File: mltree-simplify.in

package info (click to toggle)
mlton 20210117%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 58,464 kB
  • sloc: ansic: 27,682; sh: 4,455; asm: 3,569; lisp: 2,879; makefile: 2,347; perl: 1,169; python: 191; pascal: 68; javascript: 7
file content (257 lines) | stat: -rw-r--r-- 10,200 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
(*
 * Performs simple local optimizations.
 * This version uses IntInf
 *)
local

   structure T =
   struct 
      include "mltree-basis.sig"
      include "mltree.sig"
   end

in

functor MLTreeSimplifier
  (structure T    : MLTREE
   structure Size : MLTREE_SIZE (* where T = T *)
                    where type T.Basis.cond = T.Basis.cond
                      and type T.Basis.div_rounding_mode = T.Basis.div_rounding_mode
                      and type T.Basis.ext = T.Basis.ext
                      and type T.Basis.fcond = T.Basis.fcond
                      and type T.Basis.rounding_mode = T.Basis.rounding_mode
                      and type T.Constant.const = T.Constant.const
                      and type ('s,'r,'f,'c) T.Extension.ccx = ('s,'r,'f,'c) T.Extension.ccx
                      and type ('s,'r,'f,'c) T.Extension.fx = ('s,'r,'f,'c) T.Extension.fx
                      and type ('s,'r,'f,'c) T.Extension.rx = ('s,'r,'f,'c) T.Extension.rx
                      and type ('s,'r,'f,'c) T.Extension.sx = ('s,'r,'f,'c) T.Extension.sx
                      and type T.I.div_rounding_mode = T.I.div_rounding_mode
                      and type T.Region.region = T.Region.region
                      and type T.ccexp = T.ccexp
                      and type T.fexp = T.fexp
                      (* and type T.labexp = T.labexp *)
                      and type T.mlrisc = T.mlrisc
                      and type T.oper = T.oper
                      and type T.rep = T.rep
                      and type T.rexp = T.rexp
                      and type T.stm = T.stm
   (* Extension *)
   val sext : T.rewriter -> T.sext -> T.sext
   val rext : T.rewriter -> T.rext -> T.rext
   val fext : T.rewriter -> T.fext -> T.fext
   val ccext : T.rewriter -> T.ccext -> T.ccext
  ) : MLTREE_SIMPLIFIER =
struct

   structure T  = T
   structure I  = T.I
   structure R  = MLTreeRewrite
     (structure T = T
      val sext = sext and rext = rext and fext = fext and ccext = ccext
     )

   type simplifier = T.rewriter

   val _ = "literals"
   val zero  = 0i
   val zeroT = T.LI zero

   fun simplify {addressWidth, signedAddress} = 
   let 

   fun dm T.DIV_TO_ZERO = I.DIV_TO_ZERO
     | dm T.DIV_TO_NEGINF = I.DIV_TO_NEGINF

   fun sim ==> exp =
   let  
   in (* perform algebraic simplification and constant folding *)
      case exp of
        T.ADD(ty,T.ADD(ty', a, T.LI x), T.LI y) where ty = ty' =>
            T.ADD(ty,a,T.LI(I.ADD(ty,x,y))) 
      | T.ADD(ty,T.LI 0i,x) => x
      | T.ADD(ty,x,T.LI 0i) => x
      | T.ADD(ty,T.LI x,T.LI y) => T.LI(I.ADD(ty,x,y))
      | T.ADD(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.ADD(ty,x,y))

      | T.SUB(ty,T.LI 0i,T.SUB(ty',T.LI 0i, a)) where ty = ty' => a
      | T.SUB(ty,T.SUB(ty', a, T.LI x), T.LI y) where ty = ty' => 
           T.SUB(ty,a,T.LI(I.ADD(ty,x,y))) 
      | T.SUB(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.SUB(ty,x,y))

      | T.SUB(ty,a,T.LI 0i) => a
      | T.SUB(ty,T.LI x,T.LI y) => T.LI(I.SUB(ty,x,y))

      | T.MULS(ty,T.LI 0i,_) => zeroT
      | T.MULS(ty,_,T.LI 0i) => zeroT
      | T.MULS(ty,T.LI 1i,x) => x
      | T.MULS(ty,x,T.LI 1i) => x
      | T.MULS(ty,T.LI x,T.LI y) => T.LI(I.MULS(ty,x,y))
      | T.MULS(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.MULS(ty,x,y))

      | T.DIVS(m,ty,a,T.LI 1i) => a
      | T.DIVS(m,ty,T.LI x,T.LI y) where y <> zero => T.LI(I.DIVS(dm m,ty,x,y))
      | T.DIVS(m,ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.DIVS(m,ty,x,y))

      | T.REMS(m,ty,a,T.LI 1i) => zeroT
      | T.REMS(m,ty,T.LI x,T.LI y) where y <> zero => T.LI(I.REMS(dm m,ty,x,y))
      | T.REMS(m,ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.REMS(m,ty,x,y))

      | T.MULU(ty,T.LI 0i,_) => zeroT
      | T.MULU(ty,_,T.LI 0i) => zeroT
      | T.MULU(ty,T.LI 1i,x) => x
      | T.MULU(ty,x,T.LI 1i) => x
      | T.MULU(ty,T.LI x,T.LI y) => T.LI(I.MULU(ty,x,y))
      | T.MULU(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.MULU(ty,x,y))

      | T.DIVU(ty,a,T.LI 1i) => a
      | T.DIVU(ty,T.LI x,T.LI y) where y <> zero => T.LI(I.DIVU(ty,x,y))
      | T.DIVU(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.DIVU(ty,x,y))

      | T.REMU(ty,a,T.LI 1i) => zeroT
      | T.REMU(ty,T.LI x,T.LI y) where y <> zero => T.LI(I.REMU(ty,x,y)) 
      | T.REMU(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.REMU(ty,x,y))

      | T.NEGT(ty,T.LI x) => (T.LI(I.NEGT(ty,x)) handle Overflow => exp)
      | T.NEGT(ty,T.LABEXP x) => T.LABEXP(T.NEGT(ty,x))

      | T.ADDT(ty,T.LI 0i,x) => x
      | T.ADDT(ty,x,T.LI 0i) => x
      | T.ADDT(ty,T.LI x,T.LI y) => 
          (T.LI(I.ADDT(ty,x,y)) handle Overflow => exp)
      | T.ADDT(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.ADDT(ty,x,y))

      | T.SUBT(ty,a,T.LI 0i) => a
      | T.SUBT(ty,T.LI x,T.LI y) => 
          (T.LI(I.SUBT(ty,x,y)) handle Overflow => exp)
      | T.SUBT(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.SUBT(ty,x,y))

      | T.MULT(ty,T.LI 0i,_) => zeroT
      | T.MULT(ty,_,T.LI 0i) => zeroT
      | T.MULT(ty,T.LI 1i,x) => x
      | T.MULT(ty,x,T.LI 1i) => x
      | T.MULT(ty,T.LI x,T.LI y) => 
         (T.LI(I.MULT(ty,x,y)) handle Overflow => exp)
      | T.MULT(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.MULT(ty,x,y))

      | T.DIVT(m,ty,a,T.LI 1i) => a
      | T.DIVT(m,ty,T.LI x,T.LI y) where y <> zero => T.LI(I.DIVT(dm m,ty,x,y))
      | T.DIVT(m,ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.DIVT(m,ty,x,y))

      | T.ANDB(_,_,b as T.LI 0i) => b
      | T.ANDB(_,a as T.LI 0i,_) => a
      | T.ANDB(ty,T.NOTB(ty',a),T.NOTB(ty'',b)) 
         where ty = ty' andalso ty' = ty'' => T.NOTB(ty,T.ORB(ty,a,b)) 
      | T.ANDB(ty,T.LI x,T.LI y) => T.LI(I.ANDB(ty,x,y))
      | T.ANDB(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.ANDB(ty,x,y))

      | T.ORB(_,a,T.LI 0i) => a
      | T.ORB(_,T.LI 0i,b) => b
      | T.ORB(ty,T.NOTB(ty',a),T.NOTB(ty'',b)) 
         where ty = ty' andalso ty' = ty'' => T.NOTB(ty,T.ANDB(ty,a,b)) 
      | T.ORB(ty,T.LI x,T.LI y) => T.LI(I.ORB(ty,x,y))
      | T.ORB(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.ORB(ty,x,y))

      | T.XORB(ty,a,T.LI 0i) => a
      | T.XORB(ty,T.LI 0i,b) => b
      | T.XORB(ty,T.NOTB(ty',a),T.NOTB(ty'',b)) 
         where ty = ty' andalso ty' = ty'' => T.NOTB(ty,T.XORB(ty,a,b)) 
      | T.XORB(ty,T.LI x,T.LI y) => T.LI(I.XORB(ty,x,y))
      | T.XORB(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.XORB(ty,x,y))

      | T.EQVB(ty,a,T.LI 0i) => zeroT
      | T.EQVB(ty,T.LI 0i,b) => zeroT
      | T.EQVB(ty,T.LI x,T.LI y) => T.LI(I.EQVB(ty,x,y))
      | T.EQVB(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.EQVB(ty,x,y))

      | T.NOTB(ty,T.NOTB(ty',a)) where ty = ty' => a
      | T.NOTB(ty,T.LI n) => T.LI(I.NOTB(ty, n))
      | T.NOTB(ty,T.LABEXP x) => T.LABEXP(T.NOTB(ty,x))

      | T.SRA(ty,a,T.LI 0i) => a
      | T.SRA(ty,T.LI 0i,_) => zeroT
      | T.SRA(ty,T.LI x,T.LI y) => T.LI(I.SRA(ty,x,y))
      | T.SRA(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.SRA(ty,x,y))

      | T.SRL(ty,a,T.LI 0i) => a
      | T.SRL(ty,T.LI 0i,_) => zeroT
      | T.SRL(ty,_,T.LI n) where IntInf.<=(IntInf.fromInt ty,n) => zeroT
      | T.SRL(ty,T.LI x,T.LI y) => T.LI(I.SRL(ty,x,y))
      | T.SRL(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.SRL(ty,x,y))

      | T.SLL(ty,a,T.LI 0i) => a
      | T.SLL(ty,T.LI 0i,_) => zeroT
      | T.SLL(ty,_,T.LI n) where IntInf.<=(IntInf.fromInt ty,n) => zeroT
      | T.SLL(ty,T.LI x,T.LI y) => T.LI(I.SLL(ty,x,y))
      | T.SLL(ty,T.LABEXP x,T.LABEXP y) => T.LABEXP(T.SLL(ty,x,y))

      (* reig *)
           
      (* MLtree does not have an UNSIGNED LOAD operation. In targets
         where both uload and sload are provided, T.LOAD translates to
         uload. To get the sload, the client must emit:
             T.SX(ty,ty',T.LOAD(ty',ea,mem))
         We don't want to simplify this here, so that the instruction 
	 selector  sees it.
      *)

      | T.SX(ty,ty',T.LOAD _) => exp

      | T.SX(ty,ty',e) where ty = ty' => e 
      | T.SX(ty,ty',T.LI n) => T.LI(I.SX(ty,ty',n))
      | T.SX(ty,ty',T.LABEXP x) => T.LABEXP(T.SX(ty,ty',x))

      | T.ZX(ty,ty',e) where ty = ty' => e
      | T.ZX(ty,ty',T.LI n) => T.LI(I.ZX(ty,ty',n))
      | T.ZX(ty,ty',T.LABEXP x) => T.LABEXP(T.ZX(ty,ty',x))

      | T.COND(ty,T.TRUE,a,b) => a
      | T.COND(ty,T.FALSE,a,b) => b

      | exp => exp
   end

   and simStm ==> (T.IF(T.TRUE,yes,no)) = yes
     | simStm ==> (T.IF(T.FALSE,yes,no)) = no
     | simStm ==> (T.SEQ[x]) = x
     | simStm ==> s = s
   
   and simF ==> (T.FNEG(ty,T.FNEG(ty',e))) where (ty = ty') = e 
     | simF ==> (T.CVTF2F(ty,ty',e)) where (ty = ty') = e
     | simF ==> (T.FCOND(ty,T.TRUE,yes,no)) = yes
     | simF ==> (T.FCOND(ty,T.FALSE,yes,no)) = no
     | simF ==> exp = exp

   and cc false = T.FALSE | cc true = T.TRUE
   and simCC ==> (T.CMP(ty,T.EQ,T.LI x,T.LI y)) = cc(I.EQ(ty,x,y))
     | simCC ==> (T.CMP(ty,T.NE,T.LI x,T.LI y)) = cc(I.NE(ty,x,y))
     | simCC ==> (T.CMP(ty,T.GT,T.LI x,T.LI y)) = cc(I.GT(ty,x,y))
     | simCC ==> (T.CMP(ty,T.GE,T.LI x,T.LI y)) = cc(I.GE(ty,x,y))
     | simCC ==> (T.CMP(ty,T.LT,T.LI x,T.LI y)) = cc(I.LT(ty,x,y))
     | simCC ==> (T.CMP(ty,T.LE,T.LI x,T.LI y)) = cc(I.LE(ty,x,y))
     | simCC ==> (T.CMP(ty,T.GTU,T.LI x,T.LI y)) = cc(I.GTU(ty,x,y))
     | simCC ==> (T.CMP(ty,T.LTU,T.LI x,T.LI y)) = cc(I.LTU(ty,x,y))
     | simCC ==> (T.CMP(ty,T.GEU,T.LI x,T.LI y)) = cc(I.GEU(ty,x,y))
     | simCC ==> (T.CMP(ty,T.LEU,T.LI x,T.LI y)) = cc(I.LEU(ty,x,y))
     | simCC ==> (T.AND(T.TRUE,x)) = x
     | simCC ==> (T.AND(x,T.TRUE)) = x
     | simCC ==> (T.AND(T.FALSE,x)) = T.FALSE
     | simCC ==> (T.AND(x,T.FALSE)) = T.FALSE
     | simCC ==> (T.OR(T.FALSE,x)) = x
     | simCC ==> (T.OR(x,T.FALSE)) = x
     | simCC ==> (T.OR(T.TRUE,x)) = T.TRUE
     | simCC ==> (T.OR(x,T.TRUE)) = T.TRUE
     | simCC ==> (T.XOR(T.TRUE,T.TRUE)) = T.FALSE
     | simCC ==> (T.XOR(T.FALSE,x)) = x
     | simCC ==> (T.XOR(x,T.FALSE)) = x
     | simCC ==> (T.XOR(T.TRUE,x)) = T.NOT x
     | simCC ==> (T.XOR(x,T.TRUE)) = T.NOT x
     | simCC ==> (T.EQV(T.FALSE,T.FALSE)) = T.TRUE
     | simCC ==> (T.EQV(T.TRUE,x)) = x
     | simCC ==> (T.EQV(x,T.TRUE)) = x
     | simCC ==> (T.EQV(T.FALSE,x)) = T.NOT x
     | simCC ==> (T.EQV(x,T.FALSE)) = T.NOT x
     | simCC ==> exp = exp

   in R.rewrite {rexp=sim,fexp=simF,ccexp=simCC,stm=simStm} end
end
end (* local *)