1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
(*
* This updated signature describes the abstractions on ``cells'', which
* denote storage cells in the machine architecture.
*
* Allen Leung (12/2/00)
*)
signature CELLS_BASIS =
sig
type sz = int (* width in bits *)
type cell_id = int (* unique cell identifier *)
type register_id = int (* register id *)
type register_num = int (* register number *)
(* Note: register_id and register_num should probably be made into
* different datatypes with different tags, but FLINT currently boxes
* such objects.
*)
datatype cellkindInfo = INFO of {name:string, nickname:string}
datatype cellkindDesc =
DESC of
{kind : cellkind,
counter : int ref,
dedicated : int ref,
(* It is sometimes desirable to allocate dedicated
* pseudo registers that will get rewritten to something else,
* e.g., the virtual frame pointer.
* Since these registers are never assigned a register by
* the register allocator, a limited number of these kinds
* of registers may be generated.
*)
low : int,
high : int,
toString : register_id -> string,
toStringWithSize : register_id * sz -> string,
defaultValues : (register_id * int) list,
physicalRegs : cell Array.array ref,
zeroReg : register_id option
}
(* Cellkind denotes the types of storage cells.
* This definition is further augumented by architecture specific
* cells descriptions. Type cellkind is an equality type.
*)
and cellkind =
GP (* general purpose register *)
| FP (* floating point register *)
| CC (* condition code register *)
| MEM (* memory *)
| CTRL (* control dependence *)
| MISC_KIND of cellkindInfo ref (* client defined *)
(*
* A cell is a stateful object reprensenting a storage cell in a
* processor. Cells are partitioned into their kinds, such as
* GP (general purpose, i.e., integer, registers), * FP
* (floating point registers) etc. Each cell has an unique cell_id
* that determines its identity. Its attributes include
*
* 1. its color, and
* 2. other client defined properties,
* which is represented as a property list of annotations.
*
* Note that cell_id and color are two distinct concepts; for example,
* two different cells may have the same color.
*
* Type cell is not an equality type. We provide the function
* sameCell for testing for object identity, and the function
* sameColor for testing for color identity. For most things,
* sameColor is the right function to use.
*)
and cell =
CELL of {id : cell_id,
col : cellColor ref,
desc : cellkindDesc,
an : Annotations.annotations ref
}
and cellColor =
MACHINE of register_id
| PSEUDO
| ALIASED of cell
| SPILLED
(*
* Basic functions on cellkinds
*)
val cellkindToString : cellkind -> string (* name *)
val cellkindToNickname : cellkind -> string (* abbreviation *)
val newCellKind : {name:string,nickname:string} -> cellkind
(*
* Basic functions on cells.
* All functions marked with +++ implicitly chases aliases.
*
* Function register_id returns the current color of a node.
* The color of a pseudo register is the same as its cell_id.
* A spilled node is given a color of ~1, so all spilled nodes have
* the same color.
*
* NOTE: distinction between registerId and registerNum:
* Function register_id returns register_id.
* Physical registers in distinct
* cell classes are given disjoint register_ids. So for example,
* the register id for r0 and f0 in the Alpha are different.
*
* The function, registerNum, on the other hand, returns a
* register number of a cell that starts from 0 for physical registers.
* So registerNum r0 = registerNum f0 = 0. It behaves the same
* as registerId in other cases.
*
* The function physicalRegisterNum is the same as registerNum,
* except that it is an error to call it on a pseudo or spilled cell.
* As a rule, use registerId whenever possible. Function registerNum
* is used only if you have to deal with machine encoding.
*)
val cellId : cell -> cell_id (* return cell id *)
val cellkind : cell -> cellkind (* return cellkind *)
val isConst : cell -> bool
val annotations : cell -> Annotations.annotations ref
val sameCell : cell * cell -> bool (* object identity *)
val sameKind : cell * cell -> bool (* same cellkind? *)
val chase : cell -> cell (* chase aliases +++ *)
val sameAliasedCell : cell * cell -> bool (* chase aliases +++ *)
val hashCell : cell -> word
val registerId : cell -> register_id (* +++ *)
val registerNum : cell -> register_num (* +++ *)
val physicalRegisterNum : cell -> int (* +++ *)
val sameColor : cell * cell -> bool (* color identity +++ *)
val compareColor : cell * cell -> order (* +++ *)
val toString : cell -> string (* pretty print a cell +++ *)
val toStringWithSize : cell * sz -> string (* +++ *)
(* Set the color of the 'from' cell to be the same as
* the 'to' cell. The 'from' cell MUST be a pseudo register,
* and cannot be of kind CONST.
*)
val setAlias : {from: cell, to: cell} -> unit (* +++ *)
(*
* The following abstraction represents a set of cells
* indexed by colors. When two or more cells with the same color
* exists, we arbitrarily choose a representative.
* WARNING: while using sorted_cells it is important not to
* update the colors in the elements, or you'll get wrong results.
*)
structure SortedCells :
sig
type sorted_cells
val empty : sorted_cells
val enter : cell * sorted_cells -> sorted_cells
val rmv : cell * sorted_cells -> sorted_cells
val member : cell * sorted_cells -> bool
val eq : sorted_cells * sorted_cells -> bool
val notEq : sorted_cells * sorted_cells -> bool
val uniq : cell list -> sorted_cells
val difference : sorted_cells * sorted_cells -> sorted_cells
val intersect : sorted_cells * sorted_cells -> sorted_cells
val union : sorted_cells * sorted_cells -> sorted_cells
val return : sorted_cells -> cell list
val isEmpty : sorted_cells -> bool
val emptyIntersection : sorted_cells * sorted_cells -> bool
val nonEmptyIntersection : sorted_cells * sorted_cells -> bool
end
(*
* Hash table indexed by cell id.
* IMPORTANT: this table is not indexed by color!
*)
structure HashTable : MONO_HASH_TABLE where type Key.hash_key = cell
(*
* Hash table indexed by cell color.
* IMPORTANT: this table is indexed by color!
* ALSO: DO NOT change the colors of the cells while using this table!
*)
structure ColorTable : MONO_HASH_TABLE where type Key.hash_key = cell
(*
* Cell set represents a map from cellkind to sorted_cells.
*)
structure CellSet :
sig
type cellset
(* cellset functions *)
val empty : cellset
val add : cell * cellset -> cellset
val rmv : cell * cellset -> cellset
val get : cellkindDesc -> cellset -> cell list
val update : cellkindDesc -> cellset * cell list -> cellset
val map : {from:cell, to:cell} -> cellset -> cellset
(* convert cellset into a list of cells *)
val toCellList : cellset -> cell list
(* pretty printing *)
val toString : cellset -> string
end
(*
* These annotations adds extra definitions and uses to an instruction
*)
exception DEF_USE of {cellkind:cellkind, defs:cell list, uses:cell list}
val DEFUSE : {cellkind:cellkind, defs:cell list, uses:cell list}
Annotations.property
(* Internal use for alias analysis; don't use! *)
val mem : register_id -> cell
(* Internal use only! *)
val show : cellkindDesc -> register_id -> string
val showWithSize : cellkindDesc -> register_id * sz -> string
val array0 : cell Array.array
end
|