File: ppc.sml

package info (click to toggle)
mlton 20210117%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 58,464 kB
  • sloc: ansic: 27,682; sh: 4,455; asm: 3,569; lisp: 2,879; makefile: 2,347; perl: 1,169; python: 191; pascal: 68; javascript: 7
file content (910 lines) | stat: -rw-r--r-- 39,052 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
(* ppc.sml
 *
 * COPYRIGHT (c) 2002 Bell Labs, Lucent Technologies
 *
 * I've substantially modified this code generator to support the new MLTREE.
 * Please see the file README.hppa for the ugly details.
 *
 * -- Allen
 *)

functor PPC
  (structure PPCInstr : PPCINSTR
   structure PseudoInstrs : PPC_PSEUDO_INSTR (* where I = PPCInstr *)
                            where type I.Constant.const = PPCInstr.Constant.const
                              and type I.Region.region = PPCInstr.Region.region
                              and type I.T.Basis.cond = PPCInstr.T.Basis.cond
                              and type I.T.Basis.div_rounding_mode = PPCInstr.T.Basis.div_rounding_mode
                              and type I.T.Basis.ext = PPCInstr.T.Basis.ext
                              and type I.T.Basis.fcond = PPCInstr.T.Basis.fcond
                              and type I.T.Basis.rounding_mode = PPCInstr.T.Basis.rounding_mode
                              and type ('s,'r,'f,'c) I.T.Extension.ccx = ('s,'r,'f,'c) PPCInstr.T.Extension.ccx
                              and type ('s,'r,'f,'c) I.T.Extension.fx = ('s,'r,'f,'c) PPCInstr.T.Extension.fx
                              and type ('s,'r,'f,'c) I.T.Extension.rx = ('s,'r,'f,'c) PPCInstr.T.Extension.rx
                              and type ('s,'r,'f,'c) I.T.Extension.sx = ('s,'r,'f,'c) PPCInstr.T.Extension.sx
                              and type I.T.I.div_rounding_mode = PPCInstr.T.I.div_rounding_mode
                              and type I.T.ccexp = PPCInstr.T.ccexp
                              and type I.T.fexp = PPCInstr.T.fexp
                              (* and type I.T.labexp = PPCInstr.T.labexp *)
                              and type I.T.mlrisc = PPCInstr.T.mlrisc
                              and type I.T.oper = PPCInstr.T.oper
                              and type I.T.rep = PPCInstr.T.rep
                              and type I.T.rexp = PPCInstr.T.rexp
                              and type I.T.stm = PPCInstr.T.stm
                              and type I.arith = PPCInstr.arith
                              and type I.arithi = PPCInstr.arithi
                              and type I.bit = PPCInstr.bit
                              and type I.bo = PPCInstr.bo
                              and type I.ccarith = PPCInstr.ccarith
                              and type I.cmp = PPCInstr.cmp
                              and type I.ea = PPCInstr.ea
                              and type I.farith = PPCInstr.farith
                              and type I.farith3 = PPCInstr.farith3
                              and type I.fcmp = PPCInstr.fcmp
                              and type I.fload = PPCInstr.fload
                              and type I.fstore = PPCInstr.fstore
                              and type I.funary = PPCInstr.funary
                              and type I.instr = PPCInstr.instr
                              and type I.instruction = PPCInstr.instruction
                              and type I.load = PPCInstr.load
                              and type I.operand = PPCInstr.operand
                              and type I.rotate = PPCInstr.rotate
                              and type I.rotatei = PPCInstr.rotatei
                              and type I.spr = PPCInstr.spr
                              and type I.store = PPCInstr.store
                              and type I.unary = PPCInstr.unary
                              and type I.xerbit = PPCInstr.xerbit
   structure ExtensionComp : MLTREE_EXTENSION_COMP (* where I = PPCInstr and T = PPCInstr.T *)
                             where type I.addressing_mode = PPCInstr.addressing_mode
                               and type I.ea = PPCInstr.ea
                               and type I.instr = PPCInstr.instr
                               and type I.instruction = PPCInstr.instruction
                               and type I.operand = PPCInstr.operand
                             where type T.Basis.cond = PPCInstr.T.Basis.cond
                               and type T.Basis.div_rounding_mode = PPCInstr.T.Basis.div_rounding_mode
                               and type T.Basis.ext = PPCInstr.T.Basis.ext
                               and type T.Basis.fcond = PPCInstr.T.Basis.fcond
                               and type T.Basis.rounding_mode = PPCInstr.T.Basis.rounding_mode
                               and type T.Constant.const = PPCInstr.T.Constant.const
                               and type ('s,'r,'f,'c) T.Extension.ccx = ('s,'r,'f,'c) PPCInstr.T.Extension.ccx
                               and type ('s,'r,'f,'c) T.Extension.fx = ('s,'r,'f,'c) PPCInstr.T.Extension.fx
                               and type ('s,'r,'f,'c) T.Extension.rx = ('s,'r,'f,'c) PPCInstr.T.Extension.rx
                               and type ('s,'r,'f,'c) T.Extension.sx = ('s,'r,'f,'c) PPCInstr.T.Extension.sx
                               and type T.I.div_rounding_mode = PPCInstr.T.I.div_rounding_mode
                               and type T.Region.region = PPCInstr.T.Region.region
                               and type T.ccexp = PPCInstr.T.ccexp
                               and type T.fexp = PPCInstr.T.fexp
                               (* and type T.labexp = PPCInstr.T.labexp *)
                               and type T.mlrisc = PPCInstr.T.mlrisc
                               and type T.oper = PPCInstr.T.oper
                               and type T.rep = PPCInstr.T.rep
                               and type T.rexp = PPCInstr.T.rexp
                               and type T.stm = PPCInstr.T.stm

   (* 
    * Support 64 bit mode? 
    * This should be set to false for SML/NJ
    *)
   val bit64mode : bool 

   (*
    * Cost of multiplication in cycles
    *)
   val multCost : int ref
  ) = 
struct
  structure I   = PPCInstr
  structure T   = I.T
  structure TS  = ExtensionComp.TS
  structure C   = PPCInstr.C
  structure CB  = CellsBasis
  structure W32 = Word32
  structure A   = MLRiscAnnotations
  structure CFG = ExtensionComp.CFG

  fun error msg = MLRiscErrorMsg.error("PPC",msg)

  type instrStream = (I.instruction, CB.CellSet.cellset, CFG.cfg) TS.stream
  type mltreeStream = (T.stm, T.mlrisc list, CFG.cfg) TS.stream


  val (intTy,naturalWidths) = if bit64mode then (64,[32,64]) else (32,[32])
  structure Gen = MLTreeGen
    (structure T = T
     structure Cells = C
     val intTy = intTy
     val naturalWidths = naturalWidths
     datatype rep = SE | ZE | NEITHER
     val rep = NEITHER
    )

  (* 
   * Special instructions
   *)
  fun MTLR r = I.MTSPR{rs=r, spr=C.lr}
  fun MFLR r = I.MFSPR{rt=r, spr=C.lr}
  val CR0 = C.Reg CB.CC 0
  val RET = I.BCLR{bo=I.ALWAYS, bf=CR0, bit=I.LT, LK=false, labels=[]}
  fun SLLI32{r,i,d} = 
      I.ROTATEI{oper=I.RLWINM,ra=d,rs=r,sh=I.ImmedOp i,mb=0,me=SOME(31-i)}
  fun SRLI32{r,i,d} = 			
      I.ROTATEI{oper=I.RLWINM,ra=d,rs=r,sh=I.ImmedOp(Int.mod(32-i,32)),mb=i,me=SOME(31)}
  fun COPY{dst, src, tmp} = 
      I.COPY{k=CB.GP, sz=32, dst=dst, src=src, tmp=tmp}
  fun FCOPY{dst, src, tmp} = 
      I.COPY{k=CB.FP, sz=64, dst=dst, src=src, tmp=tmp}

  (*  
   * Integer multiplication 
   *)
  structure Mulu32 = MLTreeMult
    (structure I = I
     structure T = T
     structure CB = CellsBasis
     val intTy = 32
     type arg  = {r1:CB.cell,r2:CB.cell,d:CB.cell}
     type argi = {r:CB.cell,i:int,d:CB.cell}

     fun mov{r,d} = COPY{dst=[d],src=[r],tmp=NONE}
     fun add{r1,r2,d}= I.arith{oper=I.ADD,ra=r1,rb=r2,rt=d,Rc=false,OE=false}
     fun slli{r,i,d} = [I.INSTR(SLLI32{r=r,i=i,d=d})]
     fun srli{r,i,d} = [I.INSTR(SRLI32{r=r,i=i,d=d})]
     fun srai{r,i,d} = [I.arithi{oper=I.SRAWI,rt=d,ra=r,im=I.ImmedOp i}]

     val trapping = false
     val multCost = multCost
     fun addv{r1,r2,d}=[I.arith{oper=I.ADD,ra=r1,rb=r2,rt=d,Rc=false,OE=false}]
     fun subv{r1,r2,d}=[I.arith{oper=I.SUBF,ra=r2,rb=r1,rt=d,Rc=false,OE=false}]
     val sh1addv = NONE
     val sh2addv = NONE
     val sh3addv = NONE

     val signed = false)

  structure Muls32 = MLTreeMult
    (structure I = I
     structure T = T
     structure CB = CellsBasis
     val intTy = 32
     type arg  = {r1:CB.cell,r2:CB.cell,d:CB.cell}
     type argi = {r:CB.cell,i:int,d:CB.cell}

     fun mov{r,d} = COPY{dst=[d],src=[r],tmp=NONE}
     fun add{r1,r2,d}= I.arith{oper=I.ADD,ra=r1,rb=r2,rt=d,Rc=false,OE=false}
     fun slli{r,i,d} = [I.INSTR(SLLI32{r=r,i=i,d=d})]
     fun srli{r,i,d} = [I.INSTR(SRLI32{r=r,i=i,d=d})]
     fun srai{r,i,d} = [I.arithi{oper=I.SRAWI,rt=d,ra=r,im=I.ImmedOp i}]

     val trapping = false
     val multCost = multCost
     fun addv{r1,r2,d}=[I.arith{oper=I.ADD,ra=r1,rb=r2,rt=d,Rc=false,OE=false}]
     fun subv{r1,r2,d}=[I.arith{oper=I.SUBF,ra=r2,rb=r1,rt=d,Rc=false,OE=false}]
     val sh1addv = NONE
     val sh2addv = NONE
     val sh3addv = NONE

     val signed = true)

  structure Mult32 = MLTreeMult
    (structure I = I
     structure T = T
     structure CB = CellsBasis
     val intTy = 32
     type arg  = {r1:CB.cell,r2:CB.cell,d:CB.cell}
     type argi = {r:CB.cell,i:int,d:CB.cell}

     fun mov{r,d} = COPY{dst=[d],src=[r],tmp=NONE}
     fun add{r1,r2,d}= I.arith{oper=I.ADD,ra=r1,rb=r2,rt=d,Rc=false,OE=false}
     fun slli{r,i,d} = [I.INSTR(SLLI32{r=r,i=i,d=d})]
     fun srli{r,i,d} = [I.INSTR(SRLI32{r=r,i=i,d=d})]
     fun srai{r,i,d} = [I.arithi{oper=I.SRAWI,rt=d,ra=r,im=I.ImmedOp i}]

     val trapping = true
     val multCost = multCost
     fun addv{r1,r2,d} = error "Mult32.addv"
     fun subv{r1,r2,d} = error "Mult32.subv"
     val sh1addv = NONE
     val sh2addv = NONE
     val sh3addv = NONE

     val signed = true)

  fun selectInstructions
      (instrStream as 
       TS.S.STREAM{emit=emitInstruction,comment,getAnnotations,
                defineLabel,entryLabel,pseudoOp,annotation,
                beginCluster,endCluster,exitBlock,...}) = 
  let 
      val emit = emitInstruction o I.INSTR

      (* mark an instruction with annotations *)
      fun annotate(instr,[]) = instr
        | annotate(instr,a::an) = annotate(I.ANNOTATION{i=instr,a=a},an)
      fun mark'(instr, an) = emitInstruction(annotate(instr, an))
      fun mark(instr,an) = emitInstruction(annotate(I.INSTR instr,an))

      (* Label where trap is generated.   
       * For overflow trapping instructions, we generate a branch 
       * to this label.
       *)
      val trapLabel : Label.label option ref = ref NONE 
      val zeroR = C.r0 

      val newReg = C.newReg
      val newFreg = C.newFreg
      val newCCreg = C.newCell CB.CC

      
      fun LT (x,y)    = T.I.LT(32, x, y)
      fun LE (x,y)    = T.I.LE(32, x, y)
      fun toInt mi = T.I.toInt(32, mi)
      fun LI i = T.I.fromInt(32, i)

      fun signed16 mi   = LE(~0x8000, mi) andalso LT(mi, 0x8000)
      fun signed12 mi   = LE(~0x800, mi) andalso LT(mi, 0x800)
      fun unsigned16 mi = LE(0, mi) andalso LT(mi, 0x10000)
      fun unsigned5 mi  = LE(0, mi) andalso LT(mi, 32)
      fun unsigned6 mi  = LE(0, mi) andalso LT(mi, 64)

      fun move(rs,rd,an) =
        if CB.sameColor(rs,rd) then () 
        else mark'(COPY{dst=[rd],src=[rs],tmp=NONE},an)

      fun fmove(fs,fd,an) =
        if CB.sameColor(fs,fd) then () 
        else mark'(FCOPY{dst=[fd],src=[fs],tmp=NONE},an)

      fun ccmove(ccs,ccd,an) =
        if CB.sameColor(ccd,ccs) then () else mark(I.MCRF{bf=ccd, bfa=ccs},an)

      fun copy(dst, src, an) =
          mark'(COPY{dst=dst, src=src,
                     tmp=case dst of [_] => NONE 
                                    | _ => SOME(I.Direct(newReg()))},an)
      fun fcopy(dst, src, an) =
          mark'(FCOPY{dst=dst, src=src, 
                      tmp=case dst of [_] => NONE 
                                    | _ => SOME(I.FDirect(newFreg()))},an)

      fun emitBranch{bo, bf, bit, addr, LK} = 
      let val fallThrLab = Label.anon()
          val fallThrOpnd = I.LabelOp(T.LABEL fallThrLab)
      in
          emit(I.BC{bo=bo, bf=bf, bit=bit, addr=addr, LK=LK, fall=fallThrOpnd});
          defineLabel fallThrLab
      end

      fun split n = let 
        val wtoi = Word32.toIntX
	val w = T.I.toWord32(32, n)
	val hi = W32.~>>(w, 0w16)
	val lo = W32.andb(w, 0w65535)
	val (high, low) = 
	  if W32.<(lo,0w32768) then (hi, lo) else (hi+0w1, lo-0w65536)
      in 
	(wtoi high, wtoi low) 
      end

      fun loadImmedHiLo(0, lo, rt, an) =
            mark(I.ARITHI{oper=I.ADDI, rt=rt, ra=zeroR, im=I.ImmedOp lo}, an)
        | loadImmedHiLo(hi, lo, rt, an) = 
           (mark(I.ARITHI{oper=I.ADDIS, rt=rt, ra=zeroR, im=I.ImmedOp hi}, an);
            if lo = 0 then () 
               else emit(I.ARITHI{oper=I.ADDI, rt=rt, ra=rt, im=I.ImmedOp lo}))

      fun loadImmed(n, rt, an) = 
        if signed16 n then
           mark(I.ARITHI{oper=I.ADDI, rt=rt, ra=zeroR, im=I.ImmedOp(toInt(n))}, an)
        else let val (hi, lo) = split n
           in loadImmedHiLo(hi, lo, rt, an) 
	   end

      fun loadLabexp(lexp, rt, an) = 
          mark(I.ARITHI{oper=I.ADDI, rt=rt, ra=zeroR, im=I.LabelOp lexp}, an)

      fun immedOpnd range (e1, e2 as T.LI i) =
           (expr e1, if range i then I.ImmedOp(toInt i) else I.RegOp(expr e2))
        | immedOpnd _ (e1, x as T.CONST _) = (expr e1, I.LabelOp x)
        | immedOpnd _ (e1, x as T.LABEL _) = (expr e1, I.LabelOp x)
        | immedOpnd _ (e1, T.LABEXP lexp) = (expr e1, I.LabelOp lexp)
        | immedOpnd _ (e1, e2) = (expr e1, I.RegOp(expr e2))

      and commImmedOpnd range (e1 as T.LI _, e2) = 
           immedOpnd range (e2, e1)
        | commImmedOpnd range (e1 as T.CONST _, e2) = 
           immedOpnd range (e2, e1)
        | commImmedOpnd range (e1 as T.LABEL _, e2) =
           immedOpnd range (e2, e1)
        | commImmedOpnd range (e1 as T.LABEXP _, e2) =
           immedOpnd range (e2, e1)
        | commImmedOpnd range arg = immedOpnd range arg

      and eCommImm range (oper, operi, e1, e2, rt, an) = 
       (case commImmedOpnd range (e1, e2)
        of (ra, I.RegOp rb) =>
            mark(I.ARITH{oper=oper, ra=ra, rb=rb, rt=rt, Rc=false, OE=false},an)
         | (ra, opnd) => 
            mark(I.ARITHI{oper=operi, ra=ra, im=opnd, rt=rt},an)
        (*esac*))

      (*
       * Compute a base/displacement effective address
       *)
      and addr(size,T.ADD(_, e, T.LI i)) =
          let val ra = expr e
          in  if size i then (ra, I.ImmedOp(toInt i)) else 
              let val (hi, lo) = split i 
                  val tmpR = newReg()
              in  emit(I.ARITHI{oper=I.ADDIS, rt=tmpR, ra=ra, im=I.ImmedOp hi});
                  (tmpR, I.ImmedOp lo)
               end
          end
        | addr(size,T.ADD(ty, T.LI i, e)) = addr(size,T.ADD(ty, e, T.LI i))
        | addr(size,exp as T.SUB(ty, e, T.LI i)) = 
            (addr(size,T.ADD(ty, e, T.LI (T.I.NEGT(32, i)))) 
               handle Overflow => (expr exp, I.ImmedOp 0))
        | addr(size,T.ADD(_, e1, e2)) = (expr e1, I.RegOp (expr e2))
        | addr(size,e) = (expr e, I.ImmedOp 0)

       (* convert mlrisc to cellset: *)
       and cellset mlrisc =
           let val addCCReg = CB.CellSet.add 
               fun g([],acc) = acc
                 | g(T.GPR(T.REG(_,r))::regs,acc)  = g(regs,C.addReg(r,acc))
                 | g(T.FPR(T.FREG(_,f))::regs,acc) = g(regs,C.addFreg(f,acc))
                 | g(T.CCR(T.CC(_,cc))::regs,acc)  = g(regs,addCCReg(cc,acc))
                 | g(T.CCR(T.FCC(_,cc))::regs,acc) = g(regs,addCCReg(cc,acc))
                 | g(_::regs, acc) = g(regs, acc)
           in  g(mlrisc, C.empty) end

      (*
       * Translate a statement, and annotate it   
       *)
      and stmt(T.MV(_, rd, e),an) = doExpr(e, rd, an)
        | stmt(T.FMV(_, fd, e),an) = doFexpr(e, fd, an)
        | stmt(T.CCMV(ccd, ccexp), an) = doCCexpr(ccexp, ccd, an)
        | stmt(T.COPY(_, dst, src), an) = copy(dst, src, an)
        | stmt(T.FCOPY(_, dst, src), an) = fcopy(dst, src, an)
        | stmt(T.JMP(T.LABEXP lexp, labs),an) =
             mark(I.B{addr=I.LabelOp lexp, LK=false},an)
        | stmt(T.JMP(x as (T.LABEL _ | T.CONST _), labs),an) =
             mark(I.B{addr=I.LabelOp x, LK=false},an)
        | stmt(T.JMP(rexp, labs),an) =
          let val rs = expr(rexp)
          in  emit(MTLR(rs));
              mark(I.BCLR{bo=I.ALWAYS,bf=CR0,bit=I.LT,LK=false,labels=labs},an)
          end
        | stmt(T.CALL{funct, targets, defs, uses, region, pops, ...}, an) = 
            call(funct, targets, defs, uses, region, [], an, pops) 
        | stmt(T.FLOW_TO(T.CALL{funct, targets, defs, uses, region, pops,...}, 
                         cutTo), an) = 
            call(funct, targets, defs, uses, region, cutTo, an, pops) 
        | stmt(T.RET flow,an) = mark(RET,an)
        | stmt(T.STORE(ty,ea,data,mem),an) = store(ty,ea,data,mem,an)
        | stmt(T.FSTORE(ty,ea,data,mem),an) = fstore(ty,ea,data,mem,an)
        | stmt(T.BCC(cc, lab),an) = branch(cc,lab,an)
        | stmt(T.DEFINE l, _) = defineLabel l
        | stmt(T.LIVE S, an) = mark'(I.LIVE{regs=cellset S,spilled=C.empty},an)
        | stmt(T.KILL S, an) = mark'(I.KILL{regs=cellset S,spilled=C.empty},an)
        | stmt(T.ANNOTATION(s,a),an) = stmt(s,a::an)
        | stmt(T.EXT s,an) = ExtensionComp.compileSext(reducer()) {stm=s, an=an}
        | stmt(s, _) = doStmts(Gen.compileStm s)

      and call(funct, targets, defs, uses, region, cutsTo, an, 0) = 
          let val defs=cellset(defs)
              val uses=cellset(uses)
          in  emit(MTLR(expr funct));
              mark(I.CALL{def=defs, use=uses, cutsTo=cutsTo, mem=region}, an)
          end
	| call _ = error "pops<>0 not implemented"

      and branch(T.CMP(_, _, T.LI _, T.LI _), _, _) = error "branch(LI,LI)"
        | branch(T.CMP(ty, cc, e1 as T.LI _, e2), lab, an) = 
          let val cc' = T.Basis.swapCond cc
          in  branch(T.CMP(ty, cc', e2, e1), lab, an)
          end
        | branch(cmp as T.CMP(ty, cond, e1, e2), lab, an) = let
	    val (bo, cf) = 
	      (case cond  
	       of T.LT  => (I.TRUE,  I.LT)
		| T.LE  => (I.FALSE, I.GT)
		| T.EQ  => (I.TRUE,  I.EQ)
		| T.NE  => (I.FALSE, I.EQ)
		| T.GT  => (I.TRUE,  I.GT)
		| T.GE  => (I.FALSE, I.LT)
		| T.LTU => (I.TRUE,  I.LT)
		| T.LEU => (I.FALSE, I.GT)
		| T.GTU => (I.TRUE,  I.GT)
		| T.GEU => (I.FALSE, I.LT)
		| (T.SETCC | T.MISC_COND _) => error "branch(CMP)"
	     (*esac*))
            val ccreg = if true then CR0 else newCCreg() (* XXX *)
	    val addr = I.LabelOp(T.LABEL lab)
	    fun default() = 
	      (doCCexpr(cmp, ccreg, []);
	       emitBranch{bo=bo, bf=ccreg, bit=cf, addr=addr, LK=false})
          in
	    case (e1, e2)
	    of (T.ANDB(_, a1, a2), T.LI z) =>
	        if z = 0 then 
		  (case commImmedOpnd unsigned16 (a1, a2)
		   of (ra, I.RegOp rb) =>
			emit(I.ARITH{oper=I.AND, ra=ra, rb=rb, rt=newReg(), Rc=true, OE=false})
		    | (ra, opnd) =>
			emit(I.ARITHI{oper=I.ANDI_Rc, ra=ra, im=opnd, rt=newReg()})
		   (*esac*);
		   branch(T.CC(cond, CR0), lab, an))
	        else 
		  default()
             | _ => 
		  default()
          end
        | branch(T.CC(cc, cr), lab, an) = 
          let val addr=I.LabelOp(T.LABEL lab)
              fun branch(bo, bit) = 
                 emitBranch{bo=bo, bf=cr, bit=bit, addr=addr, LK=false}
          in  case cc of 
                T.EQ => branch(I.TRUE, I.EQ)
              | T.NE => branch(I.FALSE, I.EQ)
              | (T.LT | T.LTU) => branch(I.TRUE, I.LT)
              | (T.LE | T.LEU) => branch(I.FALSE, I.GT)
              | (T.GE | T.GEU) => branch(I.FALSE, I.LT)
              | (T.GT | T.GTU) => branch(I.TRUE, I.GT)
	      | (T.SETCC | T.MISC_COND _) => error "branch(CC)"
          end  
        | branch(cmp as T.FCMP(fty, cond, _, _), lab, an) = 
          let val ccreg = if true then CR0 else newCCreg() (* XXX *)
              val labOp = I.LabelOp(T.LABEL lab)
              fun branch(bo, bf, bit) = 
                  emitBranch{bo=bo, bf=bf, bit=bit, addr=labOp, LK=false}
              fun test2bits(bit1, bit2) = 
              let val ba=(ccreg, bit1)
                  val bb=(ccreg, bit2)
                  val bt=(ccreg, I.FL)
              in  emit(I.CCARITH{oper=I.CROR, bt=bt, ba=ba, bb=bb});
                  branch(I.TRUE, ccreg, I.FL)
              end
          in  doCCexpr(cmp, ccreg, []);
              case cond of 
                T.==  => branch(I.TRUE,  ccreg, I.FE)
              | T.?<> => branch(I.FALSE,  ccreg, I.FE)
              | T.?   => branch(I.TRUE,  ccreg, I.FU)
              | T.<=> => branch(I.FALSE,  ccreg, I.FU)
              | T.>   => branch(I.TRUE,  ccreg, I.FG)
              | T.>=  => test2bits(I.FG, I.FE)
              | T.?>  => test2bits(I.FU, I.FG)
              | T.?>= => branch(I.FALSE,  ccreg, I.FL)
              | T.<   => branch(I.TRUE,  ccreg, I.FL)
              | T.<=  => test2bits(I.FL, I.FE)
              | T.?<  => test2bits(I.FU, I.FL)
              | T.?<= => branch(I.FALSE,  ccreg, I.FG)
              | T.<>  => test2bits(I.FL, I.FG)
              | T.?=  => test2bits(I.FU, I.FE)
	      | (T.SETFCC | T.MISC_FCOND _) => error "branch(FCMP)"
             (*esac*)
          end
        | branch _ = error "branch"
  
      and doStmt s = stmt(s,[]) 

      and doStmts ss = app doStmt ss
   
        (* Emit an integer store *) 
      and store(ty, ea, data, mem, an) = 
          let val (st,size) = case (ty,Gen.Size.size ea) of
                         (8,32)  => (I.STB,signed16)
                       | (8,64)  => (I.STBE,signed12)
                       | (16,32) => (I.STH,signed16)
                       | (16,64) => (I.STHE,signed12)
                       | (32,32) => (I.STW,signed16)
                       | (32,64) => (I.STWE,signed12)
                       | (64,64) => (I.STDE,signed12)
                       | _  => error "store"
              val (r, disp) = addr(size,ea)
          in  mark(I.ST{st=st, rs=expr data, ra=r, d=disp, mem=mem}, an) end

        (* Emit a floating point store *) 
      and fstore(ty, ea, data, mem, an) =
          let val (st,size) = case (ty,Gen.Size.size ea) of
                         (32,32) => (I.STFS,signed16)
                       | (32,64) => (I.STFSE,signed12)
                       | (64,32) => (I.STFD,signed16)
                       | (64,64) => (I.STFDE,signed12)
                       | _  => error "fstore"
              val (r, disp) = addr(size,ea)
          in  mark(I.STF{st=st,fs=fexpr data, ra=r, d=disp, mem=mem},an) end
    
      and subfImmed(i, ra, rt, an) = 
          if signed16 i then
             mark(I.ARITHI{oper=I.SUBFIC, rt=rt, ra=ra, im=I.ImmedOp(toInt i)}, an)
          else
             mark(I.ARITH{oper=I.SUBF, rt=rt, ra=ra, rb=expr(T.LI i), 
                          Rc=false, OE=false}, an)
    
      (*  Generate an arithmetic instruction *)
      and arith(oper, e1, e2, rt, an) = 
          mark(I.ARITH{oper=oper,ra=expr e1,rb=expr e2,rt=rt,OE=false,Rc=false},
               an)
   
      (*  Generate a trapping instruction *)
      and arithTrapping(oper, e1, e2, rt, an) = 
          let val ra = expr e1 val rb = expr e2
          in  mark(I.ARITH{oper=oper,ra=ra,rb=rb,rt=rt,OE=true,Rc=true},an);
              overflowTrap()
          end

      (*  Generate an overflow trap *)
      and overflowTrap() =
          let val label = case !trapLabel of
                            NONE => let val l = Label.anon()
                                    in  trapLabel := SOME l; l end
                          | SOME l => l
          in  emitBranch{bo=I.TRUE, bf=CR0, bit=I.SO, LK=false,
                         addr=I.LabelOp(T.LABEL label)}
          end

      (* Generate a load and annotate the instruction *)
      and load(ld32, ld64, ea, mem, rt, an) = 
          let val (ld,size) = 
              if bit64mode andalso Gen.Size.size ea = 64 
              then (ld64,signed12) 
              else (ld32,signed16)
              val (r, disp) = addr(size,ea)
          in  mark(I.L{ld=ld, rt=rt, ra=r, d=disp, mem=mem},an)
          end

      (* Generate a SRA shift operation and annotate the instruction *) 
      and sra(oper, operi, e1, e2, rt, an) = 
          case immedOpnd unsigned5 (e1, e2) of 
            (ra, I.RegOp rb) => 
              mark(I.ARITH{oper=oper,rt=rt,ra=ra,rb=rb,Rc=false,OE=false},an)
          | (ra, rb) => 
              mark(I.ARITHI{oper=operi, rt=rt, ra=ra, im=rb},an)

      (* Generate a SRL shift operation and annotate the instruction *) 
      and srl32(e1, e2, rt, an) = 
          case immedOpnd unsigned5 (e1, e2) of
            (ra, I.ImmedOp n) =>
              mark(SRLI32{r=ra,i=n,d=rt},an)
          | (ra, rb) =>
              mark(I.ARITH{oper=I.SRW,rt=rt,ra=ra,rb=reduceOpn rb,
                           Rc=false,OE=false},an)
    
      and sll32(e1, e2, rt, an) = 
          case immedOpnd unsigned5 (e1, e2) of
            (ra, rb as I.ImmedOp n) =>
              mark(SLLI32{r=ra,i=n,d=rt},an)
          | (ra, rb) =>
              mark(I.ARITH{oper=I.SLW,rt=rt,ra=ra,rb=reduceOpn rb,
                           Rc=false,OE=false},an)

      (* Generate a subtract operation *)
      and subtract(ty, e1, e2 as T.LI i, rt, an) =
            (doExpr(T.ADD(ty, e1, T.LI (T.I.NEGT(32, i))), rt, an)
              handle Overflow => 
              mark(I.ARITH{oper=I.SUBF, rt=rt, ra=expr e2, 
                           rb=expr e1, OE=false, Rc=false}, an)
            )
        | subtract(ty, T.LI i, e2, rt, an) = subfImmed(i, expr e2, rt, an)
        | subtract(ty, x as (T.CONST _ | T.LABEL _), e2, rt, an) =
             mark(I.ARITHI{oper=I.SUBFIC,rt=rt,ra=expr e2,
                           im=I.LabelOp x},an)
        | subtract(ty, e1, e2, rt, an) =
          let val rb = expr e1 val ra = expr e2
          in  mark(I.ARITH{oper=I.SUBF,rt=rt,ra=ra,rb=rb,Rc=false,OE=false},an)
          end

          (* Generate optimized multiplication code *)
      and multiply(ty,oper,operi,genMult,e1,e2,rt,an) =
          let fun nonconst(e1,e2) = 
                  [annotate( 
                     case commImmedOpnd signed16 (e1,e2) of
                       (ra,I.RegOp rb) => 
                         I.arith{oper=oper,ra=ra,rb=rb,rt=rt,OE=false,Rc=false}
                     | (ra,im) => I.arithi{oper=operi,ra=ra,im=im,rt=rt},
                     an)]
              fun const(e,i) =
                  let val r = expr e
                  in  genMult{r=r,i=toInt(i),d=rt}
                      handle _ => nonconst(T.REG(ty,r),T.LI i)
                  end
              val instrs =
                 case (e1,e2) of
                   (_,T.LI i)   => const(e1,i)
                 | (T.LI i,_)   => const(e2,i)
                 | _            => nonconst(e1,e2)
          in  app emitInstruction instrs end

      and divu32 x = Mulu32.divide{mode=T.TO_ZERO,stm=doStmt} x 

      and divs32 x = Muls32.divide{mode=T.TO_ZERO,stm=doStmt} x

      and divt32 x = Mult32.divide{mode=T.TO_ZERO,stm=doStmt} x 

          (* Generate optimized division code *)
      and divide(ty,oper,genDiv,e1,e2,rt,overflow,an) =
          let fun nonconst(e1,e2) = 
                 (mark(I.ARITH{oper=oper,ra=expr e1,rb=expr e2,rt=rt,
                               OE=overflow,Rc=overflow},an);
                  if overflow then overflowTrap() else ()
                  )
              fun const(e,i) =
                  let val r = expr e
                  in  app emitInstruction (genDiv{r=r,i=toInt(i),d=rt})
                      handle _ => nonconst(T.REG(ty,r),T.LI i)
                  end
          in  case (e1,e2) of
                (_,T.LI i)   => const(e1,i)
              | _            => nonconst(e1,e2)
          end

      (* Reduce an operand into a register *)
      and reduceOpn(I.RegOp r) = r
        | reduceOpn opn =
          let val rt = newReg()
          in  emit(I.ARITHI{oper=I.ADDI, rt=rt, ra=zeroR, im=opn});
              rt
          end

      (* Reduce an expression, and returns the register that holds
       * the value.
       *)
      and expr(rexp as T.REG(_,r)) =     
          if CB.sameColor(C.lr, r) then
          let val rt = newReg()
          in  doExpr(rexp, rt, []); rt end 
          else r
        | expr(rexp) = 
          let val rt = newReg()
          in  doExpr(rexp, rt, []); rt end 
    
      (* doExpr(e, rt, an) -- 
       *    reduce the expression e, assigns it to rd,
       *    and annotate the expression with an
       *)
      and doExpr(e, rt, an) =
           if CB.sameColor(rt,C.lr) then 
           let val rt = newReg() in doExpr(e,rt,[]); mark(MTLR rt,an) end
           else
           case e of
             T.REG(_,rs)  => if CB.sameColor(rs,C.lr) then mark(MFLR rt,an)
                             else move(rs,rt,an)
           | T.LI i        => loadImmed(i, rt, an)
           | T.LABEXP lexp => loadLabexp(lexp, rt, an)
           | T.CONST _     => loadLabexp(e, rt, an)
           | T.LABEL _     => loadLabexp(e, rt, an)

             (* All data widths *)
           | T.ADD(_, e1, e2) => eCommImm signed16 (I.ADD,I.ADDI,e1,e2,rt,an)
           | T.SUB(ty, e1, e2) => subtract(ty, e1, e2, rt, an)

             (* Special PPC bit operations *)
           | T.ANDB(_,e1,T.NOTB(_,e2)) => arith(I.ANDC,e1,e2,rt,an)
           | T.ORB(_,e1,T.NOTB(_,e2))  => arith(I.ORC,e1,e2,rt,an)
           | T.XORB(_,e1,T.NOTB(_,e2)) => arith(I.EQV,e1,e2,rt,an)
           | T.EQVB(_,e1,e2)           => arith(I.EQV,e1,e2,rt,an)
           | T.ANDB(_,T.NOTB(_,e1),e2) => arith(I.ANDC,e2,e1,rt,an)
           | T.ORB(_,T.NOTB(_,e1),e2)  => arith(I.ORC,e2,e1,rt,an)
           | T.XORB(_,T.NOTB(_,e1),e2) => arith(I.EQV,e2,e1,rt,an)
           | T.NOTB(_,T.ANDB(_,e1,e2)) => arith(I.NAND,e1,e2,rt,an)
           | T.NOTB(_,T.ORB(_,e1,e2))  => arith(I.NOR,e1,e2,rt,an)
           | T.NOTB(_,T.XORB(_,e1,e2)) => arith(I.EQV,e1,e2,rt,an)

           | T.ANDB(_, e1, e2) => 
               eCommImm unsigned16(I.AND,I.ANDI_Rc,e1,e2,rt,an)
           | T.ORB(_, e1, e2) => eCommImm unsigned16(I.OR,I.ORI,e1,e2,rt,an)
           | T.XORB(_, e1, e2) => eCommImm unsigned16(I.XOR,I.XORI,e1,e2,rt,an)

             (* 32 bit support *)
           | T.MULU(32, e1, e2) => multiply(32,I.MULLW,I.MULLI,
                                            Mulu32.multiply,e1,e2,rt,an)
           | T.DIVU(32, e1, e2) => divide(32,I.DIVWU,divu32,e1,e2,rt,false,an)

	   | T.MULS(32, e1, e2) => multiply(32,I.MULLW,I.MULLI,
					    Muls32.multiply,e1,e2,rt,an)
	   | T.DIVS(T.DIV_TO_ZERO, 32, e1, e2) =>
	       (* On the PPC we turn overflow checking on despite this
		* being DIVS.  That's because divide-by-zero is also
		* indicated through "overflow" instead of causing a trap. *)
	                           divide(32,I.DIVW,divs32,e1,e2,rt,
					  true (* !! *),
					  an)

           | T.ADDT(32, e1, e2) => arithTrapping(I.ADD, e1, e2, rt, an)
           | T.SUBT(32, e1, e2) => arithTrapping(I.SUBF, e2, e1, rt, an)
           | T.MULT(32, e1, e2) => arithTrapping(I.MULLW, e1, e2, rt, an)
           | T.DIVT(T.DIV_TO_ZERO, 32, e1, e2) =>
	                           divide(32,I.DIVW,divt32,e1,e2,rt,true,an)
    
           | T.SRA(32, e1, e2)  => sra(I.SRAW, I.SRAWI, e1, e2, rt, an)
           | T.SRL(32, e1, e2)  => srl32(e1, e2, rt, an)
           | T.SLL(32, e1, e2)  => sll32(e1, e2, rt, an)
 
              (* 64 bit support *) 
           | T.SRA(64, e1, e2) => sra(I.SRAD, I.SRADI, e1, e2, rt, an)
           (*| T.SRL(64, e1, e2) => srl(32, I.SRD, I.RLDINM, e1, e2, rt, an)
           | T.SLL(64, e1, e2) => sll(32, I.SLD, I.RLDINM, e1, e2, rt, an)*)

              (* loads *) 
           | T.LOAD(8,ea,mem)   => load(I.LBZ,I.LBZE,ea,mem,rt,an)
           | T.LOAD(16,ea, mem) => load(I.LHZ,I.LHZE,ea,mem,rt,an)
           | T.LOAD(32,ea, mem) => load(I.LWZ,I.LWZE,ea,mem,rt,an)
           | T.LOAD(64,ea, mem) => load(I.LDE,I.LDE,ea,mem,rt,an)
            
              (* Conditional expression *)
           | T.COND exp =>
              doStmts(Gen.compileCond{exp=exp,an=an,rd=rt})

              (* Misc *)
           | T.LET(s,e) => (doStmt s; doExpr(e, rt, an))
           | T.MARK(e, A.MARKREG f) => (f rt; doExpr(e,rt,an))
           | T.MARK(e, a) => doExpr(e,rt,a::an)
           | T.REXT e => ExtensionComp.compileRext (reducer()) {e=e,rd=rt,an=an}
           | e => doExpr(Gen.compileRexp e,rt,an)
  
      (* Generate a floating point load *) 
      and fload(ld32, ld64, ea, mem, ft, an) =
          let val (ld,size) = 
               if bit64mode andalso Gen.Size.size ea = 64 then (ld64,signed12) 
               else (ld32,signed16)
              val (r, disp) = addr(size,ea)
          in  mark(I.LF{ld=ld, ft=ft, ra=r, d=disp, mem=mem}, an) end
    
      (* Generate a floating-point binary operation *)
      and fbinary(oper, e1, e2, ft, an) = 
          mark(I.FARITH{oper=oper,fa=fexpr e1,fb=fexpr e2,ft=ft,Rc=false}, an)

      (* Generate a floating-point 3-operand operation
       * These are of the form
       *     +/- e1 * e3 +/- e2
       *)
      and f3(oper, e1, e2, e3, ft, an) =
          mark(I.FARITH3{oper=oper,fa=fexpr e1,fb=fexpr e2,fc=fexpr e3,
                         ft=ft,Rc=false}, an)

      (* Generate a floating-point unary operation *)
      and funary(oper, e, ft, an) = 
          mark(I.FUNARY{oper=oper, ft=ft, fb=fexpr e, Rc=false}, an)

      (* Reduce the expression fexp, return the register that holds
       * the value. 
       *)
      and fexpr(T.FREG(_,f)) = f
        | fexpr(e) = 
          let val ft = newFreg()
          in  doFexpr(e, ft, []); ft end
    
      (* doExpr(fexp, ft, an) -- 
       *   reduce the expression fexp, and assigns
       *   it to ft. Also annotate fexp. 
       *)
      and doFexpr(e, ft, an) =
          case e of
            T.FREG(_,fs) => fmove(fs,ft,an)

            (* Single precision support *)
          | T.FLOAD(32, ea, mem) => fload(I.LFS,I.LFSE,ea,mem,ft,an)

            (* special 3 operand floating point arithmetic *)
          | T.FADD(32,T.FMUL(32,a,c),b) => f3(I.FMADDS,a,b,c,ft,an)
          | T.FADD(32,b,T.FMUL(32,a,c)) => f3(I.FMADDS,a,b,c,ft,an)
          | T.FSUB(32,T.FMUL(32,a,c),b) => f3(I.FMSUBS,a,b,c,ft,an)
          | T.FSUB(32,b,T.FMUL(32,a,c)) => f3(I.FNMSUBS,a,b,c,ft,an)
          | T.FNEG(32,T.FADD(32,T.FMUL(32,a,c),b)) => f3(I.FNMADDS,a,b,c,ft,an)
          | T.FNEG(32,T.FADD(32,b,T.FMUL(32,a,c))) => f3(I.FNMADDS,a,b,c,ft,an)
          | T.FSUB(32,T.FNEG(32,T.FMUL(32,a,c)),b) => f3(I.FNMADDS,a,b,c,ft,an)

          | T.FADD(32, e1, e2) => fbinary(I.FADDS, e1, e2, ft, an)
          | T.FSUB(32, e1, e2) => fbinary(I.FSUBS, e1, e2, ft, an)
          | T.FMUL(32, e1, e2) => fbinary(I.FMULS, e1, e2, ft, an)
          | T.FDIV(32, e1, e2) => fbinary(I.FDIVS, e1, e2, ft, an)

            (* Double precision support *)
          | T.FLOAD(64, ea, mem) => fload(I.LFD,I.LFDE,ea,mem,ft,an)

            (* special 3 operand floating point arithmetic *)
          | T.FADD(64,T.FMUL(64,a,c),b) => f3(I.FMADD,a,b,c,ft,an)
          | T.FADD(64,b,T.FMUL(64,a,c)) => f3(I.FMADD,a,b,c,ft,an)
          | T.FSUB(64,T.FMUL(64,a,c),b) => f3(I.FMSUB,a,b,c,ft,an)
          | T.FSUB(64,b,T.FMUL(64,a,c)) => f3(I.FNMSUB,a,b,c,ft,an)
          | T.FNEG(64,T.FADD(64,T.FMUL(64,a,c),b)) => f3(I.FNMADD,a,b,c,ft,an)
          | T.FNEG(64,T.FADD(64,b,T.FMUL(64,a,c))) => f3(I.FNMADD,a,b,c,ft,an)
          | T.FSUB(64,T.FNEG(64,T.FMUL(64,a,c)),b) => f3(I.FNMADD,a,b,c,ft,an)

          | T.FADD(64, e1, e2) => fbinary(I.FADD, e1, e2, ft, an)
          | T.FSUB(64, e1, e2) => fbinary(I.FSUB, e1, e2, ft, an)
          | T.FMUL(64, e1, e2) => fbinary(I.FMUL, e1, e2, ft, an)
          | T.FDIV(64, e1, e2) => fbinary(I.FDIV, e1, e2, ft, an)
          | T.CVTI2F(64,_,e) => 
               app emitInstruction (PseudoInstrs.cvti2d{reg=expr e,fd=ft})

            (* Single/double precision support *)
          | T.FABS((32|64), e) => funary(I.FABS, e, ft, an)
          | T.FNEG((32|64), e) => funary(I.FNEG, e, ft, an)
	  | T.FSQRT(32, e)     => funary(I.FSQRTS, e, ft, an)
	  | T.FSQRT(64, e)     => funary(I.FSQRT, e, ft, an)

	  | T.CVTF2F(64,32,e)  => doFexpr(e,ft,an) (* 32->64 is a no-op *)
	  | T.CVTF2F(32,32,e)  => doFexpr(e,ft,an)
	  | T.CVTF2F(64,64,e)  => doFexpr(e,ft,an)
	  | T.CVTF2F(32,64,e)  => funary(I.FRSP,e,ft,an)

            (* Misc *)
          | T.FMARK(e, A.MARKREG f) => (f ft; doFexpr(e,ft,an))
          | T.FMARK(e, a) => doFexpr(e,ft,a::an)
          | T.FEXT e => ExtensionComp.compileFext (reducer()) {e=e,fd=ft,an=an}
          | _ => error "doFexpr"

       and ccExpr(T.CC(_,cc)) = cc
         | ccExpr(T.FCC(_,cc)) = cc
         | ccExpr(ccexp) =
           let val cc = newCCreg()
           in  doCCexpr(ccexp,cc,[]); cc end

       (* Reduce an condition expression, and assigns the result to ccd *)
       and doCCexpr(ccexp, ccd, an) = 
           case ccexp of 
              T.CMP(ty, cc, e1, e2) => 
              let val (opnds, cmp) =
                   case cc of 
                     (T.LT | T.LE | T.EQ | T.NE | T.GT | T.GE) =>
                       (immedOpnd signed16, I.CMP)
                   | _ => (immedOpnd unsigned16, I.CMPL)
                  val (opndA, opndB) = opnds(e1, e2)
                  val l  = case ty of
                             32 => false 
                           | 64 => true 
                           | _  => error "doCCexpr" 
              in mark(I.COMPARE{cmp=cmp, l=l, bf=ccd, ra=opndA, rb=opndB},an) 
              end
          | T.FCMP(fty, fcc, e1, e2) => 
             mark(I.FCOMPARE{cmp=I.FCMPU, bf=ccd, fa=fexpr e1, fb=fexpr e2},an) 
          | T.CC(_,cc) => ccmove(cc,ccd,an)
          | T.CCMARK(cc,A.MARKREG f) => (f ccd; doCCexpr(cc,ccd,an))
          | T.CCMARK(cc,a) => doCCexpr(cc,ccd,a::an)
          | T.CCEXT e =>
	    ExtensionComp.compileCCext (reducer()) {e=e, ccd=ccd, an=an}
          | _ => error "doCCexpr: Not implemented"
   
      and emitTrap() = emit(I.TW{to=31,ra=zeroR,si=I.ImmedOp 0}) 

      and beginCluster' _ =
	   (trapLabel := NONE; beginCluster 0)

      and endCluster' a =
           (case !trapLabel of 
              SOME label => 
              (defineLabel label; emitTrap(); trapLabel := NONE) 
            | NONE => ();
           endCluster a)

      and reducer() =
          TS.REDUCER{reduceRexp    = expr,
	             reduceFexp    = fexpr,
		     reduceCCexp   = ccExpr,
		     reduceStm     = stmt,
		     operand       = (fn _ => error "operand"),
		     reduceOperand = reduceOpn,
		     addressOf     = (fn _ => error "addressOf"),
		     emit          = emitInstruction o annotate,
		     instrStream   = instrStream,
		     mltreeStream  = self()
	  }
       and self() = 
       TS.S.STREAM
       { beginCluster  = beginCluster',
         endCluster    = endCluster',
         emit          = doStmt,
         pseudoOp      = pseudoOp,
         defineLabel   = defineLabel,
         entryLabel    = entryLabel,
         comment       = comment,
         annotation    = annotation,
         getAnnotations=getAnnotations,
         exitBlock     = fn mlrisc => exitBlock(cellset mlrisc)
       }
   in  self()
   end
    
end