1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
|
(* hppa.sml
*
* COPYRIGHT (c) 1996 AT&T Bell Laboratories.
*
* generates machine code from the mltree.
*
* This new version has been completely rewritten to take (more) advantage
* of the new improved instruction set.
*
* Please see the README.hppa file for details.
*
* -- Allen
*)
functor Hppa
(structure HppaInstr : HPPAINSTR
structure ExtensionComp : MLTREE_EXTENSION_COMP (* where I = HppaInstr and T = HppaInstr.T *)
where type I.addressing_mode = HppaInstr.addressing_mode
and type I.ea = HppaInstr.ea
and type I.instr = HppaInstr.instr
and type I.instruction = HppaInstr.instruction
and type I.operand = HppaInstr.operand
where type T.Basis.cond = HppaInstr.T.Basis.cond
and type T.Basis.div_rounding_mode = HppaInstr.T.Basis.div_rounding_mode
and type T.Basis.ext = HppaInstr.T.Basis.ext
and type T.Basis.fcond = HppaInstr.T.Basis.fcond
and type T.Basis.rounding_mode = HppaInstr.T.Basis.rounding_mode
and type T.Constant.const = HppaInstr.T.Constant.const
and type ('s,'r,'f,'c) T.Extension.ccx = ('s,'r,'f,'c) HppaInstr.T.Extension.ccx
and type ('s,'r,'f,'c) T.Extension.fx = ('s,'r,'f,'c) HppaInstr.T.Extension.fx
and type ('s,'r,'f,'c) T.Extension.rx = ('s,'r,'f,'c) HppaInstr.T.Extension.rx
and type ('s,'r,'f,'c) T.Extension.sx = ('s,'r,'f,'c) HppaInstr.T.Extension.sx
and type T.I.div_rounding_mode = HppaInstr.T.I.div_rounding_mode
and type T.Region.region = HppaInstr.T.Region.region
and type T.ccexp = HppaInstr.T.ccexp
and type T.fexp = HppaInstr.T.fexp
(* and type T.labexp = HppaInstr.T.labexp *)
and type T.mlrisc = HppaInstr.T.mlrisc
and type T.oper = HppaInstr.T.oper
and type T.rep = HppaInstr.T.rep
and type T.rexp = HppaInstr.T.rexp
and type T.stm = HppaInstr.T.stm
structure MilliCode : HPPA_MILLICODE (* where I = HppaInstr *)
where type I.Constant.const = HppaInstr.Constant.const
and type I.Region.region = HppaInstr.Region.region
and type I.T.Basis.cond = HppaInstr.T.Basis.cond
and type I.T.Basis.div_rounding_mode = HppaInstr.T.Basis.div_rounding_mode
and type I.T.Basis.ext = HppaInstr.T.Basis.ext
and type I.T.Basis.fcond = HppaInstr.T.Basis.fcond
and type I.T.Basis.rounding_mode = HppaInstr.T.Basis.rounding_mode
and type ('s,'r,'f,'c) I.T.Extension.ccx = ('s,'r,'f,'c) HppaInstr.T.Extension.ccx
and type ('s,'r,'f,'c) I.T.Extension.fx = ('s,'r,'f,'c) HppaInstr.T.Extension.fx
and type ('s,'r,'f,'c) I.T.Extension.rx = ('s,'r,'f,'c) HppaInstr.T.Extension.rx
and type ('s,'r,'f,'c) I.T.Extension.sx = ('s,'r,'f,'c) HppaInstr.T.Extension.sx
and type I.T.I.div_rounding_mode = HppaInstr.T.I.div_rounding_mode
and type I.T.ccexp = HppaInstr.T.ccexp
and type I.T.fexp = HppaInstr.T.fexp
(* and type I.T.labexp = HppaInstr.T.labexp *)
and type I.T.mlrisc = HppaInstr.T.mlrisc
and type I.T.oper = HppaInstr.T.oper
and type I.T.rep = HppaInstr.T.rep
and type I.T.rexp = HppaInstr.T.rexp
and type I.T.stm = HppaInstr.T.stm
and type I.addressing_mode = HppaInstr.addressing_mode
and type I.arith = HppaInstr.arith
and type I.arithi = HppaInstr.arithi
and type I.bcond = HppaInstr.bcond
and type I.bitcond = HppaInstr.bitcond
and type I.cmp = HppaInstr.cmp
and type I.cmpi = HppaInstr.cmpi
and type I.ea = HppaInstr.ea
and type I.farith = HppaInstr.farith
and type I.fcnv = HppaInstr.fcnv
and type I.fcond = HppaInstr.fcond
and type I.field_selector = HppaInstr.field_selector
and type I.fload = HppaInstr.fload
and type I.floadx = HppaInstr.floadx
and type I.fmt = HppaInstr.fmt
and type I.fstore = HppaInstr.fstore
and type I.fstorex = HppaInstr.fstorex
and type I.funary = HppaInstr.funary
and type I.instr = HppaInstr.instr
and type I.instruction = HppaInstr.instruction
and type I.load = HppaInstr.load
and type I.loadi = HppaInstr.loadi
and type I.operand = HppaInstr.operand
and type I.scond = HppaInstr.scond
and type I.shift = HppaInstr.shift
and type I.shiftv = HppaInstr.shiftv
and type I.store = HppaInstr.store
structure LabelComp : LABEL_COMP (* where I = HppaInstr and T = HppaInstr.T *)
where type I.addressing_mode = HppaInstr.addressing_mode
and type I.ea = HppaInstr.ea
and type I.instr = HppaInstr.instr
and type I.instruction = HppaInstr.instruction
and type I.operand = HppaInstr.operand
where type T.Basis.cond = HppaInstr.T.Basis.cond
and type T.Basis.div_rounding_mode = HppaInstr.T.Basis.div_rounding_mode
and type T.Basis.ext = HppaInstr.T.Basis.ext
and type T.Basis.fcond = HppaInstr.T.Basis.fcond
and type T.Basis.rounding_mode = HppaInstr.T.Basis.rounding_mode
and type T.Constant.const = HppaInstr.T.Constant.const
and type ('s,'r,'f,'c) T.Extension.ccx = ('s,'r,'f,'c) HppaInstr.T.Extension.ccx
and type ('s,'r,'f,'c) T.Extension.fx = ('s,'r,'f,'c) HppaInstr.T.Extension.fx
and type ('s,'r,'f,'c) T.Extension.rx = ('s,'r,'f,'c) HppaInstr.T.Extension.rx
and type ('s,'r,'f,'c) T.Extension.sx = ('s,'r,'f,'c) HppaInstr.T.Extension.sx
and type T.I.div_rounding_mode = HppaInstr.T.I.div_rounding_mode
and type T.Region.region = HppaInstr.T.Region.region
and type T.ccexp = HppaInstr.T.ccexp
and type T.fexp = HppaInstr.T.fexp
(* and type T.labexp = HppaInstr.T.labexp *)
and type T.mlrisc = HppaInstr.T.mlrisc
and type T.oper = HppaInstr.T.oper
and type T.rep = HppaInstr.T.rep
and type T.rexp = HppaInstr.T.rexp
and type T.stm = HppaInstr.T.stm
val costOfMultiply : int ref
val costOfDivision : int ref
) : MLTREECOMP =
struct
structure I = HppaInstr
structure T = I.T
structure TS = ExtensionComp.TS
structure C = I.C
structure CB = CellsBasis
structure MC = MilliCode
structure LC = LabelComp
structure Region = I.Region
structure A = MLRiscAnnotations
structure CFG = ExtensionComp.CFG
type instrStream = (I.instruction, C.cellset, CFG.cfg) TS.stream
type mltreeStream = (T.stm, T.mlrisc list, CFG.cfg) TS.stream
structure Gen = MLTreeGen(structure T = T
structure Cells = C
val intTy = 32
val naturalWidths = [32]
datatype rep = SE | ZE | NEITHER
val rep = NEITHER
)
fun mkcopy{dst, src, tmp} =
I.COPY{k=CB.GP, sz=32, dst=dst, src=src, tmp=tmp}
fun mkfcopy{dst, src, tmp} =
I.COPY{k=CB.FP, sz=64, dst=dst, src=src, tmp=tmp}
structure W = Word32
structure Multiply32 = struct
structure I = I
structure T = T
structure CB = CB
val intTy = 32
type arg = {r1:CB.cell,r2:CB.cell,d:CB.cell}
type argi = {r:CB.cell,i:int,d:CB.cell}
fun mov{r,d} = mkcopy{dst=[d],src=[r],tmp=NONE}
fun add{r1,r2,d} = I.arith{a=I.ADD,r1=r1,r2=r2,t=d}
fun slli{r,i,d} = [I.shift{s=I.ZDEP,r=r,p=31-i,len=32-i,t=d}]
fun srli{r,i,d} = [I.shift{s=I.EXTRU,r=r,p=31-i,len=32-i,t=d}]
fun srai{r,i,d} = [I.shift{s=I.EXTRS,r=r,p=31-i,len=32-i,t=d}]
end
(* signed, trapping version of multiply and divide *)
structure Mult32 = MLTreeMult
(open Multiply32
val trapping = true
val multCost = costOfMultiply
val divCost = costOfDivision
fun addv{r1,r2,d} = [I.arith{a=I.ADDO,r1=r1,r2=r2,t=d}]
fun subv{r1,r2,d} = [I.arith{a=I.SUBO,r1=r1,r2=r2,t=d}]
val sh1addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH1ADDO,r1=r1,r2=r2,t=d}])
val sh2addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH2ADDO,r1=r1,r2=r2,t=d}])
val sh3addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH3ADDO,r1=r1,r2=r2,t=d}])
val signed = true)
(* unsigned, non-trapping version of multiply and divide *)
structure Mulu32 = MLTreeMult
(open Multiply32
val trapping = false
val multCost = costOfMultiply
val divCost = costOfDivision
fun addv{r1,r2,d} = [I.arith{a=I.ADD,r1=r1,r2=r2,t=d}]
fun subv{r1,r2,d} = [I.arith{a=I.SUB,r1=r1,r2=r2,t=d}]
val sh1addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH1ADDL,r1=r1,r2=r2,t=d}])
val sh2addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH2ADDL,r1=r1,r2=r2,t=d}])
val sh3addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH3ADDL,r1=r1,r2=r2,t=d}])
val signed = false)
(* signed, non-trapping version of multiply and divide *)
structure Muls32 = MLTreeMult
(open Multiply32
val trapping = false
val multCost = costOfMultiply
val divCost = costOfDivision
fun addv{r1,r2,d} = [I.arith{a=I.ADD,r1=r1,r2=r2,t=d}]
fun subv{r1,r2,d} = [I.arith{a=I.SUB,r1=r1,r2=r2,t=d}]
val sh1addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH1ADDL,r1=r1,r2=r2,t=d}])
val sh2addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH2ADDL,r1=r1,r2=r2,t=d}])
val sh3addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH3ADDL,r1=r1,r2=r2,t=d}])
val signed = true)
fun error msg = MLRiscErrorMsg.error("Hppa",msg)
datatype ea = datatype I.addressing_mode
datatype times248 = TIMES1 | TIMES2 | TIMES4 | TIMES8
datatype amode =
AMode of I.addressing_mode
| DISP of CB.cell * T.I.machine_int
fun LI i = T.LI(T.I.fromInt(32, i))
fun toInt mi = T.I.toInt(32, mi)
fun toInt32 mi = T.I.toInt32(32, mi)
fun toWord mi = T.I.toWord(32, mi)
fun toWord32 mi = T.I.toWord32(32, mi)
fun EQ(x,y) = T.I.EQ(32, x, y)
fun LT(x,y) = T.I.LT(32, x, y)
fun GE(x,y) = T.I.GE(32, x, y)
fun selectInstructions
(instrStream as
TS.S.STREAM{emit=emitInstruction, defineLabel, entryLabel, getAnnotations,
beginCluster, endCluster, annotation,
exitBlock, pseudoOp, comment, ...}) =
let
(* operand type and effective addresss *)
val newReg = C.newReg
val newFreg = C.newFreg
val CRReg = C.Reg C.CR
val zeroR = C.r0
val zeroF = C.f0
val zeroEA = I.Direct zeroR
val zeroT = T.REG(32,zeroR)
val zeroImmed = I.IMMED 0
val zeroOpn = zeroImmed
val emit = emitInstruction o I.INSTR
local
fun f(i,[]) = i
| f(i, a::an) = f (I.ANNOTATION{i=i, a=a}, an)
in
fun mark(i, an) = emitInstruction(f(I.INSTR i, an))
fun mark'(i, an) = emitInstruction(f(i, an))
end
val ldLabelEA = LC.ldLabelEA emitInstruction
val ldLabelOpnd = LC.ldLabelOpnd emitInstruction
(* Check whether an expression is being multiplied by 2, 4, or 8 *)
local
fun mul(mi,e, exp) =
if EQ(mi, 2) then (TIMES2, e)
else if EQ(mi, 4) then (TIMES4, e)
else if EQ(mi, 8) then (TIMES8, e)
else (TIMES1, exp)
in
fun times(exp) =
(case exp
of T.MULU(_, e, T.LI mi) => mul(mi, e, exp)
| T.MULU(_, T.LI mi, e) => mul(mi, e, exp)
| T.SLL(_, e, T.LI mi) =>
if EQ(mi, 1) then (TIMES2, e)
else if EQ(mi, 2) then (TIMES4, e)
else if EQ(mi, 3) then (TIMES8, e)
else (TIMES1, exp)
| _ => (TIMES1, exp)
(*esac*))
(* trapping version of the above *)
fun timest(exp as T.MULT(_, e, T.LI mi)) = mul(mi, e, exp)
| timest(exp as T.MULT(_, T.LI mi, e)) = mul(mi, e, exp)
| timest e = (TIMES1, e)
end (*local*)
fun im5 n = LT(n, 16) andalso GE(n, ~16)
fun im11 n = LT(n, 1024) andalso GE(n, ~1024)
fun im14 n = LT(n, 8192) andalso GE(n, ~8192)
(* Split values into 11 low bits and 21 high bits *)
fun split11w w =
{hi = Word32.toIntX(Word32.~>>(w,0w11)),
lo = Word32.toIntX(Word32.andb(w,0wx7ff))}
fun split11 n = split11w(toWord32 n)
(* load immediate *)
fun loadImmed(n,t,an) =
if im14 n
then mark(I.LDO{i=I.IMMED(toInt n),b=zeroR,t=t},an)
else let val {hi,lo} = split11 n
val tmp = newReg()
in emit(I.LDIL{i=I.IMMED hi,t=tmp});
mark(I.LDO{i=I.IMMED lo,b=tmp,t=t},an)
end
(* generate code to load a immediate constant *)
fun immed (n: T.I.machine_int) =
let val t = newReg() in loadImmed(n,t,[]); t end
(* load constant *)
fun loadConst(c,t,an) =
mark(I.LDO{b=zeroR,i=I.LabExp(c,I.F),t=t},an) (* XXX *)
(* convert an operand into a register *)
fun reduceOpn i =
let val t = newReg()
in emit(I.LDO{i=i,b=zeroR,t=t}); t end
(* emit parallel copies *)
fun copy(dst,src,an) =
mark'(mkcopy{dst=dst,src=src,
tmp=case dst of [_] => NONE | _ => SOME(I.Direct(newReg()))},an)
fun fcopy(dst,src,an) =
mark'(mkfcopy{dst=dst,src=src,
tmp=case dst of [_] => NONE | _ => SOME(I.FDirect(newFreg()))},an)
(* move register s to register t *)
fun move(s,t,an) =
if CB.sameColor(s,t) orelse CB.registerId t = 0 then ()
else if CB.registerId s = 0 then
mark(I.LDO{i=zeroImmed,b=zeroR,t=t},an)
else mark'(mkcopy{src=[s],dst=[t],tmp=NONE},an)
(* move floating point register s to register t *)
fun fmove(s,t,an) =
if CB.sameColor(s,t) then ()
else mark'(mkfcopy{src=[s],dst=[t],tmp=NONE},an)
(* generate millicode function call *)
fun milliCall(milliFn, e1, e2, rd) =
let val rs = expr e1
val rt = expr e2
in app emitInstruction (milliFn{rs=rs,rt=rt,rd=rd}) end
(* emit an arithmetic op with possible immediate mode
* The immed operand is the first operand on the HPPA! Arrrrggggghhhh!
*)
and immedArith(a,ai,e1,e2,t,an) =
case (opn e1,expr e2) of
(I.REG r1,r2) => mark(I.ARITH{a=a,r1=r1,r2=r2,t=t},an)
| (i,r) => mark(I.ARITHI{ai=ai,r=r,i=i,t=t},an)
(* emit a commutative arithmetic op with immediate mode *)
and commImmedArith(a,ai,e1,e2,t,an) =
case (opn e1,opn e2) of
(I.REG r1,I.REG r2) => mark(I.ARITH{a=a,r1=r1,r2=r2,t=t},an)
| (I.REG r,i) => mark(I.ARITHI{ai=ai,r=r,i=i,t=t},an)
| (i,I.REG r) => mark(I.ARITHI{ai=ai,r=r,i=i,t=t},an)
| (i,j) => mark(I.ARITHI{ai=ai,r=reduceOpn i,i=j,t=t},an)
(* emit an arithmetic op *)
and arith(a,e1,e2,t,an) =
mark(I.ARITH{a=a,r1=expr e1,r2=expr e2,t=t},an)
(* emit an unary floating point op *)
and funary(a,e,t,an) = mark(I.FUNARY{fu=a,f=fexpr e,t=t},an)
(* emit an conversion floating point op *)
and fcnv(a,e,t,an) = mark(I.FCNV{fcnv=a,f=fexpr e,t=t},an)
(* emit a binary floating point op *)
and farith(a,e1,e2,t,an) =
mark(I.FARITH{fa=a,r1=fexpr e1,r2=fexpr e2,t=t},an)
(* convert an expression into an addressing mode
* scale is the size of the data being addressed.
*
* Return the addressing mode and an infinite precision immediate
* in the case of DISPea.
*)
and addr(scale,T.ADD(_,e,T.LI n)) = DISP(expr e, n)
| addr(scale,T.ADD(_,e,c as T.CONST _)) =
AMode(DISPea(expr e,I.LabExp(c,I.F)))
| addr(scale,T.ADD(ty,i as T.LI _,e)) = addr(scale,T.ADD(ty,e,i))
| addr(scale,T.ADD(_,c as T.CONST _,e)) =
AMode(DISPea(expr e,I.LabExp(c,I.F)))
| addr(scale,T.ADD(_,e,T.LABEXP le)) =
let val rs = expr e
val (rt, opnd) = ldLabelEA le
in case (CB.registerId rt, opnd) of
(0, opnd) => AMode(DISPea(rs,opnd))
| (_,I.IMMED 0) => AMode(INDXea(rs,rt))
| (_,opnd) =>
let val tmp = newReg()
in emit(I.ARITH{a=I.ADD,r1=rs,r2=rt,t=tmp});
AMode(DISPea(tmp,opnd))
end
end
| addr(scale,T.ADD(t,e1 as T.LABEXP l,e2)) = addr(scale,T.ADD(t,e2,e1))
| addr(scale,T.ADD(_,e1,e2)) =
let (* check for special multiply add sequence
* here, e1 is is scaled
*)
fun scaleIndexed(actualScale,opcode,e1,e2) =
if actualScale = scale then (* can we use scaled indexing mode?*)
let val x = expr e1
val b = expr e2
in AMode(INDXSCALEDea(b,x))
end
else (* no, use the SHnADD operator, then *)
let val tmp = newReg()
in emit(I.ARITH{a=opcode,r1=expr e1,r2=expr e2,t=tmp});
AMode(DISPea(tmp,zeroImmed))
end
in case times e1 of
(TIMES2,e1) => scaleIndexed(16,I.SH1ADD,e1,e2)
| (TIMES4,e1) => scaleIndexed(32,I.SH2ADD,e1,e2)
| (TIMES8,e1) => scaleIndexed(64,I.SH3ADD,e1,e2)
| _ =>
case times e2 of
(TIMES2,e2) => scaleIndexed(16,I.SH1ADD,e2,e1)
| (TIMES4,e2) => scaleIndexed(32,I.SH2ADD,e2,e1)
| (TIMES8,e2) => scaleIndexed(64,I.SH3ADD,e2,e1)
| _ => AMode(INDXea(expr e1,expr e2))
end
| addr(scale,T.SUB(ty,e,T.LI n)) = addr(scale,T.ADD(ty,e,T.LI(T.I.NEGT(32,n))))
| addr(scale,T.LABEXP lexp) = AMode(DISPea(ldLabelEA(lexp)))
| addr(scale,ea) = AMode(DISPea(expr ea,zeroImmed))
(* emit an integer load
* li - load immediate,
* l - load indexed
* ls - load indexed with scaling
* r1 is base r2 is x
*)
and load(scale,li,l,ls,ea,t,mem,an) =
case addr(scale,ea)
of DISP(r, off) =>
if im14 off then
mark(I.LOADI{li=li,r=r,i=I.IMMED(toInt off),t=t,mem=mem},an)
else
mark(I.LOAD{l=l,r1=r,r2=immed off,t=t,mem=mem},an)
| AMode(DISPea(r,i)) => mark(I.LOADI{li=li,r=r,i=i,t=t,mem=mem},an)
| AMode(INDXea(r1,r2)) => mark(I.LOAD{l=l,r1=r1,r2=r2,t=t,mem=mem},an)
| AMode(INDXSCALEDea(b,x)) => mark(I.LOAD{l=ls,r1=b,r2=x,t=t,mem=mem},an)
(* emit an integer store *)
and store(st,ea,r,mem,an) =
let val (b,d) =
case addr(0,ea)
of DISP(b, disp) =>
if im14 disp then (b,I.IMMED(toInt disp) )
else let val {hi,lo} = split11 disp
val tmp1 = newReg()
val tmp2 = newReg()
in emit(I.LDIL{i=I.IMMED hi,t=tmp1});
emit(I.ARITH{a=I.ADD,r1=b,r2=tmp1,t=tmp2});
(tmp2,I.IMMED lo)
end
| AMode(DISPea bd) => bd
| AMode(INDXea(r1,r2)) =>
let val tmp = newReg()
in emit(I.ARITH{a=I.ADD,r1=r1,r2=r2,t=tmp});
(tmp,I.IMMED 0)
end
| AMode(INDXSCALEDea _) => error "store"
in mark(I.STORE{st=st,b=b,d=d,r=r,mem=mem},an) end
(* emit a floating point load *)
and fload(scale,fl,flx,flxs,ea,t,mem,an) =
case addr(scale,ea) of
AMode(INDXea(b,x)) => mark(I.FLOADX{flx=flx,b=b,x=x,t=t,mem=mem},an)
| AMode(INDXSCALEDea(b,x)) =>
mark(I.FLOADX{flx=flxs,b=b,x=x,t=t,mem=mem},an)
| AMode(DISPea(b,d)) =>
let val tmp = newReg()
in emit(I.ARITHI{ai=I.ADDI,r=b,i=d,t=tmp});
mark(I.FLOADX{flx=flx,b=tmp,x=zeroR,t=t,mem=mem},an)
end
| DISP(b, d) =>
if im5 d then
mark(I.FLOAD{fl=fl,b=b,d=toInt d,t=t,mem=mem},an)
else
mark(I.FLOADX{flx=flx,b=b,x=immed d,t=t,mem=mem},an)
(* emit a floating point store *)
and fstore(scale,fst,fstx,fstxs,ea,data,mem,an) =
let val r = fexpr data
in case addr(scale,ea) of
DISP(b, d) =>
if im5 d then
mark(I.FSTORE{fst=fst,b=b,d=(toInt d),r=r,mem=mem},an)
else mark(I.FSTOREX{fstx=fstx,b=b,x=immed d,r=r,mem=mem},an)
| AMode(DISPea(b,d)) =>
let val tmp = newReg()
in emit(I.ARITHI{ai=I.ADDI,r=b,i=d,t=tmp});
mark(I.FSTORE{fst=I.FSTDS,b=tmp,d=0,r=r,mem=mem},an)
end
| AMode(INDXea(b,x)) =>
mark(I.FSTOREX{fstx=fstx,b=b,x=x,r=r,mem=mem},an)
| AMode(INDXSCALEDea(b,x)) =>
mark(I.FSTOREX{fstx=fstxs,b=b,x=x,r=r,mem=mem},an)
end
(* emit an integer branch instruction *)
(* generate a branch *)
and branch(T.CMP(ty,cc,T.LI n,e),lab,an) = (* optimize cmp immed *)
emitBranchCmpWithImmed(ty,cc,n,e,lab,an)
| branch(T.CMP(ty,cc,e1,e2 as T.LI _),lab,an) = (* commute *)
branch(T.CMP(ty,T.Basis.swapCond cc,e2,e1),lab,an)
| branch(T.CMP(ty,cc,a,b),lab,an) = (* do the usual *)
emitBranch(ty,cc,expr a,expr b,lab,an)
| branch(T.FCMP(fty,cc,a,b),lab,an) =
let val f1 = fexpr a
val f2 = fexpr b
val fallThrough = Label.anon()
fun fcond T.== = I.!=
| fcond T.?<> = I.==
| fcond T.? = I.<=>
| fcond T.<=> = I.?
| fcond T.> = I.?<=
| fcond T.>= = I.?<
| fcond T.?> = I.<=
| fcond T.?>= = I.<
| fcond T.< = I.?>=
| fcond T.<= = I.?>
| fcond T.?< = I.>=
| fcond T.?<= = I.>
| fcond T.<> = I.?=
| fcond T.?= = I.<>
| fcond _ = error "fcond"
in mark(I.FBRANCH{cc=fcond cc,f1=f1,f2=f2,t=lab,f=fallThrough,
fmt=getFmt a,n=true,long=false},an);
defineLabel fallThrough
end
| branch(e,lab,an) = error "branch: what is the semantics?"
(* generate a branch cmp with immed *)
and emitBranchCmpWithImmed(ty,cc,n,e2 as T.ANDB(_,e,T.LI mask),t,an) =
emitBranchOnBit(ty,cc,n,e2,e,toWord32 mask,t,an)
| emitBranchCmpWithImmed(ty,cc,n,e2 as T.ANDB(_,T.LI mask,e),t,an) =
emitBranchOnBit(ty,cc,n,e2,e,toWord32 mask,t,an)
| emitBranchCmpWithImmed(ty,cc,n,e2,t,an) =
emitBranchI(ty,cc,n,e2,t,an)
(* generate a branch on bit *)
and emitBranchOnBit(ty,cc,n,e2,e,mask,t,an) =
let fun isPowerOf2 w = W.andb(w,w-0w1) = 0w0
fun log w =
let fun f(0w1,n) = n
| f(w,n) = f(W.>>(w,0w1),n+1)
in f(w,0) end
val n' = toWord32 n
in if (n' = 0w0 orelse n' = mask) andalso
(cc = T.EQ orelse cc = T.NE) andalso
(mask > 0w0 andalso isPowerOf2 mask) then (* bit test! *)
let val bc =
case (cc,n') of
(T.EQ,0w0) => I.BCLR (* bit is 0 *)
| (T.EQ,_) => I.BSET (* bit is 1 *)
| (T.NE,0w0) => I.BSET (* bit is 1 *)
| (T.NE,_) => I.BCLR (* bit is 0 *)
| _ => error "emitBranchOnBit"
val f = Label.anon()
val bit = 31 - log mask
in mark(I.BB{bc=bc,r=expr e,p=bit,t=t,f=f,
n=false, nop=true},an);
defineLabel f
end
else
emitBranchI(ty,cc,n,e2,t,an)
end
(* generate a branch cmp with immediate *)
and emitBranchI(ty,cc,n,e2,t,an) =
let val r2 = expr e2
in if im5 n then
let val f = Label.anon()
val (cmpi,bc) =
case cc of
T.LT => (I.COMIBT, I.LT)
| T.LE => (I.COMIBT, I.LE)
| T.GT => (I.COMIBF, I.LE)
| T.GE => (I.COMIBF, I.LT)
| T.EQ => (I.COMIBT, I.EQ)
| T.LTU => (I.COMIBT, I.LTU)
| T.LEU => (I.COMIBT, I.LEU)
| T.GEU => (I.COMIBF, I.LTU)
| T.GTU => (I.COMIBF, I.LEU)
| T.NE => (I.COMIBF, I.EQ)
| _ => error "emitBranchI"
in mark(I.BCONDI{cmpi=cmpi,bc=bc,i=toInt(n),r2=r2,t=t,f=f,
n=false, nop=true},an);
defineLabel f
end
else emitBranch(ty,cc,immed n,r2,t,an)
end
(* generate a branch *)
and emitBranch(ty,cond,r1,r2,t,an) =
let val f = Label.anon()
val (cmp,bc,r1,r2) =
case cond of
T.LT => (I.COMBT, I.LT, r1, r2)
| T.LE => (I.COMBT, I.LE, r1, r2)
| T.GT => (I.COMBT, I.LT, r2, r1)
| T.GE => (I.COMBT, I.LE, r2, r1)
| T.EQ => (I.COMBT, I.EQ, r1, r2)
| T.LTU => (I.COMBT, I.LTU, r1, r2)
| T.LEU => (I.COMBT, I.LEU, r1, r2)
| T.GEU => (I.COMBT, I.LEU, r2, r1)
| T.GTU => (I.COMBT, I.LTU, r2, r1)
| T.NE => (I.COMBF, I.EQ, r1, r2)
| _ => error "emitBranch"
in mark(I.BCOND{cmp=cmp,bc=bc,r1=r1,r2=r2,t=t,f=f,
n=false,nop=true},an);
defineLabel f
end
and getFmt e =
case Gen.Size.fsize e of
32 => I.SGL
| 64 => I.DBL
| 128 => I.QUAD
| _ => error "getFmt"
and goto(l,an) = mark(I.B{lab=l,n=true},an)
(* generate code for a statement *)
and stmt(T.MV(32,t,e),an) = doExpr(e,t,an)
| stmt(T.FMV(64,t,e),an) = doFexpr(e,t,an)
| stmt(T.CCMV(t,e),an) = doCCexpr(e,t,an)
| stmt(T.COPY(32,dst,src),an) = copy(dst,src,an)
| stmt(T.FCOPY(64,dst,src),an) = fcopy(dst,src,an)
| stmt(T.JMP(T.LABEL l,_),an) = goto(l,an)
| stmt(T.JMP(ea,labs),an) = jmp(ea,labs,an)
| stmt(s as T.CALL { pops=0, ...},an) = call(s,an)
| stmt(T.CALL _, _) = error "pops<>0 not implemented"
| stmt(T.RET _,an) =
mark(I.BV{labs=[],x=zeroR,b=C.returnPtr,n=true},an)
| stmt(T.STORE(8,ea,t,mem),an) = store(I.STB,ea,expr t,mem,an)
| stmt(T.STORE(16,ea,t,mem),an) = store(I.STH,ea,expr t,mem,an)
| stmt(T.STORE(32,ea,t,mem),an) = store(I.STW,ea,expr t,mem,an)
| stmt(T.FSTORE(32,ea,t,mem),an) =
fstore(32,I.FSTWS,I.FSTWX,I.FSTWX_S,ea,t,mem,an)
| stmt(T.FSTORE(64,ea,t,mem),an) =
fstore(64,I.FSTDS,I.FSTDX,I.FSTDX_S,ea,t,mem,an)
| stmt(T.BCC(cc,lab),an) = branch(cc,lab,an)
| stmt(T.DEFINE l,_) = defineLabel l
| stmt(T.LIVE S,an) = mark'(I.LIVE{regs=cellset S,spilled=C.empty},an)
| stmt(T.KILL S,an) = mark'(I.KILL{regs=cellset S,spilled=C.empty},an)
| stmt(T.ANNOTATION(i,a),an) = stmt(i,a::an)
| stmt(T.EXT s,an) =
ExtensionComp.compileSext (reducer()) {stm=s, an=an}
| stmt(s,_) = doStmts(Gen.compileStm s)
and doStmt s = stmt(s,[])
and doStmts ss = app doStmt ss
and jmp(e,labs,an) = let
fun disp(r, i) = let
val b = newReg()
in emit(I.ARITHI{ai=I.ADDI, i=i, r=r, t=b});
(b, zeroR)
end
val (b,x) =
case addr(32,e) of
DISP(b, i) =>
if i = 0 then (b, zeroR) else disp(b, I.IMMED(toInt i))
| AMode(DISPea(r,i)) => disp(r, i)
| AMode(INDXea(r1,r2)) => let val b=newReg()
in emit(I.ARITH{a=I.ADD,r1=r1,r2=r2,t=b});
(b,zeroR)
end
| AMode(INDXSCALEDea(b,x)) => (b,x)
in mark(I.BV{b=b,x=x,n=true,labs=labs},an) end
and call(s,an) = let val reduce = {stm=doStmt, rexp=expr, emit=emitInstruction}
in LC.doCall(reduce,s) end
(* Optimize addition *)
and plus(times,sh1add,sh2add,sh3add,add,addi,a,b,t,an) =
case times a of
(TIMES2,a) => arith(sh1add,a,b,t,an)
| (TIMES4,a) => arith(sh2add,a,b,t,an)
| (TIMES8,a) => arith(sh3add,a,b,t,an)
| _ =>
case times b of
(TIMES2,b) => arith(sh1add,b,a,t,an)
| (TIMES4,b) => arith(sh2add,b,a,t,an)
| (TIMES8,b) => arith(sh3add,b,a,t,an)
| _ => commImmedArith(add,addi,a,b,t,an)
(* Round to zero for division:
* d <- r + i
* d <- if r >= 0 then r else d
*)
and divu32 x = Mulu32.divide{mode=T.TO_ZERO,stm=doStmt} x
and divs32 x = Muls32.divide{mode=T.TO_ZERO,stm=doStmt} x
and divt32 x = Mult32.divide{mode=T.TO_ZERO,stm=doStmt} x
and muldiv(ty,genConst,milliFn,a,b,t,commute,an) =
let fun const(a,i) =
let val r = expr a
in app emitInstruction (genConst{r=r,i=toInt i,d=t})
handle _ => milliCall(milliFn,T.REG(ty,r),T.LI i,t)
end
in case (commute,a,b) of
(_,a,T.LI i) => const(a,i)
| (true,T.LI i,a) => const(a,i)
| (_,a,b) => milliCall(milliFn,a,b,t)
end
(* compile shift *)
and shift(immedShift,varShift,e,T.LI n,t,an) = let
val n = toInt n
in
if n < 0 orelse n > 31 then error "shift"
else mark(I.SHIFT{s=immedShift,r=expr e,p=31-n,len=32-n,t=t},an)
end
| shift(immedShift,varShift,e1,e2,t,an) =
let val r1 = expr e1
val r2 = expr e2
val tmp = newReg()
in emit(I.ARITHI{ai=I.SUBI, i=I.IMMED 31, r=r2, t=tmp});
emit(I.MTCTL{r=tmp, t=CRReg 11});
mark(I.SHIFTV{sv=varShift,r=r1,len=32, t=t},an)
end
(* Generate a COMCLR_LDO/COMICLR_LDO instruction sequence:
* COMCLR,cond r1, r2, t1
* LDO i(b), t2
*
* Note:
* t <- if cond(r1,r2) then i else 0 can be mapped into:
*
* COMCLR,cond r1, r2, t
* LDO i(0), t
*
* if cond(r1,r2) then t <- e can be mapped into:
*
* t' <- e
* COMCLR,cond r1, r2, 0
* LDO 0(t'), t
*
* t <- if cond(r1,r2) then e1 else e2 can be mapped into:
*
* t <- e2
* t' <- e1
* COMCLR,cond r1, r2, 0
* LDO 0(t'), t
*)
and comclr(cond,x,y,yes,no,t,an) =
let val (cond, i1, r2) =
case (opn x, opn y) of
(x, I.REG r2) => (cond, x, r2)
| (I.REG r1, y) => (T.Basis.swapCond cond, y, r1)
| (x, y) => (cond, x, reduceOpn y)
val cc = case cond of
T.LT => I.GE
| T.LE => I.GT
| T.GT => I.LE
| T.GE => I.LT
| T.EQ => I.NE
| T.LTU => I.GEU
| T.LEU => I.GTU
| T.GEU => I.LTU
| T.GTU => I.LEU
| T.NE => I.EQ
| _ => error "comclr"
val tmp = newReg()
val (b,i) =
case yes
of T.LI n => if im14 n then (zeroR, toInt(n)) else
let val {hi,lo} = split11 n
val b = newReg()
in emit(I.LDIL{i=I.IMMED hi,t=b}); (b,lo) end
| e => (expr e, 0)
(*esac*)
val t1 =
case no
of T.LI z => (* false case is zero *)
if z = 0 then tmp else (doExpr(no,tmp,[]); zeroR)
| _ => (doExpr(no,tmp,[]); zeroR) (* move false case to tmp *)
(*esac*)
val instr =
case i1 of
I.REG r1 =>
I.COMCLR_LDO{cc=cc,r1=r1,r2=r2,b=b,i=i,t1=t1,t2=tmp}
| _ => I.COMICLR_LDO{cc=cc,i1=i1,r2=r2,b=b,i2=i,t1=t1,t2=tmp}
in mark(instr, an);
move(tmp, t, [])
end
(* convert an expression into a register *)
and expr(exp) = let
fun comp() = let
val t = newReg()
in doExpr(exp, t, []); t
end
in
case exp
of T.REG(_, r) => r
| T.LI z => if z = 0 then zeroR else comp()
| _ => comp()
end
(* compute an integer expression and put the result in register t *)
and doExpr(e,t,an) =
case e of
T.REG(_,r) => move(r,t,an)
| T.LI n => loadImmed(n,t,an)
| T.LABEXP le =>
(case ldLabelOpnd{label=le,pref=SOME t} of
I.REG r => move(r,t,an)
| opnd => mark(I.LDO{i=opnd,b=zeroR,t=t},an)
)
| T.CONST _ => loadConst(e,t,an)
| T.LABEL _ => loadConst(e,t,an)
| T.ADD(_,a,b) => plus(times,
I.SH1ADDL,I.SH2ADDL,I.SH3ADDL,I.ADD,I.ADDI,
a,b,t,an)
| T.SUB(_,a,T.LI mi) =>
if mi = 0 then doExpr(a,t,an)
else commImmedArith(I.ADD,I.ADDI,a,T.LI(T.I.NEGT(32,mi)),t,an)
| T.SUB(_,a,b) => immedArith(I.SUB,I.SUBI,a,b,t,an)
| T.ADDT(_,a,b) => plus(timest,
I.SH1ADDO,I.SH2ADDO,I.SH3ADDO,I.ADDO,I.ADDIO,
a,b,t,an)
| T.SUBT(_,a,T.LI n) =>
commImmedArith(I.ADDO,I.ADDIO,a,T.LI(T.I.NEGT(32,n)),t,an)
| T.SUBT(_,a,b) => immedArith(I.SUBO,I.SUBIO,a,b,t,an)
| T.ANDB(_,a,T.NOTB(_,b)) => arith(I.ANDCM,a,b,t,an)
| T.ANDB(_,T.NOTB(_,a),b) => arith(I.ANDCM,b,a,t,an)
| T.ANDB(_,a,b) => arith(I.AND,a,b,t,an)
| T.ORB(_,a,b) => arith(I.OR,a,b,t,an)
| T.XORB(_,a,b) => arith(I.XOR,a,b,t,an)
| T.SLL(_,a,b) => shift(I.ZDEP,I.ZVDEP,a,b,t,an)
| T.SRL(_,a,b) => shift(I.EXTRU,I.VEXTRU,a,b,t,an)
| T.SRA(_,a,b) => shift(I.EXTRS,I.VEXTRS,a,b,t,an)
| T.MULU(32,a,b) => muldiv(32,Mulu32.multiply,MC.mulu,a,b,t,true,an)
| T.MULS(32,a,b) => muldiv(32,Muls32.multiply,MC.mulu,a,b,t,true,an)
| T.MULT(32,a,b) => muldiv(32,Mult32.multiply,MC.mulo,a,b,t,true,an)
| T.DIVU(32,a,b) => muldiv(32,divu32,MC.divu,a,b,t,false,an)
(* FIXME: The following is a hack: We use the trapping div in place of
* the non-trapping since we currently expect that the non-trapping
* div will only be used where there is some high-level reasoning
* that the trapping div would in fact not trap. *)
| T.DIVS(T.DIV_TO_ZERO,32,a,b) =>
muldiv(32,divs32,MC.divo,a,b,t,false,an)
| T.DIVT(T.DIV_TO_ZERO,32,a,b) =>
muldiv(32,divt32,MC.divo,a,b,t,false,an)
| T.LOAD(8,ea,mem) => load(8,I.LDB,I.LDBX,I.LDBX,ea,t,mem,an)
| T.LOAD(16,ea,mem) => load(16,I.LDH,I.LDHX,I.LDHX_S,ea,t,mem,an)
| T.LOAD(32,ea,mem) => load(32,I.LDW,I.LDWX,I.LDWX_S,ea,t,mem,an)
| T.COND(_,T.CMP(_,cond,x,y),yes,no) => comclr(cond,x,y,yes,no,t,an)
| T.LET(s,e) => (doStmt s; doExpr(e, t, an))
| T.MARK(e,A.MARKREG f) => (f t; doExpr(e,t,an))
| T.MARK(e,a) => doExpr(e,t,a::an)
| T.PRED(e,c) => doExpr(e,t,A.CTRLUSE c::an)
| T.REXT e =>
ExtensionComp.compileRext (reducer()) {e=e, rd=t, an=an}
| e => doExpr(Gen.compileRexp e,t,an)
(* convert an expression into a floating point register *)
and fexpr(T.FREG(_,r)) = r
| fexpr e = let val t = newFreg()
in doFexpr(e,t,[]); t end
(* compute a floating point expression and put the result in t *)
and doFexpr(e,t,an) =
case e of
(* single precision *)
T.FREG(32,r) => fmove(r,t,an)
| T.FLOAD(32,ea,mem) =>
fload(32,I.FLDWS,I.FLDWX,I.FLDWX_S,ea,t,mem,an)
| T.FADD(32,a,b) => farith(I.FADD_S,a,b,t,an)
| T.FSUB(32,a,b) => farith(I.FSUB_S,a,b,t,an)
| T.FMUL(32,a,b) => farith(I.FMPY_S,a,b,t,an)
| T.FDIV(32,a,b) => farith(I.FDIV_S,a,b,t,an)
| T.FABS(32,a) => funary(I.FABS_S,a,t,an)
| T.FSQRT(32,a) => funary(I.FSQRT_S,a,t,an)
(* double precision *)
| T.FREG(64,r) => fmove(r,t,an)
| T.FLOAD(64,ea,mem) =>
fload(64,I.FLDDS,I.FLDDX,I.FLDDX_S,ea,t,mem,an)
| T.FADD(64,a,b) => farith(I.FADD_D,a,b,t,an)
| T.FSUB(64,a,b) => farith(I.FSUB_D,a,b,t,an)
| T.FMUL(64,a,b) => farith(I.FMPY_D,a,b,t,an)
| T.FDIV(64,a,b) => farith(I.FDIV_D,a,b,t,an)
| T.FABS(64,a) => funary(I.FABS_D,a,t,an)
| T.FSQRT(64,a) => funary(I.FSQRT_D,a,t,an)
(* conversions *)
| T.CVTF2F(fty,fty',e) =>
(case (fty,fty') of
(64,32) => fcnv(I.FCNVFF_SD,e,t,an)
| (32,64) => fcnv(I.FCNVFF_DS,e,t,an)
| (32,32) => doFexpr(e,t,an)
| (64,64) => doFexpr(e,t,an)
| _ => error "CVTF2F"
)
| T.CVTI2F(32,_,e) => app emitInstruction (MilliCode.cvti2s{rs=expr e,fd=t})
| T.CVTI2F(64,_,e) => app emitInstruction (MilliCode.cvti2d{rs=expr e,fd=t})
(* negation is implemented as subtraction *)
| T.FNEG(ty,a) => doFexpr(T.FSUB(ty,T.FREG(ty,zeroF),a),t,an)
| T.FMARK(e,A.MARKREG f) => (f t; doFexpr(e,t,an))
| T.FMARK(e,a) => doFexpr(e,t,a::an)
| T.FPRED(e,c) => doFexpr(e,t,A.CTRLUSE c::an)
| T.FEXT e =>
ExtensionComp.compileFext (reducer()) {e=e, fd=t, an=an}
| e => error "doFexpr"
and doCCexpr(T.CC(_,r),t,an) = move(r,t,an)
| doCCexpr(T.FCC(_,r),t,an) = move(r,t,an)
| doCCexpr(T.CMP(ty,cond,e1,e2),t,an) = error "doCCexpr"
| doCCexpr(T.CCMARK(e,A.MARKREG f),t,an) = (f t; doCCexpr(e,t,an))
| doCCexpr(T.CCMARK(e,a),t,an) = doCCexpr(e,t,a::an)
| doCCexpr(T.CCEXT e,t,an) =
ExtensionComp.compileCCext (reducer()) {e=e,ccd=t,an=an}
| doCCexpr e = error "doCCexpr"
and ccExpr(T.CC(_,r)) = r
| ccExpr(T.FCC(_,r)) = r
| ccExpr e = let val t = newReg() in doCCexpr(e,t,[]); t end
(* convert an expression into an operand *)
and opn(c as T.CONST _) = I.LabExp(c,I.F)
| opn(l as T.LABEL _) = I.LabExp(l,I.F)
| opn(T.LABEXP le) = ldLabelOpnd{label=le,pref=NONE}
| opn(e as T.LI n) = if im11 n then I.IMMED(toInt n)
else I.REG(expr e)
| opn e = I.REG(expr e)
and addrOf e =
case addr(0, e)
of AMode mode => mode
| DISP(r, mi) => DISPea(r, I.IMMED(toInt mi))
and reducer() =
TS.REDUCER{reduceRexp = expr,
reduceFexp = fexpr,
reduceCCexp = ccExpr,
reduceStm = stmt,
operand = opn,
reduceOperand = reduceOpn,
addressOf = addrOf,
emit = mark',
instrStream = instrStream,
mltreeStream = self()
}
(* convert mlrisc to cellset:
* condition code registers are mapped onto general registers
*)
and cellset mlrisc =
let fun g([],acc) = acc
| g(T.GPR(T.REG(_,r))::regs,acc) = g(regs,C.addReg(r,acc))
| g(T.FPR(T.FREG(_,f))::regs,acc) = g(regs,C.addFreg(f,acc))
| g(T.CCR(T.CC(_,cc))::regs,acc) = g(regs,C.addReg(cc,acc))
| g(_::regs, acc) = g(regs, acc)
in g(mlrisc, C.empty) end
and self() =
TS.S.STREAM
{ beginCluster = beginCluster,
endCluster = endCluster,
emit = doStmt,
pseudoOp = pseudoOp,
defineLabel = defineLabel,
entryLabel = entryLabel,
comment = comment,
annotation = annotation,
getAnnotations = getAnnotations,
exitBlock = fn regs => exitBlock(cellset regs)
}
in self()
end
end
|