1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
|
(*
* This is the machine description file of PowerPC derived from Lal's code.
* I have no idea what the instructions do so it probably won't work.
*
* Note: I've now added lots of instructions for 64-bit and single precision
* floating point support.
*
* I'm using Book E: PowerPC Architecture Enhanced for Embedded Applications
* as the reference
*
* -- Allen
*)
architecture PPC =
struct
superscalar
big endian
lowercase assembly
storage
GP = $r[32] of 64 bits asm: (
fn (r,_) => if !PPCAsmSyntax.ibm_syntax
then Int.toString r
else "r"^Int.toString r)
| FP = $f[32] of 64 bits asm: (
fn (f,_) => if !PPCAsmSyntax.ibm_syntax
then Int.toString f
else "f"^Int.toString r)
| CC = $cc[8] of 4 bits asm: (fn (cr,_) => "cr"^Int.toString cr)
| SPR = $spr[32] of 64 bits
asm: (fn (1,_) => "xer"
| (8,_) => "lr"
| (9,_) => "ctr"
| (r,_) => Int.toString r
)
| MEM = $m[] of 8 aggregable bits asm: (fn (r,_) => "m"^Int.toString r)
| CTRL = $ctrl[] of 8 bits asm: (fn (r,_) => "ctrl"^Int.toString r)
locations
stackptrR = $r[1]
and asmTmpR = $r[28]
and fasmTmp = $f[0]
and r0 = $r[0]
(* the encoding of these are from page 372 *)
and xer = $spr[1] (* Integer exception register *)
and lr = $spr[8] (* Link register *)
and ctr = $spr[9] (* counter register *)
structure RTL =
struct
end
structure Instruction =
struct
type gpr = int (* general purpose register *)
type fpr = int (* floating point register *)
type ccr = int (* condition code register *)
type crf = int (* condition register field *)
datatype spr! = XER | LR | CTR
datatype operand =
RegOp of $GP ``<GP>'' (emit_GP GP) rtl: $r[GP]
| ImmedOp of int ``<int>'' (itow int) rtl: immed int
| LabelOp of T.labexp ``<emit_labexp labexp>''
(itow(MLTreeEval.valueOf labexp))
type addressing_mode = CellsBasis.cell * operand
datatype ea =
Direct of $GP
| FDirect of $FP
| Displace of {base: $GP, disp: T.labexp, mem: Region.region}
(* Load/store operators that have the E suffix means that 64-bit
* addressing is used. Note: the x suffix is implicitly added if rb is a
* register.
*
* -- Allen
*)
datatype load! = LBZ (* load byte and zero *)
| LBZE
| LHZ (* load half word and zero *)
| LHZE
| LHA (* load half word algebraic *)
| LHAE
| LWZ (* load word and zero *)
| LWZE
| LDE (* load double word extended
* Note: there is no LD or LDX!!!
*)
| LBZU
| LHZU
| LHAU
| LWZU
| LDZU
datatype store! = STB
| STBE
| STH
| STHE
| STW
| STWE
| STDE
| STBU
| STHU
| STWU
| STDU
datatype fload! = LFS
| LFSE
| LFD
| LFDE
| LFSU
| LFDU
datatype fstore! = STFS
| STFSE
| STFD
| STFDE
| STFSU
| STFDU
datatype cmp! = CMP | CMPL
datatype fcmp! = FCMPO 0w32 (* ordered *)
| FCMPU 0w0 (* unordered *)
(* xo *)
datatype unary! = NEG 0w104
| EXTSB 0w954 (* extend sign byte *)
| EXTSH 0w922 (* extend sign halfword *)
| EXTSW 0w986 (* extend sign word *)
| CNTLZW 0w26 (* count leading zeros word *)
| CNTLZD 0w58 (* count leading zeros double word *)
(* opcd/xo *)
datatype funary! = FMR (0w63,0w72)
| FNEG (0w63,0w40)
| FABS (0w63,0w264)
| FNABS (0w63,0w136)
| FSQRT (0w63,0w22)
| FSQRTS (0w59,0w22)
| FRSP (0w63,0w12) (* round to single precision *)
| FCTIW (0w63,0w14) (* convert to integer word *)
| FCTIWZ (0w63,0w15) (* convert to integer word *)
| FCTID (0w63,0w814) (* convert to double word *)
| FCTIDZ (0w63,0w815) (* convert to double word *)
| FCFID (0w63,0w846) (* convert from double word *)
(* opcd/xo *)
datatype farith! = FADD (0w63,0w21)
| FSUB (0w63,0w20)
| FMUL (0w63,0w25)
| FDIV (0w63,0w18)
| FADDS (0w59,0w21)
| FSUBS (0w59,0w20)
| FMULS (0w59,0w25)
| FDIVS (0w59,0w18)
(* opcd, xo *)
datatype farith3! = FMADD (0w63,0w29)
| FMADDS (0w59,0w29)
| FMSUB (0w63,0w28)
| FMSUBS (0w59,0w28)
| FNMADD (0w63,0w31)
| FNMADDS (0w59,0w31)
| FNMSUB (0w63,0w30)
| FNMSUBS (0w59,0w30)
| FSEL (0w63,0w23) (* floating point select *)
datatype bo =
TRUE 0wb01100 (* 011zy *)
| FALSE 0wb00100 (* 001zy *)
| ALWAYS 0wb10100 (* 1z1zz *)
| COUNTER of {eqZero:bool, cond:bool option}
(case cond of
NONE => if eqZero then 0wb10010 (* 1z01y *)
else 0wb10000 (* 1z00y *)
| SOME cc => case (eqZero,cc) of
(false,false) => 0wb00000 (* 0000y *)
| (false,true) => 0wb01000 (* 0100y *)
| (true,false) => 0wb00010 (* 0001y *)
| (true,true) => 0wb01010 (* 0101y *)
)
(* operation ARITH ARITHI *)
datatype arith! = (* --------- ----- ------ *)
(* xo *)
ADD 0w266 (* add add addi *)
| SUBF 0w40 (* subtract from subf subfic *)
| MULLW 0w235 (* multiply mullw mulli *)
| MULLD 0w233 (* multiply double word mulld - *)
| MULHW 0w75 (* multiply high word mulhw - *)
| MULHWU 0w11 (* multiply high word unsigned mulhwu - *)
| DIVW 0w491 (* divide word divw - *)
| DIVD 0w489 (* divide doubleword divd - *)
| DIVWU 0w459 (* divide word unsigned divwu - *)
| DIVDU 0w457 (* divide doubleword unsigned divdu - *)
| AND 0w28 (* and and andi *)
| OR 0w444 (* or or ori *)
| XOR 0w316 (* xor xor xori *)
| NAND 0w476 (* nand *)
| NOR 0w124 (* nor *)
| EQV 0w284 (* eqv *)
| ANDC 0w60 (* and with complement andc - *)
| ORC 0w412 (* or with complement orc - *)
| SLW 0w24 (* shift left word slw rlwinm *)
| SLD 0w27 (* shift left double word sld rldinm *)
| SRW 0w536 (* shift right word srw rlwinm *)
| SRD 0w539 (* shift right double word srd rldinm *)
| SRAW 0w792 (* shift right algebraic word sraw srawi *)
| SRAD 0w794 (* shift right algebraic dword srad sradi *)
datatype arithi! = (* --------- ----- ------ *)
(* opcd *)
ADDI 0w14 (* add add addi *)
| ADDIS 0w15 (* add-shifted - addis *)
| SUBFIC 0w8 (* subtract from subf subfic *)
| MULLI 0w7 (* multiply mullw mulli *)
| ANDI_Rc "andi." 0w28 (* and and andi *)
| ANDIS_Rc "andis." 0w29(* and-shifted - andis *)
| ORI 0w24 (* or or ori *)
| ORIS 0w25 (* or-shifted - ori *)
| XORI 0w26 (* xor xor xori *)
| XORIS 0w27 (* xor-shifted - xoris *)
(*
| SLWI (* !!! *) (* shift left word slw rlwinm *)
| SLDI (* !!! *) (* shift left double word sld rldinm *)
| SRWI (* !!! *) (* shift right word srw rlwinm *)
| SRDI (* !!! *) (* shift right double word srd rldinm *)
*)
| SRAWI (* shift right algebric word sraw srawi *)
| SRADI (* shift right algebraic dword srad sradi *)
(* !!! means that these are pseudo ops! *)
datatype rotate! =
(* opcd *)
RLWNM (* rotate left word AND mask rlwnm rlwinm *)
| RLDCL
| RLDCR
datatype rotatei! =
RLWINM (* rotate left word AND mask rlwnm rlwinm *)
| RLWIMI
| RLDICL
| RLDICR
| RLDIC
| RLDIMI
datatype ccarith! = (* page 47-49 *)
(* xo *)
CRAND 0w257 (* cond. reg. AND *)
| CROR 0w449 (* cond. reg. OR *)
| CRXOR 0w193 (* cond. reg. XOR *)
| CRNAND 0w225 (* cond. reg. NAND *)
| CRNOR 0w33 (* cond. reg. NOR *)
| CREQV 0w289 (* cond. reg. EQV *)
| CRANDC 0w129 (* cond. reg. AND with complement *)
| CRORC 0w417 (* cond. reg. OR with complement *)
(* bits in condition code *)
datatype bit! =
LT "lt" | GT "gt" | EQ "eq" | SO "so" (* cr0 *)
| FL "lt" | FG "gt" | FE "eq" | FU "un" (* cr1 *)
(* Lal: as far as I can tell there don't seem to be mnemonics
* for these, however using lt, gt, eq, so should fool
* the assembler into looking at the right bits in the
* cc field. Of course the bf field had better be cr1.
*)
| FX "lt" | FEX "gt" | VX "eq" | OX "so"
(* bits in integer exception register *)
datatype xerbit = SO64 (* summary overflow 64 *)
| OV64 (* overflow 64 *)
| CA64 (* carry 64 *)
| SO32 (* summary overflow 32 bits *)
| OV32 (* overflow 32 bits *)
| CA32 (* carry 32 bits *)
type cr_bit = $CC * bit
end (* Instruction *)
(*
* The following describes the encoding of the instructions.
*)
instruction formats 32 bits
(* primitives *)
x_form{opcd:6,rt:5,ra:5,rb:5,xo:10,rc:bool 1}
| xl_form{opcd:6,bt:5,ba:5,bb:5,xo:10,lk:bool 1}
| m_form{opcd:6,rs:5,ra:5,rb:5,mb:5,me:5,rc:bool 1}
| a_form{opcd:6,frt:5,fra:5,frb:5,frc:5,xo:5,rc:bool 1}
(* integer loads *)
| loadx{opcd:6=31,rt:GP 5,ra:GP 5,rb:GP 5,xop:10,rc:1=0}
| loadd{opcd:6,rt:GP 5,ra:GP 5,d:operand signed 16}
| loadde{opcd:6,rt:GP 5,ra:GP 5,de:operand signed 12,xop:4}
| load{ld,rt,ra,d} =
(case (d,ld) of
(I.RegOp rb,I.LBZ) => loadx{rt,ra,rb,xop=0w87} (* lbzx *)
| (I.RegOp rb,I.LBZE) => loadx{rt,ra,rb,xop=0w95} (* lbzxe *)
| (I.RegOp rb,I.LHZ) => loadx{rt,ra,rb,xop=0w279} (* lhzx *)
| (I.RegOp rb,I.LHZE) => loadx{rt,ra,rb,xop=0w287} (* lhzxe *)
| (I.RegOp rb,I.LHA) => loadx{rt,ra,rb,xop=0w343} (* lhax *)
| (I.RegOp rb,I.LHAE) => loadx{rt,ra,rb,xop=0w351} (* lhaxe *)
| (I.RegOp rb,I.LWZ) => loadx{rt,ra,rb,xop=0w23} (* lwzx *)
| (I.RegOp rb,I.LWZE) => loadx{rt,ra,rb,xop=0w31} (* lwzxe *)
| (I.RegOp rb,I.LDE) => loadx{rt,ra,rb,xop=0w799} (* ldxe *)
| (d,I.LBZ) => loadd{opcd=0w34,rt,ra,d}
| (de,I.LBZE) => loadde{opcd=0w58,rt,ra,de,xop=0w0}
| (d,I.LHZ) => loadd{opcd=0w40,rt,ra,d}
| (de,I.LHZE) => loadde{opcd=0w58,rt,ra,de,xop=0w2}
| (d,I.LHA) => loadd{opcd=0w42,rt,ra,d}
| (de,I.LHAE) => loadde{opcd=0w58,rt,ra,de,xop=0w4}
| (d,I.LWZ) => loadd{opcd=0w32,rt,ra,d}
| (de,I.LWZE) => loadde{opcd=0w58,rt,ra,de,xop=0w6}
| (de,I.LDE) => loadde{opcd=0w62,rt,ra,de,xop=0w0}
| (I.RegOp rb,I.LHAU) => loadx{rt,ra,rb,xop=0w375} (* lhaux *)
| (I.RegOp rb,I.LHZU) => loadx{rt,ra,rb,xop=0w311} (* lhzux *)
| (I.RegOp rb,I.LWZU) => loadx{rt,ra,rb,xop=0w55} (* lwzux *)
| (d,I.LHZU) => loadd{opcd=0w41,rt,ra,d}
| (d,I.LWZU) => loadd{opcd=0w33,rt,ra,d}
)
(* floating point loads *)
| floadx{opcd:6=31,ft:FP 5,ra:GP 5,rb:GP 5,xop:10,rc:1=0}
| floadd{opcd:6,ft:FP 5,ra:GP 5,d:operand signed 16}
| floadde{opcd:6,ft:FP 5,ra:GP 5,de:operand signed 12,xop:4}
| fload{ld,ft,ra,d} =
(case (d,ld) of
(I.RegOp rb,I.LFS) => floadx{ft,ra,rb,xop=0w535}
| (I.RegOp rb,I.LFSE) => floadx{ft,ra,rb,xop=0w543}
| (I.RegOp rb,I.LFD) => floadx{ft,ra,rb,xop=0w599}
| (I.RegOp rb,I.LFDE) => floadx{ft,ra,rb,xop=0w607}
| (I.RegOp rb,I.LFDU) => floadx{ft,ra,rb,xop=0w631}
| (d,I.LFS) => floadd{ft,ra,d,opcd=0w48}
| (de,I.LFSE) => floadde{ft,ra,de,opcd=0w62,xop=0w4}
| (d,I.LFD) => floadd{ft,ra,d,opcd=0w50}
| (de,I.LFDE) => floadde{ft,ra,de,opcd=0w62,xop=0w6}
| (d,I.LFDU) => floadd{ft,ra,d,opcd=0w51}
)
(* integer stores *)
| storex{opcd:6=31,rs:GP 5,ra:GP 5,rb:GP 5,xop:10,rc:1=0}
| stored{opcd:6,rs:GP 5,ra:GP 5,d:operand signed 16}
| storede{opcd:6,rs:GP 5,ra:GP 5,de:operand signed 12,xop:4}
| store{st,rs,ra,d} =
(case (d,st) of
(I.RegOp rb,I.STB) => storex{rs,ra,rb,xop=0w215}
| (I.RegOp rb,I.STBE) => storex{rs,ra,rb,xop=0w223}
| (I.RegOp rb,I.STH) => storex{rs,ra,rb,xop=0w407}
| (I.RegOp rb,I.STHE) => storex{rs,ra,rb,xop=0w415}
| (I.RegOp rb,I.STW) => storex{rs,ra,rb,xop=0w151}
| (I.RegOp rb,I.STWE) => storex{rs,ra,rb,xop=0w159}
| (I.RegOp rb,I.STDE) => storex{rs,ra,rb,xop=0w927}
| (d,I.STB) => stored{rs,ra,d,opcd=0w38}
| (de,I.STBE) => storede{rs,ra,de,opcd=0w58,xop=0w8}
| (d,I.STH) => stored{rs,ra,d,opcd=0w44}
| (de,I.STHE) => storede{rs,ra,de,opcd=0w58,xop=0w10}
| (d,I.STW) => stored{rs,ra,d,opcd=0w36}
| (de,I.STWE) => storede{rs,ra,de,opcd=0w58,xop=0w14}
| (de,I.STDE) => storede{rs,ra,de,opcd=0w62,xop=0w8}
)
(* floating point stores *)
| fstorex{opcd:6=31,fs:FP 5,ra:GP 5,rb:GP 5,xop:10,rc:1=0}
| fstored{opcd:6,fs:FP 5,ra:GP 5,d:operand signed 16}
| fstorede{opcd:6,fs:FP 5,ra:GP 5,de:operand signed 12,xop:4}
| fstore{st,fs,ra,d} =
(case (d,st) of
(I.RegOp rb,I.STFS) => fstorex{fs,ra,rb,xop=0w663}
| (I.RegOp rb,I.STFSE) => fstorex{fs,ra,rb,xop=0w671}
| (I.RegOp rb,I.STFD) => fstorex{fs,ra,rb,xop=0w727}
| (I.RegOp rb,I.STFDE) => fstorex{fs,ra,rb,xop=0w759}
| (d,I.STFS) => fstored{fs,ra,d,opcd=0w52}
| (de,I.STFSE) => fstorede{fs,ra,de,opcd=0w62,xop=0w12}
| (d,I.STFD) => fstored{fs,ra,d,opcd=0w54}
| (de,I.STFDE) => fstorede{fs,ra,de,opcd=0w62,xop=0w14}
)
(* integer arithmetic *)
| unary'{opcd:6=31,ra:GP 5,rt:GP 5,_:5=0,OE:bool 1,oper:unary 9,Rc:bool 1}
| unary{ra,rt,oper,OE,Rc} =
(case oper of
I.NEG => unary'{ra=rt,rt=ra,oper,OE,Rc} (* swapped! *)
| _ => unary'{ra,rt,oper,OE,Rc}
)
| arith'{opcd:6=31,rt:GP 5,ra:GP 5,rb:GP 5,OE:bool 1,oper:arith 9,Rc:bool 1}
| arithi'{oper:arithi 6,rt:GP 5,ra:GP 5,im:operand signed 16}
| srawi{opcd:6=31,rs:GP 5,ra:GP 5,sh:operand signed 5,xop:10=824,Rc:1=0}
| sradi'{opcd:6=31,rs:GP 5,ra:GP 5,sh:5,xop:9=0w413,sh2:1,Rc:1=0}
| sradi{rs,ra,sh:operand signed 6} =
sradi'{rs=rs,ra=ra,sh=(sh at [0..4]),sh2=sh at [5]}
| arith{oper,rt,ra,rb,OE,Rc} =
(case oper of
(I.ADD | I.SUBF | I.MULLW | I.MULLD | I.MULHW | I.MULHWU |
I.DIVW | I.DIVD | I.DIVWU | I.DIVDU) =>
arith'{oper,rt,ra,rb,OE,Rc}
(* For some unknown reasons, the encoding of rt and ra
* are swapped!
*)
| _ => arith'{oper,rt=ra,ra=rt,rb,OE,Rc}
)
| arithi{oper,rt,ra,im} =
(case oper of
(I.ADDI | I.ADDIS | I.SUBFIC | I.MULLI) => arithi'{oper,rt,ra,im}
| I.SRAWI => srawi{rs=ra,ra=rt,sh=im}
| I.SRADI => sradi{rs=ra,ra=rt,sh=im}
(* For some unknown reasons, the encoding of rt and ra
* are swapped!
*)
| _ => arithi'{oper,rt=ra,ra=rt,im}
)
(* integer compare *)
| Cmpl{opcd:6=31,bf:CC 3,_:1=0,l:bool 1,ra:GP 5,rb:GP 5,xo:10=32,_:1=0}
| Cmpli{opcd:6=10,bf:CC 3,_:1=0,l:bool 1,ra:GP 5,ui:operand signed 16}
| Cmp{opcd:6=31,bf:CC 3,_:1=0,l:bool 1,ra:GP 5,rb:GP 5,xo:10=0,_:1=0}
| Cmpi{opcd:6=11,bf:CC 3,_:1=0,l:bool 1,ra:GP 5,si:operand signed 16}
| compare{cmp,bf,l,ra,rb} =
(case (cmp,rb) of
(I.CMP,I.RegOp rb) => Cmp{bf,l,ra,rb}
| (I.CMPL,I.RegOp rb) => Cmpl{bf,l,ra,rb}
| (I.CMP,si) => Cmpi{bf,l,ra,si}
| (I.CMPL,ui) => Cmpli{bf,l,ra,ui}
)
(* floating point compare *)
| fcmp{opcd:6=63,bf:CC 3,_:2=0,fa:FP 5,fb:FP 5,cmp:fcmp 10,_:1=0}
(* floating point unary *)
| funary{oper:funary,ft:FP,fb:FP,Rc} =
let val (opcd,xo) = oper
in
case oper
of (0wx3f, 0wx16) => (* FSQRT *)
a_form{opcd=opcd,frt=ft,fra=0w0,frb=fb,frc=0w0,xo=xo,rc=Rc}
| (0wx3b, 0wx16) => (* FSQRTS *)
a_form{opcd=opcd,frt=ft,fra=0w0,frb=fb,frc=0w0,xo=xo,rc=Rc}
| _ =>
x_form{opcd=opcd,rt=ft,ra=0w0,rb=fb,xo=xo,rc=Rc}
end
(* floating point binary *)
| farith{oper,ft:FP,fa:FP,fb:FP,Rc} =
let val (opcd,xo) = emit_farith oper
in case oper of
(I.FMUL | I.FMULS) =>
a_form{opcd=opcd,frt=ft,fra=fa,frb=0w0,frc=fb,xo=xo,rc=Rc}
| _ => a_form{opcd=opcd,frt=ft,fra=fa,frb=fb,frc=0w0,xo=xo,rc=Rc}
end
(* floating point ternary *)
| farith3{oper:farith3,ft:FP,fa:FP,fc:FP,fb:FP,Rc} =
let val (opcd,xo) = oper
in a_form{opcd=opcd,frt=ft,fra=fa,frb=fb,frc=fc,xo=xo,rc=Rc}
end
| cr_bit{cc} =
let val (cr,bit) = cc
in (emit_CC cr << 0w2) +
itow(
case bit of
I.LT => 0 | I.GT => 1 | I.EQ => 2 | I.SO => 3
| I.FL => 0 | I.FG => 1 | I.FE => 2 | I.FU => 3
| I.FX => 0 | I.FEX => 1 | I.VX => 2 | I.OX => 3
)
end
| ccarith{oper:ccarith,bt,ba,bb} =
xl_form{opcd=0w19,bt=cr_bit{cc=bt},ba=cr_bit{cc=ba},bb=cr_bit{cc=bb},
xo=oper,lk=false}
(* trap on word *)
| twr{opcd:6=31,to:int 5,ra:GP 5,rb:GP 5,xop:10=4,_:1=0}
| twi{opcd:6=3,to:int 5,ra:GP 5,si:operand signed 16}
| tw{to,ra,si} =
(case si of I.RegOp rb => twr{to,ra,rb} | _ => twi{to,ra,si})
(* trap on double word *)
| tdr{opcd:6=31,to:int 5,ra:GP 5,rb:GP 5,xop:10=68,_:1=0}
| tdi{opcd:6=2,to:int 5,ra:GP 5,si:operand signed 16}
| td{to,ra,si} =
(case si of I.RegOp rb => tdr{to,ra,rb} | _ => tdi{to,ra,si})
(* move condition field p49 *)
| mcrf{opcd:6=19,bf:CC 3,_:2=0,bfa:CC 3,_:18=0}
(* move from/to special purpose register p131/132
* the encoding of spr = spr[0..4] || spr[5..9]
*)
| mtspr'{opcd:6=31,rs:GP 5,spr:10,xop:10=467,_:1=0}
| mtspr{rs,spr:SPR} =
mtspr'{rs,spr=((spr at [0..4]) << 0w5) + (spr at [5..9])}
| mfspr'{opcd:6=31,rt:GP 5,spr:10,xop:10=339,_:1=0}
| mfspr{rt,spr:SPR} =
mfspr'{rt,spr=((spr at [0..4]) << 0w5) + (spr at [5..9])}
(* Branch p41 *)
| b{opcd:6=18,li:signed 24,aa:bool 1,lk:bool 1}
| be{opcd:6=22,li:signed 24,aa:bool 1,lk:bool 1}
(* Branch conditional p42 *)
| bc{opcd:6=16,bo:bo 5,bi:5,bd:signed 14,aa:bool 1,lk:bool 1}
| bce{opcd:6=16,bo:bo 5,bi:5,bd:signed 14,aa:bool 1,lk:bool 1}
(* Branch conditional to link register *)
| bclr{opcd:6=19,bo:bo 5,bi:5,_:5=0,xop:10=16,lk:bool 1}
| bclre{opcd:6=19,bo:bo 5,bi:5,_:5=0,xop:10=17,lk:bool 1}
(* Branch conditional to count register *)
| bcctr{opcd:6=19,bo:bo 5,bi:5,_:5=0,xop:10=528,lk:bool 1}
| bcctre{opcd:6=19,bo:bo 5,bi:5,_:5=0,xop:10=529,lk:bool 1}
(* Rotate *)
| rlwnm{oper:6=23,rs:GP 5,ra:GP 5,sh:GP 5,mb:int 5,me:int 5,Rc:1=0}
| rlwinm{oper:6=21,rs:GP 5,ra:GP 5,sh:5,mb:int 5,me:int 5,Rc:1=0}
| rldcl{oper:6=30,rs:GP 5,ra:GP 5,sh:GP 5,mb:int 5,_:5=8,Rc:1=0}
| rldicl{oper:6=30,rs:GP 5,ra:GP 5,sh:5,mb:int 5,_:4=0,sh2:1,Rc:1=0}
| rldcr{oper:6=30,rs:GP 5,ra:GP 5,sh:GP 5,mb:int 5,_:5=9,Rc:1=0}
| rldicr{oper:6=30,rs:GP 5,ra:GP 5,sh:5,mb:int 5,_:4=1,sh2:1,Rc:1=0}
| rldic{oper:6=30,rs:GP 5,ra:GP 5,sh:5,mb:int 5,_:4=2,sh2:1,Rc:1=0}
| rlwimi{oper:6=20,rs:GP 5,ra:GP 5,sh:5,mb:int 5,me:int 5,Rc:1=0}
| rldimi{oper:6=30,rs:GP 5,ra:GP 5,sh:5,mb:int 5,_:4=3,sh2:1,Rc:1=0}
| rotate{oper,ra,rs,sh,mb,me} =
(case (oper,me) of
(I.RLWNM,SOME me) => rlwnm{ra,rs,sh,mb,me}
| (I.RLDCL,_) => rldcl{ra,rs,sh,mb}
| (I.RLDCR,_) => rldcr{ra,rs,sh,mb}
| _ => error "rotate"
)
| rotatei{oper,ra,rs,sh:operand,mb,me} =
(case (oper,me) of
(I.RLWINM,SOME me) => rlwinm{ra,rs,sh,mb,me}
| (I.RLWIMI,SOME me) => rlwimi{ra,rs,sh=sh,mb,me}
| (I.RLDICL,_) => rldicl{ra,rs,sh=sh at [0..4],sh2=sh at [5],mb}
| (I.RLDICR,_) => rldicr{ra,rs,sh=sh at [0..4],sh2=sh at [5],mb}
| (I.RLDIC,_) => rldic{ra,rs,sh=sh at [0..4],sh2=sh at [5],mb}
| (I.RLDIMI,_) => rldimi{ra,rs,sh=sh at [0..4],sh2=sh at [5],mb}
| _ => error "rotatei"
)
(* Taken from a googled link:
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixassem/alangref/lwarx.htm
*)
| lwarx{oper:6=0w31, rt:GP 5, ra:GP 5, rb:GP 5, _:10=0w20, _:1=0}
| stwcx{oper:6=0w31, rs:GP 5, ra:GP 5, rb:GP 5, _:10=0w150, _:1=1}
(*
* Some helper functions for generating machine code.
* These are copied from Lal's code.
*)
structure MC =
struct
fun relative(I.LabelOp lexp) = itow(MLTreeEval.valueOf lexp - !loc) ~>> 0w2
| relative _ = error "relative"
end
(*
* Reservation tables and pipeline definitions for scheduling
*)
(* Function units *)
resource issue and mem and alu and falu and fmul and fdiv and branch
(* Different implementations of cpus *)
cpu default 2 [2 issue, 2 mem, 1 alu] (* 2 issue machine *)
(* Definitions of various reservation tables *)
pipeline NOP _ = [issue]
and ARITH _ = [issue^^alu]
and LOAD _ = [issue^^mem]
and STORE _ = [issue^^mem,mem,mem]
and FARITH _ = [issue^^falu]
and FMUL _ = [issue^^fmul,fmul]
and FDIV _ = [issue^^fdiv,fdiv*50]
and BRANCH _ = [issue^^branch]
(*
* Some helper functions for generating assembly code.
*)
structure Assembly =
struct
(* Add the x suffix if necessary; this is a stupid hack *)
fun emitx(s,I.RegOp _) =
if String.sub(s,size s-1) = #"e" then
(emit(String.substring(s,0,size s-1)); emit "xe")
else (emit(s); emit "x")
| emitx(s,_) = emit s
fun eOERc{OE=false,Rc=false} = ()
| eOERc{OE=false,Rc=true} = emit "."
| eOERc{OE=true,Rc=false} = emit "o"
| eOERc{OE=true,Rc=true} = emit "o."
fun eRc false = "" | eRc true = "."
fun cr_bit(cr,bit) =
4 * (CellsBasis.physicalRegisterNum cr) +
(case bit of
I.LT => 0 | I.GT => 1 | I.EQ => 2 | I.SO => 3
| I.FL => 0 | I.FG => 1 | I.FE => 2 | I.FU => 3
| I.FX => 0 | I.FEX => 1 | I.VX => 2 | I.OX => 3
)
fun eCRbit x = emit(Int.toString(cr_bit x))
fun eLK true = emit "l" | eLK false = ()
fun eI (I.RegOp _) = () | eI _ = emit "i"
fun eBI(bo, bf, bit) =
case (bo, CellsBasis.physicalRegisterNum bf) of
(I.ALWAYS, _) => ()
| (I.COUNTER{cond=NONE, ...}, _) => ()
| (_,0) => emit(asm_bit bit)
| (_,n) => emit("4*cr" ^ Int.toString n ^ "+" ^ asm_bit bit)
fun emit_bo bo =
emit(case bo
of I.TRUE => "t"
| I.FALSE => "f"
| I.ALWAYS => ""
| I.COUNTER{eqZero, cond=NONE} => if eqZero then "dz" else "dnz"
| I.COUNTER{eqZero, cond=SOME cc} =>
(if eqZero then "dz" else "dnz") ^
(if cc then "t" else "f")
(*esac*))
fun eME(SOME me) = (emit ", "; emit_int me)
| eME(NONE) = ()
fun addr(ra,I.RegOp rb) = (emitCell ra; emit ", "; emitCell rb)
| addr(ra,d) = (emit_operand d; emit "("; emitCell ra; emit ")")
end (* Assembly *)
instruction
L of {ld:load, rt: $GP, ra: $GP, d:operand, mem:Region.region}
``<emitx(asm_load ld,d)>\t<rt>, <addr(ra,d)><mem>''
load{ld,rt,ra,d}
| LF of {ld:fload, ft: $FP, ra: $GP, d:operand, mem:Region.region}
``<emitx(asm_fload ld,d)>\t<ft>, <addr(ra,d)><mem>''
fload{ld,ft,ra,d}
| ST of {st:store, rs: $GP, ra: $GP, d:operand, mem:Region.region}
``<emitx(asm_store st,d)>\t<rs>, <addr(ra,d)><mem>''
store{st,rs,ra,d}
| STF of {st:fstore, fs: $FP, ra: $GP, d:operand, mem:Region.region}
``<emitx(asm_fstore st,d)>\t<fs>, <addr(ra,d)><mem>''
fstore{st,fs,ra,d}
| UNARY of {oper:unary, rt: $GP, ra: $GP, Rc:bool, OE:bool}
``<oper><eOERc{Rc,OE}>\t<rt>, <ra>''
unary{oper,rt,ra,OE,Rc}
| ARITH of {oper:arith, rt: $GP, ra: $GP, rb: $GP, Rc:bool, OE:bool}
``<oper><eOERc{Rc,OE}>\t<rt>, <ra>, <rb>''
arith{oper,rt,ra,rb,OE,Rc}
| ARITHI of {oper:arithi, rt: $GP, ra: $GP, im:operand}
``<oper>\t<rt>, <ra>, <im>''
arithi{oper,rt,ra,im}
| ROTATE of {oper:rotate, ra: $GP, rs: $GP, sh: $GP, mb:int, me:int option}
``<oper>\t<ra>, <rs>, <sh>, <mb><eME me>''
rotate{oper,ra,rs,sh,mb,me}
| ROTATEI of {oper:rotatei, ra: $GP, rs: $GP, sh:operand, mb:int, me:int option}
``<oper>\t<ra>, <rs>, <sh>, <mb><eME me>''
rotatei{oper,ra,rs,sh,mb,me}
| COMPARE of {cmp:cmp, l:bool, bf: $CC, ra: $GP, rb:operand}
``<cmp><eI rb>\t<bf>, <emit(if l then "1" else "0")>, <ra>, <rb>''
compare{cmp,bf,l,ra,rb}
| FCOMPARE of {cmp:fcmp, bf: $CC, fa: $FP, fb: $FP}
``<cmp>\t<bf>, <fa>, <fb>''
fcmp{cmp,bf,fa,fb}
| FUNARY of {oper:funary, ft: $FP, fb: $FP, Rc:bool}
``<oper><eRc Rc>\t<ft>, <fb>''
funary{oper,ft,fb,Rc}
| FARITH of {oper:farith, ft: $FP, fa: $FP, fb: $FP, Rc:bool}
``<oper><eRc Rc>\t<ft>, <fa>, <fb>''
farith{oper,ft,fa,fb,Rc}
| FARITH3 of {oper:farith3, ft: $FP, fa: $FP, fb: $FP, fc: $FP, Rc:bool}
``<oper><eRc Rc>\t<ft>, <fa>, <fb>, <fc>''
farith3{oper,ft,fa,fb,fc,Rc}
| CCARITH of {oper:ccarith, bt:cr_bit, ba:cr_bit, bb:cr_bit}
``<oper>\t<eCRbit bt>, <eCRbit ba>, <eCRbit bb>''
ccarith{oper,bt,ba,bb}
| MCRF of {bf: $CC, bfa: $CC} (* move condition register field p49 *)
``mcrf\t<bf>, <bfa>''
mcrf{bf,bfa}
(* move to special register p131 *)
| MTSPR of {rs: $GP, spr: $SPR}
``mt<spr>\t<rs>''
mtspr{rs,spr}
(* move from special register p132 *)
| MFSPR of {rt: $GP, spr: $SPR}
``mf<spr>\t<rt>''
mfspr{rt,spr}
(* Load word and reserve indexed *)
| LWARX of {rt: $GP, ra: $GP, rb: $GP}
``lwarx\t<rt>, <ra>, <rb>''
lwarx{rt, ra, rb}
(* Store word conditional indexed *)
| STWCX of {rs: $GP, ra: $GP, rb: $GP}
``stwcx.\t<rs>, <ra>, <rb>''
stwcx{rs, ra, rb}
(* Trapping word *)
| TW of {to:int, ra: $GP, si:operand}
``tw<eI si>\t<to>, <ra>, <si>''
tw{to,ra,si}
(* Trapping double word *)
| TD of {to:int, ra: $GP, si:operand}
``td<eI si>\t<to>, <ra>, <si>''
td{to,ra,si}
(* Control Instructions - AA is always assumed to be 0 *)
| BC of {bo:bo, bf: $CC, bit:bit, addr:operand, LK:bool, fall:operand}
``b<bo><eLK LK>\t<eBI(bo,bf,bit)>, <addr>''
bc{bo,bi=cr_bit{cc=(bf,bit)},bd=relative addr,aa=false,lk=LK}
| BCLR of {bo:bo, bf: $CC, bit:bit, LK:bool, labels:Label.label list}
``b<bo>lr<eLK LK>\t<eBI(bo,bf,bit)>''
bclr{bo,bi=cr_bit{cc=(bf,bit)},lk=LK}
| B of {addr:operand, LK:bool}
``b<eLK LK>\t<addr>''
b{li=relative addr,aa=false,lk=LK}
(* CALL = BCLR {bo=ALWAYS, bf=0, bit=0, LK=true, labels=[] *)
| CALL of {def:C.cellset, use:C.cellset,
cutsTo: Label.label list, mem: Region.region}
``blrl<mem><emit_defs(def)><emit_uses(use)><emit_cutsTo cutsTo>''
bclr{bo=I.ALWAYS,bi=0w0,lk=true}
| SOURCE of {}
asm: ``source''
mc: ()
| SINK of {}
asm: ``sink''
mc: ()
| PHI of {}
asm: ``phi''
mc: ()
structure SSA =
struct
fun operand(ty, I.RegOp r) = T.REG(32, r)
| operand(ty, I.ImmedOp i) = T.LI i
(*| operand(ty, I.LabelOp le) = T.LABEL le*)
end
end
|