1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
(*
* Computation of the dominator tree representation from the
* control flow graph. I'm using the old algorithm by Lengauer and Tarjan.
*
* Note: to deal with CFG with endless loops,
* by default we assume instructions are postdominated by STOP.
*
* -- Allen
*)
functor DominatorTree (GraphImpl : GRAPH_IMPLEMENTATION
) : DOMINATOR_TREE =
struct
structure GI = GraphImpl
structure G = Graph
structure Rev = ReversedGraphView
structure A = Array
structure NodeSet = BitSet
exception Dominator
fun singleEntryOf (G.GRAPH g) =
case #entries g () of
[e] => e
| _ => raise Dominator
type node = G.node_id
datatype ('n,'e,'g) dom_info =
INFO of
{ cfg : ('n,'e,'g) G.graph,
edge_label : string,
levelsMap : int Array.array,
preorder : int Array.array option ref,
postorder : int Array.array option ref,
entryPos : int Array.array option ref,
max_levels : int ref
}
type ('n,'e,'g) dominator_tree = ('n,unit,('n,'e,'g) dom_info) G.graph
type ('n,'e,'g) postdominator_tree = ('n,unit,('n,'e,'g) dom_info) G.graph
fun graph_info (G.GRAPH dom) : ('n,'e,'g) dom_info = #graph_info dom
fun cfg(G.GRAPH dom) = let val INFO{cfg,...} = #graph_info dom in cfg end
fun max_levels(G.GRAPH dom) =
let val INFO{max_levels,...} = #graph_info dom in !max_levels end
(*
* This is the main Lengauer/Tarjan algorithm
*)
fun tarjan_lengauer (name,edge_label) (origCFG,CFG as (G.GRAPH cfg)) =
let val N = #order cfg ()
val M = #capacity cfg ()
val r = singleEntryOf CFG
val in_edges = #in_edges cfg
val succ = #succ cfg
val dfnum = A.array (M, ~1)
val vertex = A.array (N, ~1)
val parent = A.array (M, ~1)
val bucket = A.array (M, []) : node list array
val semi = A.array (M, r)
val ancestor = A.array (M, ~1)
val idom = A.array (M, r)
val samedom = A.array (M, ~1)
val best = A.array (M, ~1)
val max_levels = ref 0
val levelsMap = A.array(M,~1000000)
val dom_info = INFO{ cfg = origCFG,
edge_label = edge_label,
levelsMap = levelsMap,
preorder = ref NONE,
postorder = ref NONE,
entryPos = ref NONE,
max_levels = max_levels
}
val Dom as G.GRAPH domtree = GI.graph(name, dom_info, N)
(* step 1
* Initialize semi dominators and parent map
*)
fun dfs(p,n,N) =
if A.sub(dfnum,n) = ~1 then
(A.update(dfnum,n,N);
A.update(vertex,N,n);
A.update(parent,n,p);
dfsSucc(n,succ n,N+1)
)
else N
and dfsSucc(p,[],N) = N
| dfsSucc(p,n::ns,N) = dfsSucc(p,ns,dfs(p,n,N))
and dfsAll(n::ns,N) = dfsAll(ns,dfs(~1,n,N))
| dfsAll([],N) = ()
val nonRoots = List.foldr
(fn ((r',_),l) => if r <> r' then r'::l else l) []
(#nodes cfg ())
val _ = dfsAll(nonRoots,dfs(~1,r,0))
(*
fun pr s = print (s ^ "\n")
fun dumpArray title a =
pr(title ^ ": " ^
String.concat(A.foldr
(fn (i,s) => Int.toString i::" "::s) [] a))
val _ = pr("root = " ^ Int.toString r)
val _ = dumpArray "vertex" vertex
val _ = dumpArray "dfnum" dfnum
val _ = dumpArray "parent" parent
val _ = Msg.printMessages(fn _ => CFG.G.printGraph (!Msg.outStream) cfg)
*)
fun link(p,n) = (A.update(ancestor,n,p); A.update(best,n,n))
fun ancestorWithLowestSemi v =
let val a = A.sub(ancestor,v)
in if a <> ~1 andalso A.sub(ancestor,a) <> ~1 then
let val b = ancestorWithLowestSemi a
in A.update(ancestor,v,A.sub(ancestor,a));
if A.sub(dfnum,A.sub(semi,b)) <
A.sub(dfnum,A.sub(semi,A.sub(best,v))) then
A.update(best,v,b)
else ()
end
else ();
let val u = A.sub(best,v)
in if u = ~1 then v else u
end
end
(* steps 2 and 3
* Compute vertex, bucket and semi maps
*)
fun compute 0 = ()
| compute i =
let val n = A.sub(vertex,i)
val p = A.sub(parent,n)
fun computeSemi ((v,n,_)::rest,s) =
if v = n then computeSemi(rest,s)
else
let val s' = if A.sub(dfnum,v) < A.sub(dfnum,n) then v
else A.sub(semi,ancestorWithLowestSemi(v))
val s = if A.sub(dfnum,s') <
A.sub(dfnum,s) then s'
else s
in computeSemi(rest,s)
end
| computeSemi ([], s) = s
in if p <> ~1 then
let val s = computeSemi(in_edges n, p)
in A.update(semi,n,s);
A.update(bucket,s,n::A.sub(bucket,s));
link(p,n);
app (fn v =>
let val y = ancestorWithLowestSemi(v)
in if A.sub(semi,y) = A.sub(semi,v) then
A.update(idom,v,p) else A.update(samedom,v,y)
end) (A.sub(bucket,p));
A.update(bucket,p,[])
end else ();
compute(i-1)
end
val _ = compute (N-1)
(*
val _ = dumpArray "semi" idom
val _ = dumpArray "idom" idom
*)
(* step 4 update dominators *)
fun updateIdoms i =
if i < N then
let val n = A.sub(vertex, i)
in if A.sub(samedom, n) <> ~1
then A.update(idom, n, A.sub(idom, A.sub(samedom, n)))
else ();
updateIdoms (i+1)
end
else ()
val _ = updateIdoms 1
(*
val _ = dumpArray "idom" idom
*)
(* Create the nodes/edges of the dominator tree *)
fun buildGraph(i,maxLevel) =
if i < N then
let val v = A.sub(vertex,i)
in #add_node domtree (v,#node_info cfg v);
if v <> r then
let val w = A.sub(idom,v)
val l = A.sub(levelsMap,w)+1
in A.update(levelsMap,v,l);
#add_edge domtree (w,v,());
buildGraph(i+1,if l >= maxLevel then l else maxLevel)
end
else
(A.update(levelsMap,v,0);
buildGraph(i+1,maxLevel)
)
end
else maxLevel
val max = buildGraph(0,1)
in
max_levels := max+1;
#set_entries domtree [r];
(* Msg.printMessages(fn _ => G.printGraph (!Msg.outStream) domtree); *)
Dom
end
(* The algorithm specialized to making dominators and postdominators *)
fun makeDominator cfg = tarjan_lengauer("Dom","dom") (cfg,cfg)
fun makePostdominator cfg =
tarjan_lengauer("PDom","pdom") (cfg,Rev.rev_view cfg)
(* Methods *)
(* Does i immediately dominate j? *)
fun immediately_dominates (G.GRAPH D) (i,j) =
case #in_edges D j of
(k,_,_)::_ => i = k
| _ => false
(* immediate dominator of n *)
fun idom (G.GRAPH D) n =
case #in_edges D n of
(n,_,_)::_ => n
| _ => ~1
(* nodes that n immediately dominates *)
fun idoms (G.GRAPH D) = #succ D
(* nodes that n dominates *)
fun doms (G.GRAPH D) =
let fun subtree ([],S) = S
| subtree (n::ns,S) = subtree(#succ D n,subtree(ns,n::S))
in fn n => subtree([n], [])
end
fun prePostOrders(g as G.GRAPH dom) =
let val INFO{ preorder,postorder,...} = #graph_info dom
(* Compute the preorder/postorder numbers *)
fun computeThem() =
let val N = #capacity dom ()
val r = singleEntryOf g
val pre = A.array(N,~1000000)
val post = A.array(N,~1000000)
fun computeNumbering(preorder,postorder,n) =
let val _ = A.update(pre,n,preorder)
val (preorder',postorder') =
computeNumbering'(preorder+1,postorder,#out_edges dom n)
in A.update(post,n,postorder');
(preorder',postorder'+1)
end
and computeNumbering'(preorder,postorder,[]) =
(preorder,postorder)
| computeNumbering'(preorder,postorder,(_,n,_)::es) =
let val (preorder',postorder') =
computeNumbering(preorder,postorder,n)
val (preorder',postorder') =
computeNumbering'(preorder',postorder',es)
in (preorder',postorder')
end
in computeNumbering(0,0,r) ;
preorder := SOME pre;
postorder := SOME post;
(pre,post)
end
in case (!preorder,!postorder) of
(SOME pre,SOME post) => (pre,post)
| _ => computeThem()
end
(* Level *)
fun level (G.GRAPH D) =
let val INFO{levelsMap,...} = #graph_info D
in fn i => A.sub(levelsMap,i) end
(* Entry position *)
fun entryPos(g as G.GRAPH D) =
let val INFO{entryPos,...} = #graph_info D
in case !entryPos of
SOME t => t
| NONE =>
let val entry = singleEntryOf g
val N = #capacity D ()
val t = A.array(N, entry)
fun init(X,Y) =
(A.update(t,X,Y);
app (fn Z => init(Z,Y)) (#succ D X)
)
in entryPos := SOME t;
app (fn Z => init(Z,Z)) (#succ D entry);
t
end
end
(* Least common ancestor *)
fun lca (Dom as G.GRAPH D) (a,b) =
let val l_a = level Dom a
val l_b = level Dom b
fun idom i = case #in_edges D i of
(j,_,_)::_ => j
| [] => raise Fail "DominatorTree:lca:idom: []"
fun up_a(a,l_a) = if l_a > l_b then up_a(idom a,l_a-1) else a
fun up_b(b,l_b) = if l_b > l_a then up_b(idom b,l_b-1) else b
val a = up_a(a,l_a)
val b = up_b(b,l_b)
fun up_both(a,b) = if a = b then a else up_both(idom a,idom b)
in up_both(a,b) end
(* is x and ancestor of y in D?
* This is true iff PREORDER(x) <= PREORDER(y) and
* POSTORDER(x) >= POSTORDER(y)
*)
fun dominates Dom =
let val (pre,post) = prePostOrders Dom
in fn (x,y) =>
let val a = A.sub(pre,x)
val b = A.sub(post,x)
val c = A.sub(pre,y)
val d = A.sub(post,y)
in a <= c andalso b >= d
end
end
fun strictly_dominates Dom =
let val (pre,post) = prePostOrders Dom
in fn (x,y) =>
let val a = A.sub(pre,x)
val b = A.sub(post,x)
val c = A.sub(pre,y)
val d = A.sub(post,y)
in a < c andalso b > d
end
end
fun control_equivalent (Dom,PDom) =
let val dom = dominates Dom
val pdom = dominates PDom
in fn (x,y) => dom(x,y) andalso pdom(y,x) orelse dom(y,x) andalso pdom(x,y)
end
(* control equivalent partitions
* two nodes a and b are control equivalent iff
* a dominates b and b postdominates a (or vice versa)
* We use the following property of dominators to avoid wasteful work:
* If i dom j dom k and j not pdom i then
* k not pdom i
* This algorithm runs in O(n)
*)
fun control_equivalent_partitions (G.GRAPH D,PDom) =
let val postdominates = dominates PDom
fun walkDom([],S) = S
| walkDom(n::waiting,S) =
let val (waiting,S,S') =
findEquiv(n,#out_edges D n,waiting,S,[n])
in walkDom(waiting,S'::S)
end
and findEquiv(i,[],waiting,S,S') = (waiting,S,S')
| findEquiv(i,(_,j,_)::es,waiting,S,S') =
if postdominates(j,i) then
let val (waiting,S,S') = findEquiv(i,es,waiting,S,j::S')
in findEquiv(i,#out_edges D j,waiting,S,S')
end
else
findEquiv(i,es,j::waiting,S,S')
val equivSets = walkDom(#entries D (),[])
in
equivSets
end
fun levelsMap(G.GRAPH dom) =
let val INFO{levelsMap,...} = #graph_info dom
in levelsMap end
fun idomsMap(G.GRAPH dom) =
let val idoms = A.array(#capacity dom (),~1)
in #forall_edges dom (fn (i,j,_) => A.update(idoms,j,i));
idoms
end
end
|