_QD "fcnvff,quad,dbl" (0w0,0w3,0w1)
(* fixed point -> floating point *)
| FCNVXF_S "fcnvxf,,sgl" (0w1,0w0,0w0)
| FCNVXF_D "fcnvxf,,dbl" (0w1,0w0,0w1)
| FCNVXF_Q "fcnvxf,,quad" (0w1,0w0,0w3)
(* floating point -> fixed point (use current rounding mode?) *)
| FCNVFX_S "fcnvfx,sgl," (0w2,0w0,0w0)
| FCNVFX_D "fcnvfx,dbl," (0w2,0w1,0w0)
| FCNVFX_Q "fcnvfx,quad," (0w2,0w3,0w0)
(* floating point -> fixed point (and truncate) *)
| FCNVFXT_S "fcnvfxt,sgl," (0w3,0w0,0w0)
| FCNVFXT_D "fcnvfxt,dbl," (0w3,0w1,0w0)
| FCNVFXT_Q "fcnvfxt,quad," (0w3,0w3,0w0)
datatype fstore! = FSTDS
| FSTWS
(* Op, uid, u, m *)
datatype fstorex! = FSTDX "fstdx" (0wxb,0w0,0w0,0w0)
| FSTDX_S "fstdx,s" (0wxb,0w0,0w1,0w0)
| FSTDX_M "fstdx,m" (0wxb,0w0,0w0,0w1)
| FSTDX_SM "fstdx,sm" (0wxb,0w0,0w1,0w1)
| FSTWX "fstwx" (0wx9,0w1,0w0,0w0)
| FSTWX_S "fstwx,s" (0wx9,0w1,0w1,0w0)
| FSTWX_M "fstwx,m" (0wx9,0w1,0w0,0w1)
| FSTWX_SM "fstwx,sm" (0wx9,0w1,0w1,0w1)
(* FLDWX and FLDWS -- loads the RHS of the floating register *)
(* Op, uid, u, m *)
datatype floadx! = FLDDX "flddx" (0wxb,0w0,0w0,0w0)
| FLDDX_S "flddx,s" (0wxb,0w0,0w1,0w0)
| FLDDX_M "flddx,m" (0wxb,0w0,0w0,0w1)
| FLDDX_SM "flddx,sm" (0wxb,0w0,0w1,0w1)
| FLDWX "fldwx" (0wx9,0w1,0w0,0w0)
| FLDWX_S "fldwx,s" (0wx9,0w1,0w1,0w0)
| FLDWX_M "fldwx,m" (0wx9,0w1,0w0,0w1)
| FLDWX_SM "fldwx,sm" (0wx9,0w1,0w1,0w1)
datatype fload! = FLDDS
| FLDWS
(* page 5-5. fields for (c,f) *)
datatype bcond! = EQ "=" 0w1
| LT "<" 0w2
| LE "<=" 0w3
| LTU "<<" 0w4
| LEU "<<=" 0w5
| NE "<>" (* unimplemented *)
| GE ">=" (* ... *)
| GT ">"
| GTU ">>"
| GEU ">>="
(* table 5-7 *)
datatype bitcond! = BSET "<" 0w2 (* bit is 1 *)
| BCLR ">=" 0w6 (* bit is 0 *)
(* table 6-13 *)
datatype fcond [0..31] =
False_ "false?" | False "false" | ? | !<=> | == | EQT "=T" | ?= | !<>
| !?>= | < | ?< | !>= | !?> | <= | ?<= | !>
| !?<= | > | ?> | !<= | !?< | >= | ?>=
| !< | !?= | <> | != | NET "!=T" | !? | <=> | True_ "true?" | True "true"
datatype scond = ALL_ZERO | LEFTMOST_ONE | LEFTMOST_ZERO | RIGHTMOST_ONE
| RIGHTMOST_ZERO
datatype field_selector = F
| S
| D
| R
| T
| P
datatype ea =
Direct of $GP
| FDirect of $GP
| Displace of {base: $GP, disp: T.labexp, mem: Region.region}
datatype operand =
(* this is used only during instruction selection *)
REG of $GP rtl: $r[GP]
| IMMED of int ``<int>'' rtl: int
| LabExp of T.labexp * field_selector ``<labexp>'' rtl: labexp
| HILabExp of T.labexp * field_selector ``<labexp>''
| LOLabExp of T.labexp * field_selector ``<labexp>''
datatype addressing_mode =
DISPea of CellsBasis.cell * operand (* displacement *)
| INDXea of CellsBasis.cell * CellsBasis.cell (* indexed *)
| INDXSCALEDea of CellsBasis.cell * CellsBasis.cell (* indexed with scaling (b,x) *)
end (* Instruction *)
(* ========================= Instruction Encoding =========================
*
* HP has 41 different instruction formats.
* The instruction encoding is, for the lack of a better phrase,
* all fucked up.
*
* See Appendix C.
*========================================================================*)
instruction formats 32 bits
(* sr=0 for load store, why? *)
Load{Op:6,b:GP 5,t:GP 5,s:2=0,im14:signed 14}
| Store{st:store 6,b:GP 5,r:GP 5,s:2=0,im14:signed 14}
(* sr=3, m=0 no modify, cc=0 *)
| IndexedLoad{Op:6,b:GP 5,x:GP 5,s:2=3,u:1,_:1=0,cc:2=0,ext4:4,m:1,t:GP 5}
| ShortDispLoad{Op:6,b:GP 5,im5:signed 5,s:2,a:1,_:1=1,cc:2,ext4:4,m:1,t:GP 5}
| ShoftDispShort{Op:6,b:5,r:5,s:2,a:1,_:1=1,cc:2,ext4:4,m:1,im5:signed 5}
| LongImmed{Op:6,r:GP 5,im21:signed 21}
| Arith{Op:6=0x2,r2:GP 5,r1:GP 5,c:3=0,f:1=0,a:arith 6,_:1=0,t:GP 5}
| Arithi{Op:6,r:GP 5,t:GP 5,c:3=0,f:1=0,e:1,im11:signed 11}
| Extract{Op:6,r:GP 5,t:GP 5,c:3=0,ext3:3,p:int 5,clen:int 5}
| Deposit{Op:6,t:GP 5,r:GP 5,c:3=0,ext3:3,cp:int 5,clen:int 5}
| Shift{Op:6,r2:GP 5,r1:GP 5,c:3=0,ext3:3,cp:5,t:GP 5}
| ConditionalBranch{Op:6,r2:GP 5,r1:GP 5,c:bcond 3,w1:11,n:bool 1,w:1}
| ConditionalBranchi{Op:6,r2:GP 5,im5:5,c:bcond 3,w1:11,n:bool 1,w:1}
| BranchExternal{Op:6,b:GP 5,w1:5,s:3,w2:11,n:bool 1,w:1}
| BranchAndLink{Op:6,t:GP 5,w1:5,ext3:3,w2:11,n:bool 1,w:1}
| BranchVectored{Op:6,t:GP 5,x:GP 5,ext3:3,_:11=0,n:bool 1,w:1=0}
| Break{Op:6,im13:signed 13,ext8:8,im5:signed 5}
| BranchOnBit{Op:6=0x31,p:int 5,r:GP 5,c:3,w1:11,n:bool 1,w:1}
| MoveToControlReg{Op:6,t:CR 5,r:GP 5,rv:3,ext8:8,_:5=0}
| CompareClear{Op:6=0wx2,r2:GP 5,r1:GP 5,c:3,f:1,ext:6,_:1=0,t:GP 5}
| CompareImmClear{Op:6=0wx24,r:GP 5,t:GP 5,c:3,f:1,_:1=0,im11:signed 11}
(* floating point loads and stores *)
| CoProcShort{Op:6,b:GP 5,im5:5,s:2,a:1,_:1=1,cc:2=0,
ls:1,uid:3,m:1=0,rt:FP 5}
| CoProcIndexed{Op:6,b:GP 5,x:GP 5,s:2,u:1,_:1=0,cc:2=0,
ls:1,uid:3,m:1,rt:FP 5}
(* OR r0,r0,r0 *)
| NOP{Op:6=0x2,r2:5=0,r1:5=0,c:3=0,f:1=0,a:6=0x9,_:1=0,t:5=0}
| Nop{nop} = if nop then NOP{} else ()
(* floating point ops *)
| FloatOp0Maj0C{Op:6=0x0C,r:FP 5,_:5=0,sop:3,fmt:2,_:6=0,t:FP 5}
| FloatOp1Maj0C{Op:6=0x0C,r:FP 5,_:4=0,sop:2,df:2,sf:2,_:2=1,_:4=0,t:FP 5}
| FloatOp2Maj0C{Op:6=0x0C,r1:FP 5,r2:FP 5,sop:3,fmt:2,_:2=2,_:3=0,n:1,c:5}
| FloatOp3Maj0C{Op:6=0x0C,r1:FP 5,r2:FP 5,sop:3,fmt:2,_:2=3,_:3=0,n:1,t:FP 5}
| FloatOp0Maj0E{Op:6=0x0E,r:FP 5,_:5=0,sop:3,fmt:2,_:3=0,r2:1,t2:1,_:1=0,
t:FP 5}
| FloatOp1Maj0E{Op:6=0x0E,r:FP 5,_:4=0,sop:2,df:2,sf:2,_:2=1,_:1=0,r2:1,t2:1,
_:1=0,t:FP 5}
| FloatOp2Maj0E{Op:6=0x0E,r1:FP 5,r2:FP 5,sop:3,r22:1,f:1,_:2=2,_:1=0,
r11:1,_:2=0,c:5}
| FloatOp3Maj0E{Op:6=0x0E,r1:FP 5,r2:FP 5,sop:3,r22:1,f:1,_:2=3,_:1=0,
r11:1,_:2=0,t:FP 5}
| FloatMultiOp{Op:6=0x0E,rm1:5,rm2:5,ta:5,ra:5,f:1,tm:5}
(* page 6-62 *)
| FTest{Op:6=0x0C,r1:5=0,r2:5=0,sop:3=1,_:2=0,_:2=2,_:3=0,_:1=1,c:5=0}
structure Assembly =
struct
fun emit_n false = () | emit_n true = emit ",n"
fun emit_nop false = () | emit_nop true = emit "\n\tnop"
end
(*========================================================================
* Various utility functions for emitting assembly code
*========================================================================*)
structure MC =
struct
val zeroR = Option.valOf(C.zeroReg CellsBasis.GP)
fun opn opnd =
let fun hi21 n = (itow n) >> 0w11
fun hi21X n = (itow n) ~>> 0w11
fun lo11 n = (itow n) && 0wx7ff
(* BUG: should respect the field selectors instead of ignoring them *)
in case opnd of
I.HILabExp(lexp, _) => hi21X(MLTreeEval.valueOf lexp)
| I.LOLabExp(lexp, _) => lo11(MLTreeEval.valueOf lexp)
| I.LabExp(lexp, _) => itow(MLTreeEval.valueOf lexp)
| I.IMMED i => itow i
| I.REG _ => error "REG"
end
(* compute displacement address *)
fun disp lab = itow((Label.addrOf lab) - !loc - 8) ~>> 0w2
fun low_sign_ext_im14 n = ((n &&0wx1fff) << 0w1)||((n && 0wx2000) >> 0w13)
fun low_sign_ext_im11 n = ((n && 0wx3ff) << 0w1)||((n && 0wx400) >> 0w10)
fun low_sign_ext_im5 n = ((n && 0wxf) << 0w1)||((n && 0wx10) >> 0w4)
fun assemble_3 n =
let val w1 = (n && 0w4) >> 0w2
val w2 = (n && 0w3) << 0w1
in w1 || w2 end
fun assemble_12 n =
let val w = (n && 0wx800) >> 0w11
val w1 = ((n && 0wx3ff) << 0w1) || ((n && 0wx400) >> 0w10)
in (w1, w) end
fun assemble_17 n =
let val w = (n && 0wx10000) >> 0w16
val w1 = (n && 0wxf800) >> 0w11
val w2 = (((n && 0wx3ff) << 0w1) || ((n && 0wx400) >> 0w10))
in (w, w1, w2) end
fun assemble_21 disp =
let val w =
(((disp && 0wx000003) << 0w12) ||
((disp && 0wx00007c) << 0w14) ||
((disp && 0wx000180) << 0w7) ||
((disp && 0wx0ffe00) >> 0w8) ||
((disp && 0wx100000) >> 0w20))
in w end
fun branchLink(Op,t,lab,ext3,n) =
let val (w,w1,w2) = assemble_17(disp lab)
in BranchAndLink{Op,t,w1,w2,w,ext3,n} end
fun bcond(cmp,bc,r1,r2,n,t,nop) =
let val (w1,w) = assemble_12(disp t)
in ConditionalBranch{Op=emit_cmp cmp,c=bc,r1,r2,n,w,w1}; Nop{nop} end
fun bcondi(cmpi,bc,i,r2,n,t,nop) =
let val (w1,w) = assemble_12(disp t)
in ConditionalBranchi{Op=emit_cmpi cmpi,c=bc,
im5=low_sign_ext_im5(itow i),r2,n,w,w1}; Nop{nop}
end
fun branchOnBit(bc,r,p,n,t,nop) =
let val (w1,w) = assemble_12(disp t)
in BranchOnBit{p=p,r=r,c=emit_bitcond bc,w1=w1,n=n,w=w}; Nop{nop}
end
fun cmpCond cond =
case cond of
I.EQ => (0w1,0w0)
| I.LT => (0w2,0w0)
| I.LE => (0w3,0w0)
| I.LTU => (0w4,0w0)
| I.LEU => (0w5,0w0)
| I.NE => (0w1,0w1)
| I.GE => (0w2,0w1)
| I.GT => (0w3,0w1)
| I.GTU => (0w4,0w1)
| I.GEU => (0w5,0w1)
end (* MC *)
(*========================================================================
* Reservation tables and pipeline definitions for scheduling.
* All information are (uneducated) guesses.
* But see http://www.cpus.hp.com/techreports/parisc.shtml
*========================================================================*)
(*
* Function units.
*
*)
resource mem (* load/store *)
and alu (* integer alu *)
and falu (* floating point alu *)
and fmul (* floating point multiplier *)
and fdiv (* floating point divider (also sqrt on the HP) *)
and branch (* branch unit *)
(*
* Different implementations of cpus.
* Max
* Name Aliases Issues Function units
*)
cpu PA_700 2 [1 mem, 1 alu, 1 falu, 1 fmul, 1 branch]
and PA_7100 2 [1 mem, 1 alu, 2 fmul, 2 falu, 1 fdiv, 1 branch]
and PA_7100LC 2 [1 mem, 1 alu, 2 fmul, 2 falu, 1 fdiv, 1 branch]
and PA_7200 2 [1 mem, 1 alu, 2 fmul, 2 falu, 1 fdiv, 1 branch]
and PA_8000 4 [2 mem, 2 alu, 2 fmul, 2 falu, 2 fdiv, 1 branch]
and PA_8200 "default" 4 [2 mem, 2 alu, 2 fmul, 2 falu, 2 fdiv, 1 branch]
and PA_8500 4 [2 mem, 2 alu, 2 fmul, 2 falu, 2 fdiv, 1 branch]
(* Definitions of various reservation tables *)
pipeline NOP _ = []
and ARITH (PA_700 | PA_7100 | PA_7100LC | PA_7200) = [alu]
| ARITH (PA_8000 | PA_8200 | PA_8500) = [alu]
and LOAD _ = [mem]
and STORE _ = [mem]
and FARITH (PA_700 | PA_7100 | PA_7100LC | PA_7200) = [falu,falu]
| FARITH (PA_8000 | PA_8200 | PA_8500) = [falu]
and FMPY (PA_700 | PA_7100 | PA_7100LC | PA_7200) = [fmul,fmul]
| FMPY (PA_8000 | PA_8200 | PA_8500) = [fmul]
(* division is apparently non-pipelined, so we have to
* hog up the pipeline for a bunch of cycles
*)
and FDIV PA_700 = [fmul*10] (* multiplier does division too *)
| FDIV (PA_7100 | PA_7100LC | PA_7200) = [fdiv*15]
| FDIV (PA_8000 | PA_8200 | PA_8500) = [fdiv,fdiv*14]
and BRANCH (PA_700 | PA_7100 | PA_7100LC | PA_7200) = [branch,branch]
| BRANCH (PA_8000 | PA_8200 | PA_8500) = [branch,branch]
(*
* Latencies
* Note: the number refers the *additional* delay, so 0 means that
* the result computed in cycle t is available in cycle t+1.
*)
latency NOP _ = 0
and ARITH _ = 0
and LOAD _ = 1
and FARITH PA_700 = 2
| FARITH _ = 1
and FMPY PA_700 = 2
| FMPY PA_7100 = 2
| FMPY _ = 2
and FDIV PA_700 = 9
| FDIV PA_7100 = 14
| FDIV _ = 14
and FSQRT PA_700 = 17
| FSQRT PA_7100 = 14
| FSQRT _ = 14
(*========================================================================
* Instruction definitions
*========================================================================*)
(* FLDWS, FLDWX = define the R half of the FP register.
* FSTWS = uses the R half of the FP register.
*)
instruction
LOADI of {li:loadi, r: $GP, i:operand, t: $GP, mem:Region.region}
asm: ``<li>\t<i>(<r>), <t><mem>''
mc: Load{Op=emit_loadi li,b=r,im14=low_sign_ext_im14(opn i),t=t}
rtl: ``<li>''
latency: LOAD
pipeline: LOAD
| LOAD of {l:load, r1: $GP, r2: $GP, t: $GP, mem:Region.region}
asm: ``<l>\t<r2>(<r1>), <t><mem>''
mc: let val (ext4,u,m) = emit_load l
in IndexedLoad{Op=0w3,b=r1,x=r2,ext4,u,t,m}
end
rtl: ``<l>''
latency: LOAD
pipeline: LOAD
| STORE of {st:store,b: $GP,d:operand,r: $GP, mem:Region.region}
asm: ``<st>\t<r>, <d>(<b>)<mem>''
mc: Store{st,b=b,im14=low_sign_ext_im14(opn d),r=r}
rtl: ``<st>''
pipeline: STORE
| ARITH of {a:arith,r1: $GP, r2: $GP, t: $GP}
asm: ``<a>\t<r1>, <r2>, <t>''
mc: Arith{a,r1,r2,t}
rtl: ``<a>''
latency: ARITH
pipeline: ARITH
| ARITHI of {ai:arithi, i:operand, r: $GP, t: $GP}
asm: ``<ai>\t<i>, <r>, <t>''
mc: (case ai of
I.ADDIL => LongImmed{Op=0wxa,r=r,im21=assemble_21(opn i)}
| _ => let val (Op,e) = emit_arithi ai
in Arithi{Op,r,t,im11=low_sign_ext_im11(opn i),e}
end
)
rtl: ``<ai>''
latency: ARITH
pipeline: ARITH
(* This is a composite instruction.
* The effect is the same as t <- if r1 cc r2 then i+b else 0
* if t1 = t2
* COMCLR,cc r1, r2, t1
* LDO i(b), t2
*)
| COMCLR_LDO of {cc:bcond, r1: $GP, r2: $GP, t1 : $GP,
i:int, b: $GP, t2: $GP}
asm: (``comclr,<cc>\t<r1>, <r2>, <t1>\n\t'';
``ldo\t<i>(<b>), <t2>''
)
mc: let val (c,f) = cmpCond cc
in CompareClear{r1,r2,t=t1,c,f,ext=0wx22};
Load{Op=0wx0d,b,im14=low_sign_ext_im14(itow i),t=t2}
end
rtl: if t1 = t2 then ``COMCLR_LDO2_<cc>''
else if t1 = 0 then ``COMCLR_LDO3_<cc>''
else ``<COMCLR_LDO_<cc>''
latency: ARITH
pipeline: ARITH
| COMICLR_LDO of {cc:bcond, i1:operand, r2: $GP, t1 : $GP,
i2:int, b: $GP, t2: $GP}
asm: (``comiclr,<cc>\t<r2>, <i1>, <t1>\n\t'';
``ldo\t<i2>(<b>), <t2>''
)
mc: let val (c,f) = cmpCond cc
in CompareImmClear{r=r2,t=t1,c,f,im11=low_sign_ext_im11(opn i1)};
Load{Op=0wx0d,b,im14=low_sign_ext_im14(itow i2),t=t2}
end
rtl: if t1 = t2 then ``COMICLR_LDO2_<cc>''
else if t1 = 0 then ``COMICLR_LDO3_<cc>''
else ``COMICLR_LDO_<cc>''
latency: ARITH
pipeline: ARITH
| SHIFTV of {sv:shiftv, r: $GP, len:int, t: $GP}
asm: ``<sv>\t<r>, <len>, <t>''
mc: (case sv of
I.VEXTRU => Extract{Op=0wx34,r,t,ext3=0w4,p=0,clen=32-len}
| I.VEXTRS => Extract{Op=0wx34,r,t,ext3=0w5,p=0,clen=32-len}
| I.ZVDEP => Deposit{Op=0wx35,t,r,ext3=0w0,cp=0,clen=32-len}
)
rtl: ``<sv>''
latency: ARITH
pipeline: ARITH
| SHIFT of {s:shift, r: $GP, p:int, len:int, t: $GP}
asm: ``<s>\t<r>, <p>, <len>, <t>''
mc: (case s of
I.EXTRU => Extract{Op=0wx34,r,t,ext3=0w6,p=p,clen=32-len}
| I.EXTRS => Extract{Op=0wx34,r,t,ext3=0w7,p=p,clen=32-len}
| I.ZDEP => Deposit{Op=0wx35,t,r,ext3=0w2,cp=31-p,clen=32-len}
)
rtl: ``<s>''
latency: ARITH
pipeline: ARITH
| BCOND of {cmp: cmp, bc:bcond,r1: $GP,r2: $GP,n:bool,nop:bool,
t:Label.label, f:Label.label}
asm: ``<cmp>,<bc><n>\t<r1>, <r2>, <t><nop>''
mc: bcond(cmp,bc,r1,r2,n,t,nop)
rtl: ``<cmp>_<bc>''
padding: nop = true
nullified: n = true
delayslot: not nullified orelse
(branching forwards andalso taken orelse
branching backwards andalso not taken
)
delayslot candidate: false
pipeline: BRANCH
| BCONDI of {cmpi: cmpi, bc:bcond, i:int, r2: $GP, n:bool, nop:bool,
t:Label.label, f:Label.label}
asm: ``<cmpi>,<bc><n>\t<i>, <r2>, <t><nop>''
mc: bcondi(cmpi,bc,i,r2,n,t,nop)
rtl: ``<cmpi>_<bc>''
padding: nop = true
nullified: n = true
delayslot: not nullified orelse
(branching forwards andalso taken orelse
branching backwards andalso not taken
)
delayslot candidate: false
pipeline: BRANCH
(* bc must be either < or >= *)
| BB of {bc:bitcond,r: $GP, p:int, n:bool, nop:bool,
t:Label.label, f:Label.label}
asm: ``bb,<bc><n>\t<r>, <p>, <t><nop>''
mc: branchOnBit(bc,r,p,n,t,nop)
rtl: ``BB_<bc>''
padding: nop = true
nullified: n = true
delayslot: not nullified orelse
(branching forwards andalso taken orelse
branching backwards andalso not taken
)
delayslot candidate: false
pipeline: BRANCH
| B of {lab:Label.label, n:bool}
asm: ``b<n>\t<lab>''
mc: branchLink(0wx3a,zeroR,lab,0w0,n)
rtl: ``B''
nullified: n = true
delayslot candidate: false
pipeline: BRANCH
(*
* This composite instruction is generated only during span dependence
* resolution when trying to resolve conditional branches.
* The expanded sequence is 12 bytes long.
* Basically, the branch and link instruction jumps directly to
* the next instruction at tmpLab, and put the address of tmpLab + 4
* into register tmp. The offset computation in addil computes the
* actual address of lab.
*)
| LONGJUMP of {lab:Label.label, n:bool, tmp: $GP, tmpLab:Label.label}
asm: (``bl,n\t<tmpLab>, <tmp>\n'';
``<tmpLab>:\n\t'';
``addil <lab>-(<tmpLab>+4), <tmp>\n\t'';
``bv<n>\t%r0(<tmp>)''
)
mc: let val offset =
T.SUB(32,T.LABEL lab,
T.ADD(32,T.LABEL tmpLab, T.LI(IntInf.fromInt 4)))
in (* set the location of tmpLab *)
Label.setAddr(tmpLab, !loc+4);
branchLink(0wx3a,tmp,tmpLab,0w0,n);
LongImmed{Op=0wxa,r=tmp,
im21=assemble_21(itow(MLTreeEval.valueOf offset))};
BranchVectored{Op=0wx3a,t=tmp,x=zeroR,ext3=0w6,n=n}
end
rtl: ``B''
nullified: n = true
delayslot candidate: false
pipeline: BRANCH
| BE of {b: $GP, d:operand, sr:int, n:bool, labs: Label.label list}
asm: ``be<n>\t<d>(<sr>,<b>)''
mc: let val (w,w1,w2) = assemble_17(opn d)
in BranchExternal{Op=0wx38,b=b,w1=w1,s=assemble_3(itow sr),
w2=w2,n=n,w=w}
end
nullified: n = true
delayslot candidate: false
pipeline: BRANCH
| BV of {x: $GP, b: $GP, labs: Label.label list, n:bool}
asm: ``bv<n>\t<x>(<b>)''
mc: BranchVectored{Op=0wx3a,t=b,x=x,ext3=0w6,n=n}
rtl: ``BV''
nullified: n = true
delayslot candidate: false
pipeline: BRANCH
| BLR of {x: $GP, t: $GP, labs: Label.label list, n:bool}
asm: ``blr<n>\t<x>(<t>)''
mc: BranchVectored{Op=0wx3a,t=t,x=x,ext3=0w2,n=n}
nullified: n = true
delayslot candidate: false
pipeline: BRANCH
| BL of {lab:Label.label ,t: $GP, defs: $cellset, uses: $cellset,
cutsTo: Label.label list, mem:Region.region, n:bool}
asm: ``bl<n>\t<lab>, <t><mem><emit_defs(defs)><emit_uses(uses)><emit_cutsTo cutsTo>''
mc: branchLink(0wx3a,t,lab,0w0,n)
nullified: n = true
delayslot candidate: false
pipeline: BRANCH
| BLE of {d:operand,b: $GP, sr:int, t: $GP,
defs: $cellset, uses: $cellset, cutsTo: Label.label list,
mem:Region.region}
asm: ``ble\t<d>(<emit_int sr>,<b>)<mem><
emit_defs(defs)><emit_uses(uses)><emit_cutsTo cutsTo>''
mc: (case (d,CellsBasis.registerId t) of
(I.IMMED 0,31) =>
BranchExternal{Op=0wx39,b=b,w1=0w0,s=assemble_3(itow sr),
w2=0w0,n=true,w=0w0}
| _ => error "BLE: not implemented"
)
rtl: ``BLE''
nullified: false
delayslot candidate: false
pipeline: BRANCH
(* BLE implicitly defines %r31. The destination register t
* is assigned in the delay slot.
*)
| LDIL of {i:operand, t: $GP}
asm: ``ldil\t<i>, <t>''
mc: LongImmed{Op=0wx8,r=t,im21=assemble_21(opn i)}
rtl: ``LDIL''
latency: ARITH
pipeline: ARITH
| LDO of {i:operand, b: $GP, t: $GP}
asm: ``ldo\t<i>(<b>), <t>''
mc: Load{Op=0wx0d,b,im14=low_sign_ext_im14(opn i),t=t}
rtl: if b = 0 then ``LDO2'' else ``LDO''
latency: ARITH
pipeline: ARITH
| MTCTL of {r: $GP, t: $CR}
asm: ``mtctl\t<r>, <t>''
mc: MoveToControlReg{Op=0w0,t,r,rv=0w0,ext8=0wxc2}
rtl: ``MTCTL''
latency: ARITH
pipeline: ARITH
| FSTORE of {fst:fstore,b: $GP, d:int, r: $FP,mem:Region.region}
asm: ``<fst>\t<r>, <d>(<b>)<mem>''
mc: (case fst of
I.FSTDS => CoProcShort{Op=0wxb,b,im5=low_sign_ext_im5(itow d),
s=0w0,a=0w0,ls=0w1,uid=0w0,rt=r}
| I.FSTWS => CoProcShort{Op=0wx9,b,im5=low_sign_ext_im5(itow d),
s=0w0,a=0w0,ls=0w1,uid=0w1,rt=r}
)
rtl: ``<fst>''
pipeline: STORE
| FSTOREX of {fstx:fstorex, b: $GP, x: $GP,r: $FP,mem:Region.region}
asm: ``<fstx>\t<r>, <x>(<b>)<mem>''
mc: let val (Op,uid,u,m) = emit_fstorex fstx
in CoProcIndexed{Op=Op,b,x,s=0w0,u,m,ls=0w1,uid=uid,rt=r}
end
rtl: ``<fstx>''
pipeline: STORE
| FLOAD of {fl:fload, b: $GP, d:int, t: $FP, mem:Region.region}
asm: ``<fl>\t<d>(<b>), <t><mem>''
mc: (case fl of
I.FLDDS => CoProcShort{Op=0wxb,b,im5=low_sign_ext_im5(itow d),
s=0w0,a=0w0,ls=0w0,uid=0w0,rt=t}
| I.FLDWS => CoProcShort{Op=0wx9,b,im5=low_sign_ext_im5(itow d),
s=0w0,a=0w0,ls=0w0,uid=0w1,rt=t}
)
rtl: ``<fl>''
latency: LOAD
pipeline: LOAD
| FLOADX of {flx:floadx, b: $GP, x: $GP, t: $FP, mem:Region.region}
asm: ``<flx>\t<x>(<b>), <t><mem>''
mc: let val (Op,uid,u,m) = emit_floadx flx
in CoProcIndexed{Op=Op,b,x,s=0w0,u,m,ls=0w0,uid=uid,rt=t}
end
rtl: ``<flx>''
latency: LOAD
pipeline: LOAD
| FARITH of {fa:farith,r1: $FP, r2: $FP,t: $FP}
asm: ``<fa>\t<r1>, <r2>, <t>''
mc: (case fa of
I.XMPYU => FloatOp3Maj0E{sop=0w2,f=0w1,r1,r2,t,r11=0w0,r22=0w0}
| _ => let val (sop,fmt) = emit_farith fa
in FloatOp3Maj0C{sop,r1,r2,t,n=0w0,fmt} end
)
rtl: ``<fa>''
latency: (case fa of
(I.FMPY_S | I.FMPY_D | I.FMPY_Q) => FMPY
| (I.FDIV_S | I.FDIV_D | I.FDIV_Q) => FDIV
| _ => FARITH
)
pipeline: (case fa of
(I.FMPY_S | I.FMPY_D | I.FMPY_Q) => FMPY
| (I.FDIV_S | I.FDIV_D | I.FDIV_Q) => FDIV
| _ => FARITH
)
| FUNARY of {fu:funary,f: $FP, t: $FP}
asm: ``<fu>\t<f>, <t>''
mc: let val (sop,fmt) = emit_funary fu
in FloatOp0Maj0C{r=f,t=t,sop=sop,fmt=fmt}
end
rtl: ``<fu>''
latency: FARITH
pipeline: FARITH
| FCNV of {fcnv:fcnv, f: $FP, t: $FP}
asm: ``<fcnv>\t<f>, <t>''
mc: let val (sop,sf,df) = emit_fcnv fcnv
in FloatOp1Maj0E{r=f,t=t,sop=sop,sf=sf,df=df,r2=0w1,t2=0w0}
end
rtl: ``<fcnv>''
latency: FARITH
pipeline: FARITH
(* The following three instructions have been replaced by FBRANCH.
This make life much easier for instruction schedulers.
| FCMP of fcond * int * int
| FTEST
| FBCC of {t:Label.label, f:Label.label, n:bool}
*)
| FBRANCH of {cc:fcond, fmt:fmt, f1: $FP, f2: $FP,
t:Label.label, f:Label.label, n:bool, long:bool}
asm: (``fcmp,<fmt>,<cc>\t<f1>, <f2>\n\t'';
``ftest\n\t'';
``b<n>\t<t>''
)
(* fmt = 1 means double precision; will have to extend later *)
mc: (FloatOp2Maj0C{r1=f1,r2=f2,sop=0w0,fmt=emit_fmt fmt,
n=0w0,c=emit_fcond cc};
FTest{};
branchLink(0wx3a,zeroR,t,0w0,n) (* B,n t *)
)
rtl: ``FBRANCH_<cc>''
nullified: n
delayslot candidate: false
pipeline: BRANCH
| BREAK of {code1:int, code2:int}
asm: ``break\t<code1>, <code2>''
delayslot candidate: false
| NOP
asm: ``nop''
mc: NOP{}
rtl: ``NOP''
pipeline: NOP
| SOURCE of {}
asm: ``source''
mc: ()
| SINK of {}
asm: ``sink''
mc: ()
| PHI of {}
asm: ``phi''
mc: ()
structure SSA =
struct
fun operand(ty,I.REG r) = T.REG(ty, r)
| operand(ty,I.IMMED i) = T.LI(IntInf.fromInt i)
(*| operand(ty,I.LabExp(le,_)) = T.LABEL le*)
| operand _ = error "operand"
end
end
|