1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
(* mltree-gen.sml
*
* COPYRIGHT (c) 2002 Bell Labs, Lucent Technologies
*
* This is a generic module for transforming MLTREE expressions:
* (1) expressions involving non-standard type widths are promoted when
* necessary.
* (2) operators that cannot be directly handled are expanded into
* more complex instruction sequences when necessary.
*
* -- Allen
*)
functor MLTreeGen (
structure T : MLTREE
structure Cells : CELLS
val intTy : T.ty (* size of integer word *)
(* This is a list of possible data widths to promote to.
* The list must be in increasing sizes.
* We'll try to promote to the next largest size.
*)
val naturalWidths : T.ty list
(*
* Are integers of widths less than the size of integer word.
* automatically sign extended, zero extended, or neither.
* When in doubt, choose neither since it is conservative.
*)
datatype rep = SE | ZE | NEITHER
val rep : rep
) : MLTREEGEN = struct
structure T = T
structure Size = MLTreeSize(structure T = T val intTy = intTy)
structure C = CellsBasis
fun error msg = MLRiscErrorMsg.error("MLTreeGen",msg)
fun unsupported what = error ("unsupported: " ^ what)
val zeroT = T.LI 0
fun LI i = T.LI(T.I.fromInt(intTy, i))
fun condOf(T.CC(cc,_)) = cc
| condOf(T.CMP(_,cc,_,_)) = cc
| condOf(T.CCMARK(cc,_)) = condOf cc
| condOf _ = error "condOf"
fun fcondOf(T.FCC(fcc,_)) = fcc
| fcondOf(T.FCMP(_,fcc,_,_)) = fcc
| fcondOf(T.CCMARK(cc,_)) = fcondOf cc
| fcondOf _ = error "fcondOf"
val W = intTy
(* To compute f.ty(a,b)
*
* let r1 <- a << (intTy - ty)
* r2 <- b << (intTy - ty)
* r3 <- f(a,b)
* in r3 ~>> (intTy - ty) end
*
* Lal showed me this neat trick!
*)
fun arith(rightShift,f,ty,a,b) =
let val shift = LI(W-ty)
in rightShift(W,f(W,T.SLL(W,a,shift),T.SLL(W,b,shift)),shift)
end
fun promoteTy(ty) =
let fun loop([]) =
unsupported("can't promote integer width "^Int.toString ty)
| loop(t::ts) = if t > ty then t else loop ts
in loop(naturalWidths) end
fun promotable rightShift (e, f, ty, a, b) =
case naturalWidths of
[] => arith(rightShift,f,ty,a,b)
| _ => f(promoteTy(ty), a, b)
fun isNatural w = let
fun loop [] = false
| loop (h :: t) = h = w orelse w > h andalso loop t
in
loop naturalWidths
end
(* Implement division with round-to-negative-infinity in terms
* of division with round-to-zero.
* The logic is as follows:
* - if q > 0, then we are done since any rounding was
* at the same time TO_ZERO and TO_NEGINF
* (This is the fast path that does not require calculating the remainder.)
* - otherwise we calculate r and see if it is zero; if so, no adjustment
* - finally if r and b have the same sign (i.e., r XOR b >= 0)
* we still don't need adjustment
* - otherwise adjust
*
* Instruction selection for machines (e.g., x86) where the hardware returns both
* q and r anyway should implement this logic directly.
*)
fun divinf (xdiv, ty, aexp, bexp) = let
val a = Cells.newReg ()
val b = Cells.newReg ()
val q = Cells.newReg ()
val r = Cells.newReg ()
val zero = T.LI 0
val one = T.LI 1
in
T.LET
(T.SEQ
[T.MV (ty, a, aexp),
T.MV (ty, b, bexp),
T.MV (ty, q, xdiv (T.DIV_TO_ZERO, ty, T.REG (ty, a), T.REG (ty, b))),
T.IF (T.CMP (ty, T.Basis.GT, T.REG (ty, q), zero),
T.SEQ [],
T.SEQ
[T.MV (ty, r, T.SUB (ty, T.REG (ty, a),
T.MULS (ty, T.REG (ty, b),
T.REG (ty, q)))),
T.IF (T.CMP (ty, T.Basis.EQ, T.REG (ty, r), zero),
T.SEQ [],
T.IF (T.CMP (ty, T.Basis.GE,
T.XORB (ty, T.REG (ty, b), T.REG (ty, r)),
zero),
T.SEQ [],
T.MV (ty, q, T.SUB (ty, T.REG (ty, q),
one))))])],
T.REG (ty, q))
end
(* Same for rem when rounding to negative infinity.
* Since we have to return (and therefore calculate) the remainder anyway,
* we can skip the q > 0 test because it will be caught by the samesign(r,b)
* test.
*
* The odd case is when a = MININT and b = -1 in which case the DIVS op
* will overflow and trap on some machines. On others the result
* will be bogus. Should we fix that? *)
fun reminf (ty, aexp, bexp) = let
val a = Cells.newReg ()
val b = Cells.newReg ()
val q = Cells.newReg ()
val r = Cells.newReg ()
val zero = T.LI 0
in
T.LET
(T.SEQ
[T.MV (ty, a, aexp),
T.MV (ty, b, bexp),
T.MV (ty, q, T.DIVS (T.DIV_TO_ZERO, ty, T.REG (ty, a),
T.REG (ty, b))),
T.MV (ty, r, T.SUB (ty, T.REG (ty, a),
T.MULS (ty, T.REG (ty, q),
T.REG (ty, b)))),
T.IF (T.CMP (ty, T.Basis.EQ, T.REG (ty, r), zero),
T.SEQ [],
T.IF (T.CMP (ty, T.Basis.GE,
T.XORB (ty, T.REG (ty, b), T.REG (ty, r)),
zero),
T.SEQ [],
T.MV (ty, r, T.ADD (ty, T.REG (ty, r), T.REG (ty, b)))))],
T.REG (ty, r))
end
(* Same for rem when rounding to zero. *)
fun remzero (xdiv, xmul, ty, aexp, bexp) = let
val a = Cells.newReg ()
val b = Cells.newReg ()
in
T.LET (T.SEQ [T.MV (ty, a, aexp),
T.MV (ty, b, bexp)],
T.SUB (ty, T.REG (ty, a),
xmul (ty, T.REG (ty, b),
xdiv (T.DIV_TO_ZERO, ty, T.REG (ty, a),
T.REG (ty, b)))))
end
(*
* Translate integer expressions of unknown types into the appropriate
* term.
*)
fun DIVREMz d (ty, a, b) = d (T.DIV_TO_ZERO, ty, a, b)
fun compileRexp(exp) =
case exp of
T.CONST c => T.LABEXP exp
(* non overflow trapping ops *)
| T.NEG(ty,a) => T.SUB(ty, zeroT, a)
| T.ADD(ty,a,b) => promotable T.SRA (exp,T.ADD,ty,a,b)
| T.SUB(ty,a,b) => promotable T.SRA (exp,T.SUB,ty,a,b)
| T.MULS(ty,a,b) => promotable T.SRA (exp,T.MULS,ty,a,b)
| T.DIVS(T.DIV_TO_ZERO,ty,a,b) =>
promotable T.SRA (exp,DIVREMz T.DIVS,ty,a,b)
| T.DIVS(T.DIV_TO_NEGINF,ty,a,b) => divinf (T.DIVS,ty,a,b)
| T.REMS(T.DIV_TO_ZERO,ty,a,b) =>
if isNatural ty then remzero (T.DIVS,T.MULS,ty,a,b)
else promotable T.SRA (exp,DIVREMz T.REMS,ty,a,b)
| T.REMS(T.DIV_TO_NEGINF,ty,a,b) => reminf (ty,a,b)
| T.MULU(ty,a,b) => promotable T.SRL (exp,T.MULU,ty,a,b)
| T.DIVU(ty,a,b) => promotable T.SRL (exp,T.DIVU,ty,a,b)
| T.REMU(ty,a,b) =>
if isNatural ty then
remzero (fn (_,ty,a,b) => T.DIVU (ty,a,b),T.MULU,ty,a,b)
else promotable T.SRL (exp,T.REMU,ty,a,b)
(* for overflow trapping ops; we have to do the simulation *)
| T.NEGT(ty,a) => T.SUBT(ty,zeroT,a)
| T.ADDT(ty,a,b) => arith (T.SRA,T.ADDT,ty,a,b)
| T.SUBT(ty,a,b) => arith (T.SRA,T.SUBT,ty,a,b)
| T.MULT(ty,a,b) => arith (T.SRA,T.MULT,ty,a,b)
| T.DIVT(T.DIV_TO_ZERO,ty,a,b) => arith (T.SRA,DIVREMz T.DIVT,ty,a,b)
| T.DIVT(T.DIV_TO_NEGINF,ty,a,b) => divinf (T.DIVT,ty,a,b)
(* conditional evaluation rules *)
(*** XXX: Seems wrong.
| T.COND(ty,T.CC(cond,r),x,y) =>
T.COND(ty,T.CMP(ty,cond,T.REG(ty,r),zeroT),x,y)
***)
| T.COND(ty,T.CCMARK(cc,a),x,y) => T.MARK(T.COND(ty,cc,x,y),a)
(*** XXX: TODO
| T.COND(ty,T.CMP(t,cc,e1,e2),x as (T.LI 0 | T.LI32 0w0),y) =>
T.COND(ty,T.CMP(t,T.Basis.negateCond cc,e1,e2),y,T.LI 0)
(* we'll let others strength reduce the multiply *)
***)
| T.COND(ty,cc as T.FCMP _, yes, no) => let
val tmp = Cells.newReg()
in
T.LET(
T.SEQ[T.MV(ty, tmp, no), T.IF(cc, T.MV(ty, tmp, yes), T.SEQ [])],
T.REG(ty,tmp))
end
(*** XXX: TODO
| T.COND(ty,cc,e1,(T.LI 0 | T.LI32 0w0)) =>
T.MULU(ty,T.COND(ty,cc,T.LI 1,T.LI 0),e1)
| T.COND(ty,cc,T.LI m,T.LI n) =>
T.ADD(ty,T.MULU(ty,T.COND(ty,cc,T.LI 1,T.LI 0),T.LI(m-n)),T.LI n)
***)
| T.COND(ty,cc,e1,e2) =>
T.ADD(ty,T.MULU(ty,T.COND(ty,cc,T.LI 1,zeroT),T.SUB(ty,e1,e2)),e2)
(* ones-complement.
* WARNING: we are assuming two's complement architectures here.
* Are there any architectures in use nowadays that doesn't use
* two's complement for integer arithmetic?
*)
| T.NOTB(ty,e) => T.XORB(ty,e,T.LI ~1)
(*
* Default ways of converting integers to integers
*)
| T.SX(ty,fromTy,e) =>
if fromTy = ty then e
else if rep = SE andalso fromTy < ty andalso
fromTy >= hd naturalWidths then e
else
let val shift = T.LI(T.I.fromInt(intTy, W - fromTy))
in T.SRA(W,T.SLL(W,e,shift),shift)
end
| T.ZX(ty,fromTy,e) =>
if fromTy <= ty then e else
(case ty of (* ty < fromTy *)
8 => T.ANDB(ty,e,T.LI 0xff)
| 16 => T.ANDB(ty,e,T.LI 0xffff)
| 32 => T.ANDB(ty,e,T.LI 0xffffffff)
| 64 => e
| _ => unsupported("unknown expression")
)
(*
* Converting floating point to integers.
* The following rule handles the case when ty is not
* one of the naturally supported widths on the machine.
*)
| T.CVTF2I(ty,round,fty,e) =>
let val ty' = promoteTy(ty)
in T.SX(ty,ty',T.CVTF2I(ty',round,fty,e))
end
(* Promote to higher width and zero high bits *)
| T.SLL(ty, data, shift) =>
let val ty' = promoteTy(ty)
in T.ZX(ty, ty', T.SLL(ty', data, shift)) end
| exp => unsupported("unknown expression")
fun compileFexp fexp = unsupported("unknown expression")
fun mark(s,[]) = s
| mark(s,a::an) = mark(T.ANNOTATION(s,a),an)
fun compileStm (T.SEQ s) = s
| compileStm (T.IF(cond,T.JMP(T.LABEL L,_),T.SEQ [])) =
[T.BCC(cond,L)]
| compileStm (T.IF(cond,yes,no)) =
let val L1 = Label.anon()
val L2 = Label.anon()
in [T.BCC(cond,L1),
no,
T.JMP(T.LABEL L2,[]),
T.DEFINE L1,
yes,
T.DEFINE L2
]
end
| compileStm stm = error "compileStm"
(*
* This function translations conditional expressions into a
* branch sequence.
* Note: we'll actually take advantage of the fact that
* e1 and e2 are allowed to be eagerly evaluated.
*)
fun compileCond{exp=(ty,ccexp,e1,e2),rd,an} =
let val L1 = Label.anon()
in [T.MV(ty,rd,e1),
mark(T.BCC(ccexp,L1),an),
T.MV(ty,rd,e2),
T.DEFINE L1
]
end
fun compileFcond{exp=(fty,ccexp,e1,e2),fd,an} =
let val L1 = Label.anon()
in [T.FMV(fty,fd,e1),
mark(T.BCC(ccexp,L1),an),
T.FMV(fty,fd,e2),
T.DEFINE L1
]
end
end
|