1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
(*
* How to evaluate constants for various widths.
*
* Internally, we represent machine_int as a signed integer.
* So when we do bit or unsigned operations we have to convert to
* the unsigned representation first.
*
* Note: this implementation requires andb, orb, xorb etc in IntInf.
* You have to upgrade to the latest version of smlnj-lib if this
* fails to compile.
*)
local
val maxSz = 65
in
structure MachineInt : MACHINE_INT =
struct
structure I = IntInf
structure S = String
type machine_int = I.int
type sz = int
datatype div_rounding_mode = DIV_TO_ZERO | DIV_TO_NEGINF
val itow = Word.fromInt
(* Parse hex or binary, but not octal, that's for wussies *)
val hexToInt = StringCvt.scanString (I.scan StringCvt.HEX)
val binToInt = StringCvt.scanString (I.scan StringCvt.BIN)
(* Precompute some tables for faster arithmetic *)
local
val pow2table = Array.tabulate(maxSz,fn n => I.<<(1,itow n)) (* 2^n *)
val masktable = Array.tabulate(maxSz,
fn n => I.-(I.<<(1,itow n),1)) (* 2^n-1 *)
val maxtable = Array.tabulate(maxSz+1,
fn 0 => 0
| n => I.-(I.<<(1,itow(n-1)),1)) (* 2^{n-1}-1 *)
val mintable = Array.tabulate(maxSz+1,
fn 0 => 0
| n => I.~(I.<<(1,itow(n-1)))) (* -2^{n-1} *)
in
fun pow2 i = if i < maxSz then Array.sub(pow2table, i)
else I.<<(1,itow i)
fun maskOf sz = if sz < maxSz then Array.sub(masktable, sz)
else I.-(I.<<(1,itow sz),1)
fun maxOfSize sz = if sz < maxSz then Array.sub(maxtable, sz)
else I.-(I.<<(1,itow(sz-1)),1)
fun minOfSize sz = if sz < maxSz then Array.sub(mintable, sz)
else I.~(I.<<(1,itow(sz-1)))
end
(* queries *)
fun isNeg(i) = I.sign i < 0
fun isPos(i) = I.sign i > 0
fun isZero(i) = I.sign i = 0
fun isNonNeg(i) = I.sign i >= 0
fun isNonPos(i) = I.sign i <= 0
fun isEven(i) = isZero(I.rem(i,2))
fun isOdd(i) = not(isEven(i))
(* to unsigned representation *)
fun unsigned(sz, i) = if isNeg i then I.+(i, pow2 sz) else i
(* to signed representation *)
fun signed(sz, i) = if I.>(i, maxOfSize sz) then I.-(i, pow2 sz) else i
(* Narrow to the representation of a given type *)
fun narrow(sz, i) = signed(sz, I.andb(i, maskOf sz))
(* Recognize 0x and 0b prefix and do the right thing *)
fun fromString(sz, s) =
let val n = S.size s
fun conv(i,negate) =
if n >= 2+i andalso S.sub(s, i) = #"0" then
(case S.sub(s, i+1) of
#"x" => (hexToInt (S.substring(s,2+i,n-2-i)), negate)
| #"b" => (binToInt (S.substring(s,2+i,n-2-i)), negate)
| _ => (I.fromString s, false)
)
else (I.fromString s, false)
val (result, negate) =
if s = "" then (NONE, false)
else if S.sub(s, 0) = #"~" then conv(1, true)
else conv(0, false)
in case (result, negate) of
(SOME n, true) => SOME(narrow(sz, I.~ n))
| (SOME n, false) => SOME(narrow(sz, n))
| (NONE, _) => NONE
end
(* Convert types into IntInf without losing precision. *)
structure Cvt =
struct
structure W = Word
structure W32 = Word32
val wtoi = W.toIntX
val w32toi = W32.toIntX
val fromInt = I.fromInt
val fromInt32 = Int32.toLarge
val fromInt64 = Int64.toLarge
fun fromWord w = I.fromLarge(Word.toLargeInt w)
(*
fun fromWord32 w = I.+(I.<<(I.fromInt(w32toi(W32.>>(w,0w16))),0w16),
I.fromInt(w32toi(W32.andb(w,0wxffff))))
*)
fun fromWord32 w = I.fromLarge(Word32.toLargeInt w)
fun fromWord64 w = I.fromLarge(Word64.toLargeInt w)
end
(* machine_int <-> other types *)
fun fromInt(sz,i) = narrow(sz,Cvt.fromInt i)
fun fromInt32(sz,i) = narrow(sz,Cvt.fromInt32 i)
fun fromInt64(sz,i) = narrow(sz,Cvt.fromInt64 i)
fun fromWord(sz,w) = narrow(sz,Cvt.fromWord w)
fun fromWord32(sz,w) = narrow(sz,Cvt.fromWord32 w)
fun fromWord64(sz,w) = narrow(sz,Cvt.fromWord64 w)
fun toString(sz,i) = I.toString i
val toHex = I.fmt StringCvt.HEX
val toBin = I.fmt StringCvt.BIN
fun toHexString(sz, i) = "0x"^toHex(unsigned(sz, i))
fun toBinString(sz, i) = "0b"^toBin(unsigned(sz, i))
fun toInt(sz, i) = I.toInt(narrow(sz, i))
fun toInt32(sz, i) = Int32.fromLarge(narrow(sz, i))
fun toInt64(sz, i) = Int64.fromLarge(narrow(sz, i))
fun toWord(sz, i) = Word.fromLargeInt(I.toLarge(unsigned(sz, i)))
fun toWord32(sz, i) = Word32.fromLargeInt(I.toLarge(unsigned(sz, i)))
(*
let val i = unsigned(sz, i)
val lo = I.andb(i,0xffff)
val hi = I.~>>(i,0w16)
fun tow32 i = Word32.fromLargeInt(I.toLarge i)
in tow32 lo + Word32.<<(tow32 hi, 0w16) end
*)
fun toWord64(sz, i) = Word64.fromLargeInt(I.toLarge(unsigned(sz, i)))
fun hash i = Word.fromInt(I.toInt(I.andb(i,0x1fffffff)))
fun isInRange(sz, i) = I.<=(minOfSize sz,i) andalso I.<=(i,maxOfSize sz)
fun signedBinOp f (sz,i,j) = narrow(sz, f(i, j))
fun signedUnaryOp f (sz,i) = narrow(sz, f i)
fun unsignedBinOp f (sz,i,j) = narrow(sz, f(unsigned(sz,i), unsigned(sz,j)))
fun trappingUnaryOp f (sz,i) =
let val x = f i
in if isInRange(sz, x) then x else raise Overflow
end
fun trappingBinOp f (sz,i,j) =
let val x = f(i,j)
in if isInRange(sz, x) then x else raise Overflow
end
(* two's complement operators *)
val NEG = signedUnaryOp I.~
val ABS = signedUnaryOp I.abs
val ADD = signedBinOp I.+
val SUB = signedBinOp I.-
val MULS = signedBinOp I.*
fun DIVS (DIV_TO_ZERO, ty, x, y) = signedBinOp I.quot (ty, x, y)
| DIVS (DIV_TO_NEGINF, ty, x, y) = signedBinOp I.div (ty, x, y)
fun REMS (DIV_TO_ZERO, ty, x, y) = signedBinOp I.rem (ty, x, y)
| REMS (DIV_TO_NEGINF, ty, x, y) = signedBinOp I.mod (ty, x, y)
val MULU = unsignedBinOp I.*
val DIVU = unsignedBinOp I.div
(*
val QUOTU = unsignedBinOp I.quot
*)
val REMU = unsignedBinOp I.rem
val NEGT = trappingUnaryOp I.~
val ABST = trappingUnaryOp I.abs
val ADDT = trappingBinOp I.+
val SUBT = trappingBinOp I.-
val MULT = trappingBinOp I.*
fun DIVT (DIV_TO_ZERO, ty, x, y) = trappingBinOp I.quot (ty, x, y)
| DIVT (DIV_TO_NEGINF, ty, x, y) = trappingBinOp I.div (ty, x, y)
fun NOTB(sz,x) = narrow(sz,I.notb x)
fun ANDB(sz,x,y) = narrow(sz,I.andb(x,y))
fun ORB(sz,x,y) = narrow(sz,I.orb(x,y))
fun XORB(sz,x,y) = narrow(sz,I.xorb(x,y))
fun EQVB(sz,x,y) = narrow(sz,I.xorb(I.notb x,y))
fun Sll(sz,x,y) = narrow(sz,I.<<(x, y))
fun Srl(sz,x,y) = narrow(sz,I.~>>(unsigned(sz, x), y))
fun Sra(sz,x,y) = narrow(sz,I.~>>(x, y))
fun SLL(sz,x,y) = Sll(sz,x,toWord(sz, y))
fun SRL(sz,x,y) = Srl(sz,x,toWord(sz, y))
fun SRA(sz,x,y) = Sra(sz,x,toWord(sz, y))
fun BITSLICE(sz,sl,x) =
let fun slice([],n) = n
| slice((from,to)::sl,n) =
slice(sl, ORB(sz, narrow(to-from+1,
Srl(sz, x, Word.fromInt from)), n))
in slice(sl, 0)
end
fun bitOf(sz, i, b) =
toWord(1, narrow(1, Srl(sz, i, Word.fromInt b)))
fun byteOf(sz, i, b) =
toWord(8, narrow(8, Srl(sz, i, Word.fromInt(b*8))))
fun halfOf(sz, i, h) =
toWord(16, narrow(16, Srl(sz, i, Word.fromInt(h*16))))
fun wordOf(sz, i, w) =
toWord32(32, narrow(32, Srl(sz, i, Word.fromInt(w*32))))
(* type promotion *)
fun SX(toSz,fromSz,i) = narrow(toSz, narrow(fromSz, i))
fun ZX(toSz,fromSz,i) = narrow(toSz, unsigned(fromSz, narrow(fromSz, i)))
(* comparisions *)
fun EQ(sz,i:I.int,j) = i = j
fun NE(sz,i:I.int,j) = i <> j
fun GT(sz,i:I.int,j) = i > j
fun GE(sz,i:I.int,j) = i >= j
fun LT(sz,i:I.int,j) = i < j
fun LE(sz,i:I.int,j) = i <= j
fun LTU(sz,i,j) = unsigned(sz, i) < unsigned(sz, j)
fun GTU(sz,i,j) = unsigned(sz, i) > unsigned(sz, j)
fun LEU(sz,i,j) = unsigned(sz, i) <= unsigned(sz, j)
fun GEU(sz,i,j) = unsigned(sz, i) >= unsigned(sz, j)
(*
* Split an integer "i" of size "sz" into words of size "wordSize"
*)
fun split{sz, wordSize, i} =
let fun loop(sz, i, ws) =
if sz <= 0 then rev ws
else
let val w = narrow(wordSize, i)
val i = IntInf.~>>(i, Word.fromInt wordSize)
in loop(sz - wordSize, i, w::ws)
end
in loop(sz, unsigned(sz, i), [])
end
end
end
|