File: hppa.sml

package info (click to toggle)
mlton 20210117%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 58,464 kB
  • sloc: ansic: 27,682; sh: 4,455; asm: 3,569; lisp: 2,879; makefile: 2,347; perl: 1,169; python: 191; pascal: 68; javascript: 7
file content (988 lines) | stat: -rw-r--r-- 43,993 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
(* hppa.sml
 * 
 * COPYRIGHT (c) 1996 AT&T Bell Laboratories.
 *
 * generates machine code from the mltree.
 *
 * This new version has been completely rewritten to take (more) advantage
 * of the new improved instruction set. 
 * 
 * Please see the README.hppa file for details.
 *
 * -- Allen
 *)

functor Hppa
  (structure HppaInstr : HPPAINSTR
   structure ExtensionComp : MLTREE_EXTENSION_COMP (* where I = HppaInstr and T = HppaInstr.T *)
                             where type I.addressing_mode = HppaInstr.addressing_mode
                               and type I.ea = HppaInstr.ea
                               and type I.instr = HppaInstr.instr
                               and type I.instruction = HppaInstr.instruction
                               and type I.operand = HppaInstr.operand
                             where type T.Basis.cond = HppaInstr.T.Basis.cond
                               and type T.Basis.div_rounding_mode = HppaInstr.T.Basis.div_rounding_mode
                               and type T.Basis.ext = HppaInstr.T.Basis.ext
                               and type T.Basis.fcond = HppaInstr.T.Basis.fcond
                               and type T.Basis.rounding_mode = HppaInstr.T.Basis.rounding_mode
                               and type T.Constant.const = HppaInstr.T.Constant.const
                               and type ('s,'r,'f,'c) T.Extension.ccx = ('s,'r,'f,'c) HppaInstr.T.Extension.ccx
                               and type ('s,'r,'f,'c) T.Extension.fx = ('s,'r,'f,'c) HppaInstr.T.Extension.fx
                               and type ('s,'r,'f,'c) T.Extension.rx = ('s,'r,'f,'c) HppaInstr.T.Extension.rx
                               and type ('s,'r,'f,'c) T.Extension.sx = ('s,'r,'f,'c) HppaInstr.T.Extension.sx
                               and type T.I.div_rounding_mode = HppaInstr.T.I.div_rounding_mode
                               and type T.Region.region = HppaInstr.T.Region.region
                               and type T.ccexp = HppaInstr.T.ccexp
                               and type T.fexp = HppaInstr.T.fexp
                               (* and type T.labexp = HppaInstr.T.labexp *)
                               and type T.mlrisc = HppaInstr.T.mlrisc
                               and type T.oper = HppaInstr.T.oper
                               and type T.rep = HppaInstr.T.rep
                               and type T.rexp = HppaInstr.T.rexp
                               and type T.stm = HppaInstr.T.stm
   structure MilliCode : HPPA_MILLICODE (* where I = HppaInstr *)
                         where type I.Constant.const = HppaInstr.Constant.const
                           and type I.Region.region = HppaInstr.Region.region
                           and type I.T.Basis.cond = HppaInstr.T.Basis.cond
                           and type I.T.Basis.div_rounding_mode = HppaInstr.T.Basis.div_rounding_mode
                           and type I.T.Basis.ext = HppaInstr.T.Basis.ext
                           and type I.T.Basis.fcond = HppaInstr.T.Basis.fcond
                           and type I.T.Basis.rounding_mode = HppaInstr.T.Basis.rounding_mode
                           and type ('s,'r,'f,'c) I.T.Extension.ccx = ('s,'r,'f,'c) HppaInstr.T.Extension.ccx
                           and type ('s,'r,'f,'c) I.T.Extension.fx = ('s,'r,'f,'c) HppaInstr.T.Extension.fx
                           and type ('s,'r,'f,'c) I.T.Extension.rx = ('s,'r,'f,'c) HppaInstr.T.Extension.rx
                           and type ('s,'r,'f,'c) I.T.Extension.sx = ('s,'r,'f,'c) HppaInstr.T.Extension.sx
                           and type I.T.I.div_rounding_mode = HppaInstr.T.I.div_rounding_mode
                           and type I.T.ccexp = HppaInstr.T.ccexp
                           and type I.T.fexp = HppaInstr.T.fexp
                           (* and type I.T.labexp = HppaInstr.T.labexp *)
                           and type I.T.mlrisc = HppaInstr.T.mlrisc
                           and type I.T.oper = HppaInstr.T.oper
                           and type I.T.rep = HppaInstr.T.rep
                           and type I.T.rexp = HppaInstr.T.rexp
                           and type I.T.stm = HppaInstr.T.stm
                           and type I.addressing_mode = HppaInstr.addressing_mode
                           and type I.arith = HppaInstr.arith
                           and type I.arithi = HppaInstr.arithi
                           and type I.bcond = HppaInstr.bcond
                           and type I.bitcond = HppaInstr.bitcond
                           and type I.cmp = HppaInstr.cmp
                           and type I.cmpi = HppaInstr.cmpi
                           and type I.ea = HppaInstr.ea
                           and type I.farith = HppaInstr.farith
                           and type I.fcnv = HppaInstr.fcnv
                           and type I.fcond = HppaInstr.fcond
                           and type I.field_selector = HppaInstr.field_selector
                           and type I.fload = HppaInstr.fload
                           and type I.floadx = HppaInstr.floadx
                           and type I.fmt = HppaInstr.fmt
                           and type I.fstore = HppaInstr.fstore
                           and type I.fstorex = HppaInstr.fstorex
                           and type I.funary = HppaInstr.funary
                           and type I.instr = HppaInstr.instr
                           and type I.instruction = HppaInstr.instruction
                           and type I.load = HppaInstr.load
                           and type I.loadi = HppaInstr.loadi
                           and type I.operand = HppaInstr.operand
                           and type I.scond = HppaInstr.scond
                           and type I.shift = HppaInstr.shift
                           and type I.shiftv = HppaInstr.shiftv
                           and type I.store = HppaInstr.store
   structure LabelComp : LABEL_COMP (* where I = HppaInstr and T = HppaInstr.T *)
                         where type I.addressing_mode = HppaInstr.addressing_mode
                           and type I.ea = HppaInstr.ea
                           and type I.instr = HppaInstr.instr
                           and type I.instruction = HppaInstr.instruction
                           and type I.operand = HppaInstr.operand
                         where type T.Basis.cond = HppaInstr.T.Basis.cond
                           and type T.Basis.div_rounding_mode = HppaInstr.T.Basis.div_rounding_mode
                           and type T.Basis.ext = HppaInstr.T.Basis.ext
                           and type T.Basis.fcond = HppaInstr.T.Basis.fcond
                           and type T.Basis.rounding_mode = HppaInstr.T.Basis.rounding_mode
                           and type T.Constant.const = HppaInstr.T.Constant.const
                           and type ('s,'r,'f,'c) T.Extension.ccx = ('s,'r,'f,'c) HppaInstr.T.Extension.ccx
                           and type ('s,'r,'f,'c) T.Extension.fx = ('s,'r,'f,'c) HppaInstr.T.Extension.fx
                           and type ('s,'r,'f,'c) T.Extension.rx = ('s,'r,'f,'c) HppaInstr.T.Extension.rx
                           and type ('s,'r,'f,'c) T.Extension.sx = ('s,'r,'f,'c) HppaInstr.T.Extension.sx
                           and type T.I.div_rounding_mode = HppaInstr.T.I.div_rounding_mode
                           and type T.Region.region = HppaInstr.T.Region.region
                           and type T.ccexp = HppaInstr.T.ccexp
                           and type T.fexp = HppaInstr.T.fexp
                           (* and type T.labexp = HppaInstr.T.labexp *)
                           and type T.mlrisc = HppaInstr.T.mlrisc
                           and type T.oper = HppaInstr.T.oper
                           and type T.rep = HppaInstr.T.rep
                           and type T.rexp = HppaInstr.T.rexp
                           and type T.stm = HppaInstr.T.stm
   val costOfMultiply : int ref
   val costOfDivision : int ref
  ) : MLTREECOMP =
struct
   structure I = HppaInstr
   structure T = I.T
   structure TS = ExtensionComp.TS
   structure C = I.C
   structure CB = CellsBasis
   structure MC = MilliCode
   structure LC = LabelComp
   structure Region = I.Region
   structure A = MLRiscAnnotations
   structure CFG = ExtensionComp.CFG

   type instrStream = (I.instruction, C.cellset, CFG.cfg) TS.stream
   type mltreeStream = (T.stm, T.mlrisc list, CFG.cfg) TS.stream

   structure Gen = MLTreeGen(structure T = T
			     structure Cells = C
                             val intTy = 32
                             val naturalWidths = [32]
                             datatype rep = SE | ZE | NEITHER
                             val rep = NEITHER
                            )
   fun mkcopy{dst, src, tmp} =
       I.COPY{k=CB.GP, sz=32, dst=dst, src=src, tmp=tmp}
   fun mkfcopy{dst, src, tmp} =
       I.COPY{k=CB.FP, sz=64, dst=dst, src=src, tmp=tmp}
   structure W = Word32
   structure Multiply32 = struct
     structure I = I
     structure T = T
     structure CB = CB
     val intTy = 32
     type arg  = {r1:CB.cell,r2:CB.cell,d:CB.cell}
     type argi = {r:CB.cell,i:int,d:CB.cell}

     fun mov{r,d} = mkcopy{dst=[d],src=[r],tmp=NONE}
     fun add{r1,r2,d} = I.arith{a=I.ADD,r1=r1,r2=r2,t=d}
     fun slli{r,i,d} = [I.shift{s=I.ZDEP,r=r,p=31-i,len=32-i,t=d}]
     fun srli{r,i,d} = [I.shift{s=I.EXTRU,r=r,p=31-i,len=32-i,t=d}]
     fun srai{r,i,d} = [I.shift{s=I.EXTRS,r=r,p=31-i,len=32-i,t=d}]
   end

   (* signed, trapping version of multiply and divide *)
   structure Mult32 = MLTreeMult
    (open Multiply32
     val trapping = true
     val multCost = costOfMultiply
     val divCost  = costOfDivision
     fun addv{r1,r2,d} = [I.arith{a=I.ADDO,r1=r1,r2=r2,t=d}]
     fun subv{r1,r2,d} = [I.arith{a=I.SUBO,r1=r1,r2=r2,t=d}]
     val sh1addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH1ADDO,r1=r1,r2=r2,t=d}])
     val sh2addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH2ADDO,r1=r1,r2=r2,t=d}])
     val sh3addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH3ADDO,r1=r1,r2=r2,t=d}])

     val signed = true)

   (* unsigned, non-trapping version of multiply and divide *)
   structure Mulu32 = MLTreeMult
    (open Multiply32
     val trapping = false
     val multCost = costOfMultiply
     val divCost  = costOfDivision
     fun addv{r1,r2,d} = [I.arith{a=I.ADD,r1=r1,r2=r2,t=d}]
     fun subv{r1,r2,d} = [I.arith{a=I.SUB,r1=r1,r2=r2,t=d}]
     val sh1addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH1ADDL,r1=r1,r2=r2,t=d}])
     val sh2addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH2ADDL,r1=r1,r2=r2,t=d}])
     val sh3addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH3ADDL,r1=r1,r2=r2,t=d}])

     val signed   = false)

   (* signed, non-trapping version of multiply and divide *)
   structure Muls32 = MLTreeMult
    (open Multiply32
     val trapping = false
     val multCost = costOfMultiply
     val divCost  = costOfDivision
     fun addv{r1,r2,d} = [I.arith{a=I.ADD,r1=r1,r2=r2,t=d}]
     fun subv{r1,r2,d} = [I.arith{a=I.SUB,r1=r1,r2=r2,t=d}]
     val sh1addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH1ADDL,r1=r1,r2=r2,t=d}])
     val sh2addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH2ADDL,r1=r1,r2=r2,t=d}])
     val sh3addv = SOME(fn{r1,r2,d} => [I.arith{a=I.SH3ADDL,r1=r1,r2=r2,t=d}])

     val signed   = true)

   fun error msg = MLRiscErrorMsg.error("Hppa",msg)

   datatype ea = datatype I.addressing_mode

   datatype times248 = TIMES1 | TIMES2 | TIMES4 | TIMES8 

   datatype amode = 
       AMode of I.addressing_mode 
     | DISP of CB.cell * T.I.machine_int
     

   fun LI i        = T.LI(T.I.fromInt(32, i))
   fun toInt mi    = T.I.toInt(32, mi)
   fun toInt32 mi  = T.I.toInt32(32, mi)
   fun toWord mi   = T.I.toWord(32, mi)
   fun toWord32 mi = T.I.toWord32(32, mi)
   fun EQ(x,y)     = T.I.EQ(32, x, y)
   fun LT(x,y)     = T.I.LT(32, x, y)
   fun GE(x,y)     = T.I.GE(32, x, y)


   fun selectInstructions
        (instrStream as
         TS.S.STREAM{emit=emitInstruction, defineLabel, entryLabel, getAnnotations,
                  beginCluster, endCluster, annotation,
                  exitBlock, pseudoOp, comment, ...}) =
   let
       (* operand type and effective addresss *)
 
       val newReg  = C.newReg
       val newFreg = C.newFreg
       val CRReg   = C.Reg C.CR
       val zeroR = C.r0 
       val zeroF = C.f0
       val zeroEA = I.Direct zeroR
       val zeroT = T.REG(32,zeroR)
       val zeroImmed = I.IMMED 0
       val zeroOpn = zeroImmed

       val emit = emitInstruction o I.INSTR

       local 
	   fun f(i,[]) = i
	     | f(i, a::an) = f (I.ANNOTATION{i=i, a=a}, an)
       in
         fun mark(i, an) = emitInstruction(f(I.INSTR i, an))
	 fun mark'(i, an) = emitInstruction(f(i, an))
       end

       val ldLabelEA = LC.ldLabelEA emitInstruction
       val ldLabelOpnd = LC.ldLabelOpnd emitInstruction

       (* Check whether an expression is being multiplied by 2, 4, or 8 *)
       local
	 fun mul(mi,e, exp) = 
	   if EQ(mi, 2) then (TIMES2, e)
	   else if EQ(mi, 4) then (TIMES4, e)
		else if EQ(mi, 8) then (TIMES8, e) 
		     else (TIMES1, exp)
       in	 
	 fun times(exp) =
	  (case exp
	   of T.MULU(_, e, T.LI mi) => mul(mi, e, exp)
	    | T.MULU(_, T.LI mi, e) => mul(mi, e, exp)
	    | T.SLL(_, e, T.LI mi) => 
	       if EQ(mi, 1) then (TIMES2, e)
	       else if EQ(mi, 2) then (TIMES4, e)
		    else if EQ(mi, 3) then (TIMES8, e)
			 else (TIMES1, exp)
	    | _ => (TIMES1, exp)
          (*esac*))

	 (* trapping version of the above *)
	 fun timest(exp as T.MULT(_, e, T.LI mi)) = mul(mi, e, exp)
	   | timest(exp as T.MULT(_, T.LI mi, e)) = mul(mi, e, exp)
	   | timest e = (TIMES1, e)
       end (*local*)

       fun im5 n   = LT(n, 16) andalso GE(n, ~16)
       fun im11 n  = LT(n, 1024)  andalso GE(n, ~1024)
       fun im14 n  = LT(n, 8192)  andalso GE(n, ~8192)

       (* Split values into 11 low bits and 21 high bits *)
       fun split11w w = 
           {hi = Word32.toIntX(Word32.~>>(w,0w11)), 
            lo = Word32.toIntX(Word32.andb(w,0wx7ff))}
       fun split11 n = split11w(toWord32 n)

       (* load immediate *)
       fun loadImmed(n,t,an) =
           if im14 n 
           then mark(I.LDO{i=I.IMMED(toInt n),b=zeroR,t=t},an)
           else let val {hi,lo} = split11 n
                    val tmp = newReg()
                in  emit(I.LDIL{i=I.IMMED hi,t=tmp});
                    mark(I.LDO{i=I.IMMED lo,b=tmp,t=t},an)
                end

       (* generate code to load a immediate constant *) 
       fun immed (n: T.I.machine_int) = 
            let val t = newReg() in loadImmed(n,t,[]); t end

       (* load constant *)
       fun loadConst(c,t,an) = 
             mark(I.LDO{b=zeroR,i=I.LabExp(c,I.F),t=t},an) (* XXX *)

       (* convert an operand into a register *)
       fun reduceOpn i = 
            let val t = newReg()
            in  emit(I.LDO{i=i,b=zeroR,t=t}); t end
 
       (* emit parallel copies *)
       fun copy(dst,src,an) =
         mark'(mkcopy{dst=dst,src=src,
                    tmp=case dst of [_] => NONE | _ => SOME(I.Direct(newReg()))},an)
       fun fcopy(dst,src,an) =
         mark'(mkfcopy{dst=dst,src=src,
                     tmp=case dst of [_] => NONE | _ => SOME(I.FDirect(newFreg()))},an)
 
       (* move register s to register t *)
       fun move(s,t,an) =
           if CB.sameColor(s,t) orelse CB.registerId t = 0 then ()
           else if CB.registerId s = 0 then
                mark(I.LDO{i=zeroImmed,b=zeroR,t=t},an)
           else mark'(mkcopy{src=[s],dst=[t],tmp=NONE},an)
 
       (* move floating point register s to register t *)
       fun fmove(s,t,an) =
           if CB.sameColor(s,t) then ()
           else mark'(mkfcopy{src=[s],dst=[t],tmp=NONE},an)

       (* generate millicode function call *)
       fun milliCall(milliFn, e1, e2, rd) =
       let val rs = expr e1 
           val rt = expr e2
       in  app emitInstruction (milliFn{rs=rs,rt=rt,rd=rd}) end 

       (* emit an arithmetic op with possible immediate mode 
        * The immed operand is the first operand on the HPPA! Arrrrggggghhhh!
        *)
       and immedArith(a,ai,e1,e2,t,an) =  
          case (opn e1,expr e2) of
             (I.REG r1,r2) => mark(I.ARITH{a=a,r1=r1,r2=r2,t=t},an)
           | (i,r) => mark(I.ARITHI{ai=ai,r=r,i=i,t=t},an)

       (* emit a commutative arithmetic op with immediate mode *)
       and commImmedArith(a,ai,e1,e2,t,an) =
          case (opn e1,opn e2) of
             (I.REG r1,I.REG r2) => mark(I.ARITH{a=a,r1=r1,r2=r2,t=t},an)
          |  (I.REG r,i)  => mark(I.ARITHI{ai=ai,r=r,i=i,t=t},an)
          |  (i,I.REG r)  => mark(I.ARITHI{ai=ai,r=r,i=i,t=t},an)
          |  (i,j) => mark(I.ARITHI{ai=ai,r=reduceOpn i,i=j,t=t},an)

       (* emit an arithmetic op *)
       and arith(a,e1,e2,t,an) = 
          mark(I.ARITH{a=a,r1=expr e1,r2=expr e2,t=t},an)
 
       (* emit an unary floating point op *)
       and funary(a,e,t,an) = mark(I.FUNARY{fu=a,f=fexpr e,t=t},an)

       (* emit an conversion floating point op *)
       and fcnv(a,e,t,an) = mark(I.FCNV{fcnv=a,f=fexpr e,t=t},an)
 
       (* emit a binary floating point op *)
       and farith(a,e1,e2,t,an) = 
           mark(I.FARITH{fa=a,r1=fexpr e1,r2=fexpr e2,t=t},an)
 
       (* convert an expression into an addressing mode 
        * scale is the size of the data being addressed.
	*
	* Return the addressing mode and an infinite precision immediate
	* in the case of DISPea.
        *)
       and addr(scale,T.ADD(_,e,T.LI n))    = DISP(expr e, n)
         | addr(scale,T.ADD(_,e,c as T.CONST _)) =
              AMode(DISPea(expr e,I.LabExp(c,I.F)))
         | addr(scale,T.ADD(ty,i as T.LI _,e)) = addr(scale,T.ADD(ty,e,i))
         | addr(scale,T.ADD(_,c as T.CONST _,e)) = 
              AMode(DISPea(expr e,I.LabExp(c,I.F)))
         | addr(scale,T.ADD(_,e,T.LABEXP le)) = 
             let val rs = expr e
                 val (rt, opnd) = ldLabelEA le
             in  case (CB.registerId rt, opnd) of
                    (0, opnd) => AMode(DISPea(rs,opnd))
                 |  (_,I.IMMED 0) => AMode(INDXea(rs,rt))
                 |  (_,opnd) => 
                     let val tmp = newReg()
                     in  emit(I.ARITH{a=I.ADD,r1=rs,r2=rt,t=tmp});
                         AMode(DISPea(tmp,opnd))
                     end
             end
         | addr(scale,T.ADD(t,e1 as T.LABEXP l,e2)) = addr(scale,T.ADD(t,e2,e1))
         | addr(scale,T.ADD(_,e1,e2)) = 
           let (* check for special multiply add sequence 
                * here, e1 is is scaled 
                *)
               fun scaleIndexed(actualScale,opcode,e1,e2) = 
               if actualScale = scale then (* can we use scaled indexing mode?*)
                   let val x = expr e1
                       val b = expr e2
                   in  AMode(INDXSCALEDea(b,x))
                   end
               else  (* no, use the SHnADD operator, then *)
                   let val tmp = newReg()
                   in  emit(I.ARITH{a=opcode,r1=expr e1,r2=expr e2,t=tmp});
                       AMode(DISPea(tmp,zeroImmed))
                   end
           in  case times e1 of
                 (TIMES2,e1) => scaleIndexed(16,I.SH1ADD,e1,e2)
               | (TIMES4,e1) => scaleIndexed(32,I.SH2ADD,e1,e2)
               | (TIMES8,e1) => scaleIndexed(64,I.SH3ADD,e1,e2)
               | _ => 
		 case times e2 of
		   (TIMES2,e2) => scaleIndexed(16,I.SH1ADD,e2,e1)
		 | (TIMES4,e2) => scaleIndexed(32,I.SH2ADD,e2,e1)
		 | (TIMES8,e2) => scaleIndexed(64,I.SH3ADD,e2,e1)
		 | _ => AMode(INDXea(expr e1,expr e2))
           end
         | addr(scale,T.SUB(ty,e,T.LI n)) = addr(scale,T.ADD(ty,e,T.LI(T.I.NEGT(32,n))))
         | addr(scale,T.LABEXP lexp)     = AMode(DISPea(ldLabelEA(lexp)))
         | addr(scale,ea)                = AMode(DISPea(expr ea,zeroImmed))
 
       (* emit an integer load 
        * li - load immediate, 
        * l  - load indexed
        * ls - load indexed with scaling
        * r1 is base r2 is x
        *)
       and load(scale,li,l,ls,ea,t,mem,an) = 
           case addr(scale,ea) 
	   of DISP(r, off) =>
                 if im14 off then
                    mark(I.LOADI{li=li,r=r,i=I.IMMED(toInt off),t=t,mem=mem},an)
                 else
                    mark(I.LOAD{l=l,r1=r,r2=immed off,t=t,mem=mem},an)
            | AMode(DISPea(r,i)) => mark(I.LOADI{li=li,r=r,i=i,t=t,mem=mem},an) 
            | AMode(INDXea(r1,r2)) => mark(I.LOAD{l=l,r1=r1,r2=r2,t=t,mem=mem},an) 
            | AMode(INDXSCALEDea(b,x)) => mark(I.LOAD{l=ls,r1=b,r2=x,t=t,mem=mem},an)
 
       (* emit an integer store *)
       and store(st,ea,r,mem,an) =
           let val (b,d) =
               case addr(0,ea) 
                of DISP(b, disp) =>
                    if im14 disp then (b,I.IMMED(toInt disp) )
                    else let val {hi,lo} = split11 disp
                             val tmp1    = newReg()
                             val tmp2    = newReg()
                         in  emit(I.LDIL{i=I.IMMED hi,t=tmp1});
                             emit(I.ARITH{a=I.ADD,r1=b,r2=tmp1,t=tmp2});
                             (tmp2,I.IMMED lo)
                         end  
                | AMode(DISPea bd) => bd
                | AMode(INDXea(r1,r2)) => 
                    let val tmp = newReg()
                    in  emit(I.ARITH{a=I.ADD,r1=r1,r2=r2,t=tmp});
                        (tmp,I.IMMED 0)
                    end
                | AMode(INDXSCALEDea _) => error "store"
           in  mark(I.STORE{st=st,b=b,d=d,r=r,mem=mem},an) end

       (* emit a floating point load *)
       and fload(scale,fl,flx,flxs,ea,t,mem,an) =
           case addr(scale,ea) of
             AMode(INDXea(b,x)) => mark(I.FLOADX{flx=flx,b=b,x=x,t=t,mem=mem},an)
           | AMode(INDXSCALEDea(b,x)) => 
               mark(I.FLOADX{flx=flxs,b=b,x=x,t=t,mem=mem},an)
           | AMode(DISPea(b,d)) => 
               let val tmp = newReg()
               in  emit(I.ARITHI{ai=I.ADDI,r=b,i=d,t=tmp});
                   mark(I.FLOADX{flx=flx,b=tmp,x=zeroR,t=t,mem=mem},an)
               end
           | DISP(b, d) =>
               if im5 d then 
                  mark(I.FLOAD{fl=fl,b=b,d=toInt d,t=t,mem=mem},an)
               else
                  mark(I.FLOADX{flx=flx,b=b,x=immed d,t=t,mem=mem},an)
  
       (* emit a floating point store *)
       and fstore(scale,fst,fstx,fstxs,ea,data,mem,an) =
           let val r = fexpr data 
           in  case addr(scale,ea) of
                 DISP(b, d) => 
                   if im5 d then 
		     mark(I.FSTORE{fst=fst,b=b,d=(toInt d),r=r,mem=mem},an)
                   else mark(I.FSTOREX{fstx=fstx,b=b,x=immed d,r=r,mem=mem},an)
               | AMode(DISPea(b,d)) => 
                   let val tmp = newReg()
                   in  emit(I.ARITHI{ai=I.ADDI,r=b,i=d,t=tmp});
                       mark(I.FSTORE{fst=I.FSTDS,b=tmp,d=0,r=r,mem=mem},an)
                   end
               | AMode(INDXea(b,x)) => 
                   mark(I.FSTOREX{fstx=fstx,b=b,x=x,r=r,mem=mem},an)
               | AMode(INDXSCALEDea(b,x)) => 
                   mark(I.FSTOREX{fstx=fstxs,b=b,x=x,r=r,mem=mem},an)
           end
 
       (* emit an integer branch instruction *)
                              
         (* generate a branch *)  
       and branch(T.CMP(ty,cc,T.LI n,e),lab,an) = (* optimize cmp immed *) 
             emitBranchCmpWithImmed(ty,cc,n,e,lab,an)
         | branch(T.CMP(ty,cc,e1,e2 as T.LI _),lab,an) = (* commute *) 
             branch(T.CMP(ty,T.Basis.swapCond cc,e2,e1),lab,an)
         | branch(T.CMP(ty,cc,a,b),lab,an) = (* do the usual *)
             emitBranch(ty,cc,expr a,expr b,lab,an)
         | branch(T.FCMP(fty,cc,a,b),lab,an) =
           let val f1 = fexpr a
               val f2 = fexpr b
               val fallThrough = Label.anon()
               fun fcond T.==   = I.!=
                 | fcond T.?<>  = I.==
                 | fcond T.?    = I.<=>
                 | fcond T.<=>  = I.?
                 | fcond T.>    = I.?<=
                 | fcond T.>=   = I.?<
                 | fcond T.?>   = I.<=
                 | fcond T.?>=  = I.<
                 | fcond T.<    = I.?>=
                 | fcond T.<=   = I.?>
                 | fcond T.?<   = I.>=
                 | fcond T.?<=  = I.>
                 | fcond T.<>   = I.?=
                 | fcond T.?=   = I.<>
                 | fcond _      = error "fcond"
           in  mark(I.FBRANCH{cc=fcond cc,f1=f1,f2=f2,t=lab,f=fallThrough,
                              fmt=getFmt a,n=true,long=false},an);
               defineLabel fallThrough
           end
         | branch(e,lab,an) = error "branch: what is the semantics?" 

        (* generate a branch cmp with immed *)
       and emitBranchCmpWithImmed(ty,cc,n,e2 as T.ANDB(_,e,T.LI mask),t,an) = 
             emitBranchOnBit(ty,cc,n,e2,e,toWord32 mask,t,an)
         | emitBranchCmpWithImmed(ty,cc,n,e2 as T.ANDB(_,T.LI mask,e),t,an) = 
             emitBranchOnBit(ty,cc,n,e2,e,toWord32 mask,t,an)
         | emitBranchCmpWithImmed(ty,cc,n,e2,t,an) = 
             emitBranchI(ty,cc,n,e2,t,an)

        (* generate a branch on bit *)
       and emitBranchOnBit(ty,cc,n,e2,e,mask,t,an) =
           let fun isPowerOf2 w = W.andb(w,w-0w1) = 0w0
               fun log w = 
               let fun f(0w1,n) = n
                 | f(w,n) = f(W.>>(w,0w1),n+1)
               in  f(w,0) end
               val n' = toWord32 n
           in  if (n' = 0w0 orelse n' = mask) andalso
                  (cc = T.EQ orelse cc = T.NE) andalso
                  (mask > 0w0 andalso isPowerOf2 mask) then (* bit test! *)
                  let val bc = 
                          case (cc,n') of
                            (T.EQ,0w0) => I.BCLR (* bit is 0 *)
                          | (T.EQ,_)   => I.BSET (* bit is 1 *)
                          | (T.NE,0w0) => I.BSET (* bit is 1 *)
                          | (T.NE,_)   => I.BCLR (* bit is 0 *)
                          | _          => error "emitBranchOnBit"
                      val f = Label.anon()
                      val bit = 31 - log mask 
                  in  mark(I.BB{bc=bc,r=expr e,p=bit,t=t,f=f,
                                n=false, nop=true},an);
                      defineLabel f
                  end 
               else
                  emitBranchI(ty,cc,n,e2,t,an)
           end
                  
       (* generate a branch cmp with immediate *)
       and emitBranchI(ty,cc,n,e2,t,an) = 
           let val r2 = expr e2 
           in  if im5 n then
               let val f = Label.anon()
                   val (cmpi,bc) =
                       case cc of
                         T.LT  => (I.COMIBT, I.LT)
                       | T.LE  => (I.COMIBT, I.LE)
                       | T.GT  => (I.COMIBF, I.LE)
                       | T.GE  => (I.COMIBF, I.LT)
                       | T.EQ  => (I.COMIBT, I.EQ)
                       | T.LTU => (I.COMIBT, I.LTU)
                       | T.LEU => (I.COMIBT, I.LEU)
                       | T.GEU => (I.COMIBF, I.LTU)
                       | T.GTU => (I.COMIBF, I.LEU)
                       | T.NE  => (I.COMIBF, I.EQ)
                       | _     => error "emitBranchI"
               in  mark(I.BCONDI{cmpi=cmpi,bc=bc,i=toInt(n),r2=r2,t=t,f=f,
                                  n=false, nop=true},an);
                   defineLabel f
               end
               else emitBranch(ty,cc,immed n,r2,t,an)
           end

       (* generate a branch *)
       and emitBranch(ty,cond,r1,r2,t,an) = 
           let val f = Label.anon()
               val (cmp,bc,r1,r2) =
                    case cond of
                       T.LT  => (I.COMBT, I.LT, r1, r2)
                     | T.LE  => (I.COMBT, I.LE, r1, r2)
                     | T.GT  => (I.COMBT, I.LT, r2, r1)
                     | T.GE  => (I.COMBT, I.LE, r2, r1)
                     | T.EQ  => (I.COMBT, I.EQ, r1, r2)
                     | T.LTU => (I.COMBT, I.LTU, r1, r2)
                     | T.LEU => (I.COMBT, I.LEU, r1, r2)
                     | T.GEU => (I.COMBT, I.LEU, r2, r1)
                     | T.GTU => (I.COMBT, I.LTU, r2, r1)
                     | T.NE  => (I.COMBF, I.EQ, r1, r2)
                     | _     => error "emitBranch"
           in  mark(I.BCOND{cmp=cmp,bc=bc,r1=r1,r2=r2,t=t,f=f,
                            n=false,nop=true},an);
               defineLabel f
           end

       and getFmt e =
           case Gen.Size.fsize e of
             32  => I.SGL
           | 64  => I.DBL
           | 128 => I.QUAD
           | _   => error "getFmt"

       and goto(l,an) = mark(I.B{lab=l,n=true},an)

           (* generate code for a statement *)
       and stmt(T.MV(32,t,e),an) = doExpr(e,t,an)
         | stmt(T.FMV(64,t,e),an) = doFexpr(e,t,an)
         | stmt(T.CCMV(t,e),an) = doCCexpr(e,t,an)
         | stmt(T.COPY(32,dst,src),an) = copy(dst,src,an)
         | stmt(T.FCOPY(64,dst,src),an) = fcopy(dst,src,an)
         | stmt(T.JMP(T.LABEL l,_),an) = goto(l,an)
         | stmt(T.JMP(ea,labs),an) = jmp(ea,labs,an)
         | stmt(s as T.CALL { pops=0, ...},an) = call(s,an)
	 | stmt(T.CALL _, _) = error "pops<>0 not implemented"
         | stmt(T.RET _,an) = 
               mark(I.BV{labs=[],x=zeroR,b=C.returnPtr,n=true},an)
         | stmt(T.STORE(8,ea,t,mem),an) = store(I.STB,ea,expr t,mem,an)
         | stmt(T.STORE(16,ea,t,mem),an) = store(I.STH,ea,expr t,mem,an)
         | stmt(T.STORE(32,ea,t,mem),an) = store(I.STW,ea,expr t,mem,an)
         | stmt(T.FSTORE(32,ea,t,mem),an) = 
              fstore(32,I.FSTWS,I.FSTWX,I.FSTWX_S,ea,t,mem,an)
         | stmt(T.FSTORE(64,ea,t,mem),an) = 
              fstore(64,I.FSTDS,I.FSTDX,I.FSTDX_S,ea,t,mem,an)
         | stmt(T.BCC(cc,lab),an) = branch(cc,lab,an)
         | stmt(T.DEFINE l,_) = defineLabel l
         | stmt(T.LIVE S,an) = mark'(I.LIVE{regs=cellset S,spilled=C.empty},an)
         | stmt(T.KILL S,an) = mark'(I.KILL{regs=cellset S,spilled=C.empty},an)
         | stmt(T.ANNOTATION(i,a),an) = stmt(i,a::an)
         | stmt(T.EXT s,an) = 
              ExtensionComp.compileSext (reducer()) {stm=s, an=an}
         | stmt(s,_) = doStmts(Gen.compileStm s)

       and doStmt s = stmt(s,[])
       and doStmts ss = app doStmt ss

       and jmp(e,labs,an) = let
	     fun disp(r, i) = let
	       val b = newReg()
	     in emit(I.ARITHI{ai=I.ADDI, i=i, r=r, t=b});
	        (b, zeroR)
	     end

             val (b,x) = 
               case addr(32,e) of
		 DISP(b, i) => 
		   if i = 0 then (b, zeroR) else disp(b, I.IMMED(toInt i))
               | AMode(DISPea(r,i)) => disp(r, i) 
               | AMode(INDXea(r1,r2)) => let val b=newReg()
                                  in  emit(I.ARITH{a=I.ADD,r1=r1,r2=r2,t=b});
                                      (b,zeroR)
                                  end
               | AMode(INDXSCALEDea(b,x)) => (b,x)
           in mark(I.BV{b=b,x=x,n=true,labs=labs},an) end

       and call(s,an) = let val reduce = {stm=doStmt, rexp=expr, emit=emitInstruction}
                        in  LC.doCall(reduce,s) end

           (* Optimize addition *)
       and plus(times,sh1add,sh2add,sh3add,add,addi,a,b,t,an) =
           case times a of
              (TIMES2,a) => arith(sh1add,a,b,t,an)
           |  (TIMES4,a) => arith(sh2add,a,b,t,an)
           |  (TIMES8,a) => arith(sh3add,a,b,t,an)
           |  _ =>
           case times b of
              (TIMES2,b) => arith(sh1add,b,a,t,an)
           |  (TIMES4,b) => arith(sh2add,b,a,t,an)
           |  (TIMES8,b) => arith(sh3add,b,a,t,an)
           |  _          => commImmedArith(add,addi,a,b,t,an)

           (* Round to zero for division:
            * d <- r + i
            * d <- if r >= 0 then r else d
            *)
       and divu32 x = Mulu32.divide{mode=T.TO_ZERO,stm=doStmt} x
       and divs32 x = Muls32.divide{mode=T.TO_ZERO,stm=doStmt} x
       and divt32 x = Mult32.divide{mode=T.TO_ZERO,stm=doStmt} x
       
       and muldiv(ty,genConst,milliFn,a,b,t,commute,an) =
           let fun const(a,i) =  
               let val r = expr a 
               in  app emitInstruction (genConst{r=r,i=toInt i,d=t})
                      handle _ => milliCall(milliFn,T.REG(ty,r),T.LI i,t)
               end
           in  case (commute,a,b) of
                 (_,a,T.LI i)      => const(a,i)
               | (true,T.LI i,a)   => const(a,i)
               | (_,a,b)           => milliCall(milliFn,a,b,t)
           end 

           (* compile shift *)
       and shift(immedShift,varShift,e,T.LI n,t,an) = let
	      val n = toInt n
	   in
             if n < 0 orelse n > 31 then error "shift"
             else mark(I.SHIFT{s=immedShift,r=expr e,p=31-n,len=32-n,t=t},an)
           end
         | shift(immedShift,varShift,e1,e2,t,an) =
             let val r1 = expr e1
                 val r2 = expr e2
                 val tmp = newReg()
             in  emit(I.ARITHI{ai=I.SUBI, i=I.IMMED 31, r=r2, t=tmp});
                 emit(I.MTCTL{r=tmp, t=CRReg 11});
                 mark(I.SHIFTV{sv=varShift,r=r1,len=32, t=t},an)
             end

           (* Generate a COMCLR_LDO/COMICLR_LDO instruction sequence: 
            *  COMCLR,cond r1, r2, t1
            *  LDO i(b), t2 
            * 
            * Note: 
            *    t <- if cond(r1,r2) then i else 0 can be mapped into:
            *
            *    COMCLR,cond r1, r2, t
            *    LDO i(0), t
            *
            *    if cond(r1,r2) then t <- e can be mapped into:
            *
            *    t' <- e
            *    COMCLR,cond r1, r2, 0
            *    LDO 0(t'), t
            *   
            *    t <- if cond(r1,r2) then e1 else e2 can be mapped into:
            *
            *    t <- e2
            *    t' <- e1
            *    COMCLR,cond r1, r2, 0
            *    LDO 0(t'), t
            *)
       and comclr(cond,x,y,yes,no,t,an) = 
           let val (cond, i1, r2) = 
                   case (opn x, opn y) of
                     (x, I.REG r2) => (cond, x, r2)
                   | (I.REG r1, y) => (T.Basis.swapCond cond, y, r1)
                   | (x, y)        => (cond, x, reduceOpn y)
               val cc = case cond of
                          T.LT  => I.GE
                        | T.LE  => I.GT
                        | T.GT  => I.LE
                        | T.GE  => I.LT
                        | T.EQ  => I.NE
                        | T.LTU => I.GEU
                        | T.LEU => I.GTU
                        | T.GEU => I.LTU
                        | T.GTU => I.LEU
                        | T.NE  => I.EQ
                        | _     => error "comclr"
               val tmp = newReg()
               val (b,i) = 
                  case yes 
                  of T.LI n   => if im14 n then (zeroR, toInt(n)) else 
                                let val {hi,lo} = split11 n
                                    val b = newReg()
                                in  emit(I.LDIL{i=I.IMMED hi,t=b}); (b,lo) end
                   | e        => (expr e, 0)
		  (*esac*)

               val t1 =
                  case no 
                  of T.LI z =>			     (* false case is zero *)
		      if z = 0 then tmp else  (doExpr(no,tmp,[]); zeroR)
                   | _ => (doExpr(no,tmp,[]); zeroR) (* move false case to tmp *)
                  (*esac*)

               val instr =
                  case i1 of
                    I.REG r1 => 
                      I.COMCLR_LDO{cc=cc,r1=r1,r2=r2,b=b,i=i,t1=t1,t2=tmp}
                  | _ => I.COMICLR_LDO{cc=cc,i1=i1,r2=r2,b=b,i2=i,t1=t1,t2=tmp}
           in  mark(instr, an);
               move(tmp, t, [])
           end

           (* convert an expression into a register *) 
       and expr(exp) = let
	 fun comp() = let
	   val t = newReg()
         in doExpr(exp, t, []); t
         end
       in 
	 case exp
	 of T.REG(_, r) => r
          | T.LI z => if z = 0 then zeroR else comp()
	  | _ => comp()
       end
 
           (* compute an integer expression and put the result in register t *)
       and doExpr(e,t,an) =
           case e of
             T.REG(_,r) => move(r,t,an)
           | T.LI n     => loadImmed(n,t,an)
           | T.LABEXP le => 
                (case ldLabelOpnd{label=le,pref=SOME t} of
                   I.REG r => move(r,t,an)
                 | opnd => mark(I.LDO{i=opnd,b=zeroR,t=t},an)
                )
           | T.CONST _  => loadConst(e,t,an)
           | T.LABEL _  => loadConst(e,t,an)
           | T.ADD(_,a,b) => plus(times,
                                  I.SH1ADDL,I.SH2ADDL,I.SH3ADDL,I.ADD,I.ADDI,
                                  a,b,t,an) 
	   | T.SUB(_,a,T.LI mi) => 
	      if mi = 0 then doExpr(a,t,an)
	      else commImmedArith(I.ADD,I.ADDI,a,T.LI(T.I.NEGT(32,mi)),t,an)
           | T.SUB(_,a,b) => immedArith(I.SUB,I.SUBI,a,b,t,an)
           | T.ADDT(_,a,b) => plus(timest,
                                 I.SH1ADDO,I.SH2ADDO,I.SH3ADDO,I.ADDO,I.ADDIO,
                                 a,b,t,an) 
           | T.SUBT(_,a,T.LI n) => 
                    commImmedArith(I.ADDO,I.ADDIO,a,T.LI(T.I.NEGT(32,n)),t,an)
           | T.SUBT(_,a,b) => immedArith(I.SUBO,I.SUBIO,a,b,t,an)

           | T.ANDB(_,a,T.NOTB(_,b)) => arith(I.ANDCM,a,b,t,an)
           | T.ANDB(_,T.NOTB(_,a),b) => arith(I.ANDCM,b,a,t,an)
           | T.ANDB(_,a,b) => arith(I.AND,a,b,t,an)
           | T.ORB(_,a,b)  => arith(I.OR,a,b,t,an)
           | T.XORB(_,a,b) => arith(I.XOR,a,b,t,an)

           | T.SLL(_,a,b)  => shift(I.ZDEP,I.ZVDEP,a,b,t,an)
           | T.SRL(_,a,b)  => shift(I.EXTRU,I.VEXTRU,a,b,t,an)
           | T.SRA(_,a,b)  => shift(I.EXTRS,I.VEXTRS,a,b,t,an)
           | T.MULU(32,a,b) => muldiv(32,Mulu32.multiply,MC.mulu,a,b,t,true,an)
           | T.MULS(32,a,b) => muldiv(32,Muls32.multiply,MC.mulu,a,b,t,true,an)
           | T.MULT(32,a,b) => muldiv(32,Mult32.multiply,MC.mulo,a,b,t,true,an)
           | T.DIVU(32,a,b)  => muldiv(32,divu32,MC.divu,a,b,t,false,an)
(* FIXME: The following is a hack:  We use the trapping div in place of
 *        the non-trapping since we currently expect that the non-trapping
 *        div will only be used where there is some high-level reasoning
 *        that the trapping div would in fact not trap.  *)
           | T.DIVS(T.DIV_TO_ZERO,32,a,b) =>
	                        muldiv(32,divs32,MC.divo,a,b,t,false,an)
           | T.DIVT(T.DIV_TO_ZERO,32,a,b) =>
	                        muldiv(32,divt32,MC.divo,a,b,t,false,an)

           | T.LOAD(8,ea,mem) => load(8,I.LDB,I.LDBX,I.LDBX,ea,t,mem,an)
           | T.LOAD(16,ea,mem) => load(16,I.LDH,I.LDHX,I.LDHX_S,ea,t,mem,an)
           | T.LOAD(32,ea,mem) => load(32,I.LDW,I.LDWX,I.LDWX_S,ea,t,mem,an)

           | T.COND(_,T.CMP(_,cond,x,y),yes,no) => comclr(cond,x,y,yes,no,t,an)
           | T.LET(s,e) => (doStmt s; doExpr(e, t, an))
           | T.MARK(e,A.MARKREG f) => (f t; doExpr(e,t,an))
           | T.MARK(e,a) => doExpr(e,t,a::an)
           | T.PRED(e,c) => doExpr(e,t,A.CTRLUSE c::an)
           | T.REXT e =>
               ExtensionComp.compileRext (reducer()) {e=e, rd=t, an=an}
           | e => doExpr(Gen.compileRexp e,t,an)
 
           (* convert an expression into a floating point register *) 
       and fexpr(T.FREG(_,r))    = r
         | fexpr e               = let val t = newFreg()
                                   in  doFexpr(e,t,[]); t end

           (* compute a floating point expression and put the result in t *)
       and doFexpr(e,t,an) =
           case e of
             (* single precision *)
             T.FREG(32,r)      => fmove(r,t,an)
           | T.FLOAD(32,ea,mem) =>
                  fload(32,I.FLDWS,I.FLDWX,I.FLDWX_S,ea,t,mem,an)
           | T.FADD(32,a,b)  => farith(I.FADD_S,a,b,t,an)
           | T.FSUB(32,a,b)  => farith(I.FSUB_S,a,b,t,an)
           | T.FMUL(32,a,b)  => farith(I.FMPY_S,a,b,t,an)
           | T.FDIV(32,a,b)  => farith(I.FDIV_S,a,b,t,an)
           | T.FABS(32,a)    => funary(I.FABS_S,a,t,an)
           | T.FSQRT(32,a)   => funary(I.FSQRT_S,a,t,an)
 
             (* double precision *)
           | T.FREG(64,r)    => fmove(r,t,an)
           | T.FLOAD(64,ea,mem) => 
                  fload(64,I.FLDDS,I.FLDDX,I.FLDDX_S,ea,t,mem,an)
           | T.FADD(64,a,b)  => farith(I.FADD_D,a,b,t,an)
           | T.FSUB(64,a,b)  => farith(I.FSUB_D,a,b,t,an)
           | T.FMUL(64,a,b)  => farith(I.FMPY_D,a,b,t,an)
           | T.FDIV(64,a,b)  => farith(I.FDIV_D,a,b,t,an)
           | T.FABS(64,a)    => funary(I.FABS_D,a,t,an)
           | T.FSQRT(64,a)   => funary(I.FSQRT_D,a,t,an)

             (* conversions *)
           | T.CVTF2F(fty,fty',e) =>
               (case (fty,fty') of
                  (64,32) => fcnv(I.FCNVFF_SD,e,t,an)
                | (32,64) => fcnv(I.FCNVFF_DS,e,t,an)
                | (32,32) => doFexpr(e,t,an)
                | (64,64) => doFexpr(e,t,an)
                | _ => error "CVTF2F"
               )
           | T.CVTI2F(32,_,e) => app emitInstruction (MilliCode.cvti2s{rs=expr e,fd=t})
           | T.CVTI2F(64,_,e) => app emitInstruction (MilliCode.cvti2d{rs=expr e,fd=t})

             (* negation is implemented as subtraction *)
           | T.FNEG(ty,a)    => doFexpr(T.FSUB(ty,T.FREG(ty,zeroF),a),t,an)

           | T.FMARK(e,A.MARKREG f) => (f t; doFexpr(e,t,an))
           | T.FMARK(e,a) => doFexpr(e,t,a::an)
           | T.FPRED(e,c) => doFexpr(e,t,A.CTRLUSE c::an)
           | T.FEXT e => 
               ExtensionComp.compileFext (reducer()) {e=e, fd=t, an=an}
           | e => error "doFexpr"
 
       and doCCexpr(T.CC(_,r),t,an)  = move(r,t,an)
         | doCCexpr(T.FCC(_,r),t,an)  = move(r,t,an)
         | doCCexpr(T.CMP(ty,cond,e1,e2),t,an) = error "doCCexpr"
         | doCCexpr(T.CCMARK(e,A.MARKREG f),t,an) = (f t; doCCexpr(e,t,an))
         | doCCexpr(T.CCMARK(e,a),t,an) = doCCexpr(e,t,a::an)
         | doCCexpr(T.CCEXT e,t,an) = 
              ExtensionComp.compileCCext (reducer()) {e=e,ccd=t,an=an}
         | doCCexpr e = error "doCCexpr"
 
       and ccExpr(T.CC(_,r)) = r
         | ccExpr(T.FCC(_,r)) = r
         | ccExpr e = let val t = newReg() in doCCexpr(e,t,[]); t end

           (* convert an expression into an operand *) 
       and opn(c as T.CONST _) = I.LabExp(c,I.F)
         | opn(l as T.LABEL _) = I.LabExp(l,I.F)
         | opn(T.LABEXP le)    = ldLabelOpnd{label=le,pref=NONE}
         | opn(e as T.LI n)    = if im11 n then I.IMMED(toInt n)
                                 else I.REG(expr e)
         | opn e               = I.REG(expr e)

       and addrOf e = 
	 case addr(0, e)
	 of AMode mode => mode
          | DISP(r, mi) => DISPea(r, I.IMMED(toInt mi))

       and reducer() = 
          TS.REDUCER{reduceRexp    = expr,
		     reduceFexp    = fexpr,
		     reduceCCexp   = ccExpr,
		     reduceStm     = stmt,
		     operand       = opn,
		     reduceOperand = reduceOpn,
		     addressOf     = addrOf,
		     emit          = mark',
		     instrStream   = instrStream,
		     mltreeStream  = self()
                   }
 
       (* convert mlrisc to cellset: 
        * condition code registers are mapped onto general registers 
        *)
       and cellset mlrisc =
           let fun g([],acc) = acc
                 | g(T.GPR(T.REG(_,r))::regs,acc)  = g(regs,C.addReg(r,acc))
                 | g(T.FPR(T.FREG(_,f))::regs,acc) = g(regs,C.addFreg(f,acc))
                 | g(T.CCR(T.CC(_,cc))::regs,acc)  = g(regs,C.addReg(cc,acc))
                 | g(_::regs, acc) = g(regs, acc)
           in  g(mlrisc, C.empty) end

       and self() =
          TS.S.STREAM
            { beginCluster   = beginCluster,
              endCluster     = endCluster,
              emit           = doStmt,
              pseudoOp       = pseudoOp,
              defineLabel    = defineLabel,
              entryLabel     = entryLabel,
              comment        = comment,
              annotation     = annotation,
              getAnnotations = getAnnotations,
              exitBlock      = fn regs => exitBlock(cellset regs)
            }
   in  self()
   end

  
 end