File: cluster-ra.sml

package info (click to toggle)
mlton 20210117%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 58,464 kB
  • sloc: ansic: 27,682; sh: 4,455; asm: 3,569; lisp: 2,879; makefile: 2,347; perl: 1,169; python: 191; pascal: 68; javascript: 7
file content (600 lines) | stat: -rw-r--r-- 24,752 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
(* cluster-ra.sml
 *
 * COPYRIGHT (c) 2002 Bell Labs, Lucent Technologies
 *
 * This module provides services for the new RA when using the cluster
 * representation.  
 * The algorithm is adapted from
 * Algorithm 19.17 from Appel, Modern Compiler Implementation in ML,
 * Calculation of live ranges in SSA form.  We don't directly use SSA 
 * here but the principles are the same.
 *
 * -- Allen
 *)

functor ClusterRA
   (structure Asm       : INSTRUCTION_EMITTER
    structure Flowgraph : CONTROL_FLOW_GRAPH (* where I = Asm.I and P = Asm.S.P *)
                          where type I.addressing_mode = Asm.I.addressing_mode
                            and type I.ea = Asm.I.ea
                            and type I.instr = Asm.I.instr
                            and type I.instruction = Asm.I.instruction
                            and type I.operand = Asm.I.operand
                          where type P.Client.pseudo_op = Asm.S.P.Client.pseudo_op
                            and type P.T.Basis.cond = Asm.S.P.T.Basis.cond
                            and type P.T.Basis.div_rounding_mode = Asm.S.P.T.Basis.div_rounding_mode
                            and type P.T.Basis.ext = Asm.S.P.T.Basis.ext
                            and type P.T.Basis.fcond = Asm.S.P.T.Basis.fcond
                            and type P.T.Basis.rounding_mode = Asm.S.P.T.Basis.rounding_mode
                            and type P.T.Constant.const = Asm.S.P.T.Constant.const
                            and type ('s,'r,'f,'c) P.T.Extension.ccx = ('s,'r,'f,'c) Asm.S.P.T.Extension.ccx
                            and type ('s,'r,'f,'c) P.T.Extension.fx = ('s,'r,'f,'c) Asm.S.P.T.Extension.fx
                            and type ('s,'r,'f,'c) P.T.Extension.rx = ('s,'r,'f,'c) Asm.S.P.T.Extension.rx
                            and type ('s,'r,'f,'c) P.T.Extension.sx = ('s,'r,'f,'c) Asm.S.P.T.Extension.sx
                            and type P.T.I.div_rounding_mode = Asm.S.P.T.I.div_rounding_mode
                            and type P.T.Region.region = Asm.S.P.T.Region.region
                            and type P.T.ccexp = Asm.S.P.T.ccexp
                            and type P.T.fexp = Asm.S.P.T.fexp
                            (* and type P.T.labexp = Asm.S.P.T.labexp *)
                            and type P.T.mlrisc = Asm.S.P.T.mlrisc
                            and type P.T.oper = Asm.S.P.T.oper
                            and type P.T.rep = Asm.S.P.T.rep
                            and type P.T.rexp = Asm.S.P.T.rexp
                            and type P.T.stm = Asm.S.P.T.stm
    structure InsnProps : INSN_PROPERTIES (* where I = Flowgraph.I *)
                          where type I.addressing_mode = Flowgraph.I.addressing_mode
                            and type I.ea = Flowgraph.I.ea
                            and type I.instr = Flowgraph.I.instr
                            and type I.instruction = Flowgraph.I.instruction
                            and type I.operand = Flowgraph.I.operand
    structure Spill     : RA_SPILL (* where I = Flowgraph.I *)
                          where type I.addressing_mode = Flowgraph.I.addressing_mode
                            and type I.ea = Flowgraph.I.ea
                            and type I.instr = Flowgraph.I.instr
                            and type I.instruction = Flowgraph.I.instruction
                            and type I.operand = Flowgraph.I.operand
   ) : RA_FLOWGRAPH =
struct
   structure CFG    = Flowgraph
   structure I      = CFG.I
   structure G      = RAGraph
   structure Props  = InsnProps
   structure Core   = RACore
   structure A      = Array 
   structure UA     = Unsafe.Array (* okay, I'm cheating a bit here *)
   structure Spill  = Spill

   open G
   structure C      = I.C
   structure CB     = CellsBasis

   fun isOn(flag,mask) = Word.andb(flag,mask) <> 0w0

   val dump_size = MLRiscControl.mkFlag ("ra-dump-size", "whether to show RA size")

   type flowgraph = CFG.cfg  (* flowgraph is a cluster *)

   fun error msg = MLRiscErrorMsg.error("ClusterRA", msg)

   val mode = 0w0

   fun uniqCells s = CB.SortedCells.return(CB.SortedCells.uniq s)

   fun chaseCell(c as CB.CELL{col=ref(CB.MACHINE r),...}) = (c,r)
     | chaseCell(CB.CELL{col=ref(CB.ALIASED c), ...}) = chaseCell c
     | chaseCell(c as CB.CELL{col=ref CB.SPILLED, ...}) = (c,~1)
     | chaseCell(c as CB.CELL{col=ref CB.PSEUDO, id, ...}) = (c,id)

   fun colorOf(CB.CELL{col=ref(CB.MACHINE r),...}) = r
     | colorOf(CB.CELL{col=ref(CB.ALIASED c), ...}) = colorOf c
     | colorOf(CB.CELL{col=ref CB.SPILLED, ...}) = ~1
     | colorOf(CB.CELL{col=ref CB.PSEUDO, id, ...}) = id

   fun chase(NODE{color=ref(ALIASED n), ...}) = chase n
     | chase n = n

   exception NotThere

   val Asm.S.STREAM{emit,...} = Asm.makeStream []

   fun dumpFlowgraph(txt, cfg as Graph.GRAPH graph, outstrm) = let
     fun say txt = TextIO.output(outstrm, txt)
     fun sayPseudo p = (say(CFG.P.toString p); say "\n")
     val CFG.INFO{data, ...} = #graph_info graph
   in
       CFG.dump(outstrm, txt, cfg);
       app sayPseudo (rev(!data))
   end

   val annotations = CFG.annotations 

   val dummyBlock =   CFG.newBlock(~1, ref 0.0)

   val uniq = ListMergeSort.uniqueSort 
                (fn ({block=b1,insn=i1},{block=b2,insn=i2}) =>
                    case Int.compare(b1,b2) of
                      EQUAL => Int.compare(i1,i2)
                    | ord   => ord)

   fun services(cfg as Graph.GRAPH graph) = let
       val CFG.INFO{annotations=clAnns, ...} = #graph_info graph
       val blocks = #nodes graph ()
       fun maxBlockId ((id, CFG.BLOCK _)::rest, curr) = 
	   if id > curr then maxBlockId(rest, id) else maxBlockId(rest, curr)
	 | maxBlockId([], curr) = curr

       val N = maxBlockId(blocks, #capacity graph ())

       (*
        * Construct program point 
        *)
       fun progPt(blknum, instrId) = {block=blknum, insn=instrId}
       fun blockNum{block,insn} = block
       fun instrNum{block,insn} = insn

           (* blocks indexed by block id *)
       val blockTable = A.array(N, (#new_id graph (), dummyBlock))

       (* fill block table *)
       val _ = List.app (fn b as (nid, _) => Array.update(blockTable, nid, b)) blocks

       val EXIT = (case #exits graph () of [e] => e | _ => error "EXIT")

       (*
        * Building the interference graph
        *) 
       fun buildIt (cellkind,  
                    G as GRAPH{nodes, dedicated, mode, span, copyTmps, ...}) =

       let (* definitions indexed by block id+instruction id *)
           val defsTable    = A.array(N, A.array(0, [] : node list))
           val marked       = A.array(N, ~1)
           val addEdge      = Core.addEdge G

           (* copies indexed by source  
            * This table maps variable v to the program points where
            * v is a source of a copy.
            *)
           val copyTable    = IntHashTable.mkTable(N, NotThere) 
                : {dst:CB.cell,pt:G.programPoint} list IntHashTable.hash_table
           val lookupCopy   = IntHashTable.find copyTable 
           val lookupCopy   = fn r => case lookupCopy r of SOME c => c 
                                                         | NONE => []
           val addCopy      = IntHashTable.insert copyTable
             
           val stamp = ref 0
    
           (* Allocate the arrays *)
           fun alloc [] = ()
	     | alloc((id, CFG.BLOCK{insns, ...})::blocks) = 
		(UA.update(defsTable, id, A.array(length(!insns)+1, []));
		 alloc blocks)
           val _ = alloc blocks
    
           (*
            * Remove pseudo use generated by copy temporaries
            *)
           fun rmPseudoUses [] = ()
             | rmPseudoUses(NODE{uses,...}::ns) = (uses := []; rmPseudoUses ns)
    
           (*
            * Initialize the definitions before computing the liveness for v.
            *)
           fun initialize(v, v', useSites) = let
               (* First we remove all definitions for all copies 
                * with v as source.
                * When we have a copy and while we are processing v
                *
                *      x <- v
                *
                *  x does not really interfere with v at this point,
                *  so we remove the definition of x temporarily.
                *)
               fun markCopies([], trail) = trail
                 | markCopies({pt, dst}::copies, trail) = 
                   let val b     = blockNum pt
                       val i     = instrNum pt
                       val defs  = UA.sub(defsTable, b)
                       val nodes = UA.sub(defs, i)
                       fun revAppend([], nodes) = nodes
                         | revAppend(n::ns, nodes) = revAppend(ns, n::nodes)
                       val dstColor = colorOf dst
                       fun removeDst([], nodes') = nodes'
                         | removeDst((d as NODE{number=r,...})::nodes, nodes')=
                           if r = dstColor then revAppend(nodes', nodes)
                           else removeDst(nodes, d::nodes')
                       val nodes' = removeDst(nodes, [])
                   in  UA.update(defs, i, nodes');
                       markCopies(copies, (defs, i, nodes)::trail)
                   end

               (*
                * Then we mark all use sites of v with a fake definition so that
                * the scanning will terminate correctly at these points.
                *) 
               fun markUseSites([], trail) = trail
                 | markUseSites(pt::pts, trail) = 
                   let val b     = blockNum pt
                       val i     = instrNum pt
                       val defs  = UA.sub(defsTable, b)
                       val nodes = UA.sub(defs, i)
                   in  UA.update(defs, i, v'::nodes);
                       markUseSites(pts, (defs, i, nodes)::trail)
                   end

               val copies = lookupCopy v
               val trail  = markCopies(copies, [])
               val trail  = markUseSites(useSites, trail)
           in  trail end
    
           fun cleanup [] = ()
             | cleanup ((defs, i, nodes)::trail) = 
                 (UA.update(defs, i, nodes); cleanup trail) 
           (*
            * Perform incremental liveness analysis on register v 
            * and compute the span
            *)
           fun liveness(v, v' as NODE{uses, ...}, cellV) = let
               val st = !stamp
               val _  = stamp := st + 1
               fun foreachUseSite([], span) = span
                 | foreachUseSite(u::uses, span) = let
                     val b = blockNum u
		     val i = instrNum u
		     val block as (_, CFG.BLOCK{freq, ...}) = UA.sub(blockTable, b)
		     val span =
		       if i = 0 then liveOutAtBlock(block, span) (* live out *)
		       else let 
			   val f = !freq
			   val defs = UA.sub(defsTable, b)
			 in  liveOutAtStmt(block, A.length defs, defs, i+1, f, span+f)
			 end
                   in foreachUseSite(uses, span)
                   end
    
               and visitPred((nid, _), span) =
                   let fun foreachPred([], span) = span
                         | foreachPred(nid::pred, span) = let
                              val span = liveOutAtBlock((nid, #node_info graph nid), span)
                           in  foreachPred(pred, span) 
			   end
                   in  
		     foreachPred(#pred graph nid, span)
                   end
    
               and liveOutAtStmt(block, nDefs, defs, pos, freq, span) = 
                      (* v is live out *)
                   if pos < nDefs then
                   let fun foreachDef([], true) = span
                         | foreachDef([], false) = 
                              liveOutAtStmt(block, nDefs, defs, 
                                            pos+1, freq, span+freq)
                         | foreachDef((d as NODE{number=r, ...})::ds, kill) = 
                           if r = v then foreachDef(ds, true)
                           else (addEdge(d, v'); foreachDef(ds, kill)) 
                   in foreachDef(UA.sub(defs, pos), false)
                   end
                   else visitPred(block, span)
    
               and liveOutAtBlock(block as (nid, CFG.BLOCK{freq, ...}), span) = 
                   (* v is live out at the current block *)
                   if UA.sub(marked, nid) = st then span
                   else let
		       val defs = UA.sub(defsTable, nid)
		     in
                       UA.update(marked, nid, st);
                       liveOutAtStmt(block, A.length defs, defs, 1, !freq, span)
                     end
   
               val useSites = uniq(!uses) 
               val trail    = initialize(v, v', useSites)
               val span     = foreachUseSite (useSites, 0.0)
               val _        = cleanup trail
           in  
	     span
           end 

           val newNodes   = Core.newNodes G
           val getnode    = IntHashTable.lookup nodes
           val insnDefUse = Props.defUse cellkind
           val getCell    = C.getCellsByKind cellkind

           fun isDedicated r = dedicated r

          (* Remove all dedicated or spilled registers from the list *)
           fun rmvDedicated regs =
           let fun loop([], rs') = rs'
                 | loop(r::rs, rs') = 
                   let fun rmv(r as CB.CELL{col=ref(CB.PSEUDO), id, ...}) = 
			     if isDedicated(id) then loop(rs, rs') else loop(rs, r::rs')
                         | rmv(CB.CELL{col=ref(CB.ALIASED r), ...}) = rmv r
                         | rmv(r as CB.CELL{col=ref(CB.MACHINE col), ...}) = 
                             if isDedicated col then loop(rs, rs')
                             else loop(rs, r::rs')
                         | rmv(CB.CELL{col=ref(CB.SPILLED), ...}) = loop(rs,rs')
                   in  rmv r 
                   end
           in  loop(regs, []) end
 
           (*
            * Create parallel move
            *)
           fun mkMoves(insn, pt, cost, mv, tmps) =
             (case insn of
               I.ANNOTATION{i, ...} => 
                  (* strip away the annotation.
                   * Note: we are assuming annotations cannot change 
                   * the semantics of the copies.
                   *)
                  mkMoves(i, pt, cost, mv, tmps)
             | I.COPY{dst, src, k, ...} =>
                  (* If it is a parallel copy, deal with the copy temporary
                   * properly.  If it is a register, 
                   * create a pseudo use site just below the end of 
                   * the copy instruction.  This is to make sure that 
                   * the temporary is colored properly.  If the copy temporary
                   * doesn't exist or if it has been spilled, do nothing.
                   *)
               if k = cellkind then
               let val tmps = 
                       case Props.moveTmpR insn of
                         SOME r => 
                           (* Add a pseudo use for tmpR *)
                          (case chase(getnode(colorOf r)) of
                             tmp as NODE{uses,defs=ref [d],...} =>
                             let fun prev{block,insn}={block=block,insn=insn-1}
                             in  uses := [prev d]; 
                                 tmp::tmps
                             end
                          | _ => error "mkMoves"
                          )
                       | NONE => tmps
                   fun moves([], [], mv) = mv
                     | moves(d::ds, s::ss, mv) =
                       let val (d, cd) = chaseCell d
                           val (s, cs) = chaseCell s
                       in  if isDedicated cd orelse isDedicated cs
                           then moves(ds, ss, mv)
                           else if cd = cs then moves(ds, ss, mv)
                           else 
                             let val _ = 
                                  addCopy(cs, {dst=d, pt=pt}::lookupCopy cs);
                                 val dst = chase(getnode cd) 
                                 val src = chase(getnode cs) 
                             in  moves(ds, ss, MV{dst=dst, src=src,
                                                   status=ref WORKLIST,
                                                   hicount=ref 0,
                                                   (* kind=REG_TO_REG, *)
                                                   cost=cost}::mv
                                      ) 
                             end
                       end
                     | moves _ = error "moves"
               in  (moves(dst, src, mv), tmps) end
               else (mv, tmps)
             |  _ => (mv, tmps)
             )

           (* Add the nodes first *)
           fun mkNodes([], mv, tmps) = (mv, tmps)
	     | mkNodes((nid, blk)::blocks, mv, tmps) = let
	         val CFG.BLOCK{insns, freq=ref w, annotations, ...} = blk
	         val succ = #succ graph nid
		 val liveOut = CFG.liveOut blk
                 val dtab = A.sub(defsTable, nid)
		 fun scan([], pt, i, mv, tmps) = (pt, i, mv, tmps)
		   | scan(insn::rest, pt, i, mv, tmps) =
		     let val (d, u) = insnDefUse insn
			 val defs = rmvDedicated d
			 val uses = rmvDedicated u
			 val defs = newNodes{cost=w, pt=pt, 
					     defs=defs, uses=uses}
			 val _    = UA.update(dtab, i, defs)
			 val (mv, tmps) = mkMoves(insn, pt, w, mv, tmps)
                         fun next{block,insn} = {block=block,insn=insn+1}
		     in  scan(rest,next pt, i+1, mv, tmps)  
		     end
		 val (pt, i, mv, tmps) = 
		   scan(!insns, progPt(nid,1), 1, mv, tmps)
               in  
		 (* If the block is escaping, then all liveout
		  * registers are considered used here.
		  *)
		  case succ 
		   of [id] => 
		      if id = EXIT then let
                          val liveSet = rmvDedicated(
                                           uniqCells(getCell(liveOut)))
                        in  newNodes{cost=w, pt=progPt(nid, 0),
                                   defs=[], uses=liveSet}; ()
                        end
		      else ()
                    | _ => ()
                  (*esac*);
                  mkNodes(blocks, mv, tmps)
               end

          (* Add the edges *)

           val (moves, tmps) = mkNodes(blocks, [], [])
       in  
	   IntHashTable.appi
             (let val setSpan : (int * real) -> unit =
                  if isOn(mode,Core.COMPUTE_SPAN) then
                  let val spanMap = IntHashTable.mkTable
                                        (IntHashTable.numItems nodes, NotThere)
                      val setSpan = IntHashTable.insert spanMap
                      val _       = span := SOME spanMap
                  in  setSpan end
                  else fn _ => ()
              in  fn (v, v' as NODE{cell, color, ...}) =>
                  let fun computeLiveness() = 
                           setSpan(v, liveness(v, v', cell))
                  in  case !color of
                        PSEUDO => computeLiveness()
                      | COLORED _ => computeLiveness()
                      | MEMREG _ => computeLiveness()
                      | _ => ()
                  end
              end 
             ) nodes;
           if isOn(Core.SAVE_COPY_TEMPS, mode) then copyTmps := tmps else ();
           rmPseudoUses tmps;
           moves
       end (* buildIt *)

       (* 
        * Build the interference graph initially.
        *)
       fun build(G, cellkind) = let
         val moves = buildIt(cellkind, G)
	 val i2s = Int.toString
       in
	 if !dump_size then let 
	      val GRAPH{nodes, bitMatrix,...} = G
	      val insns = 
	        foldr (fn ((_,CFG.BLOCK{insns,...}),n) => length(!insns) + n) 0 blocks
            in 
	      TextIO.output
	         (!MLRiscControl.debug_stream,
		  "RA #blocks="^i2s N ^
	 	    " #insns="^i2s insns ^
                    " #nodes="^i2s(IntHashTable.numItems nodes) ^
                    " #edges="^i2s(Core.BM.size(!bitMatrix)) ^
                    " #moves="^i2s(length moves)^"\n")
            end
         else ();
         moves
       end

       (* 
        * Rebuild the interference graph;
        * We'll just do it from scratch for now.
        *)
       fun rebuild(cellkind, G) = 
           (Core.clearNodes G;
            buildIt(cellkind, G)
           )

       (*
        * Spill a set of nodes and rewrite the flowgraph 
        *)
       fun spill{copyInstr, spill, spillSrc, spillCopyTmp, 
                 reload, reloadDst, renameSrc, graph,
                 cellkind, nodes=nodesToSpill} = 
       let (* Remove the interference graph now *)
           val _ = Core.clearGraph graph

           (* maps program point to registers to be spilled *)
           val spillSet = G.PPtHashTable.mkTable(32, NotThere)

           (* maps program point to registers to be reloaded *)
           val reloadSet = G.PPtHashTable.mkTable(32, NotThere)

           (* maps program point to registers to be killed *)
           val killSet = G.PPtHashTable.mkTable(32, NotThere) 

           val spillRewrite = Spill.spillRewrite
                              { graph=graph,
                                spill=spill,
                                spillSrc=spillSrc,
                                spillCopyTmp=spillCopyTmp,
                                reload=reload,
                                reloadDst=reloadDst,
                                renameSrc=renameSrc,
                                copyInstr=copyInstr,
                                cellkind=cellkind,
                                spillSet=spillSet,
                                reloadSet=reloadSet,
                                killSet=killSet
                              }

           (* set of basic blocks that are affected *)
           val affectedBlocks = IntHashTable.mkTable(32, NotThere)

           val addAffectedBlocks = IntHashTable.insert affectedBlocks

           fun ins set = let
               val add  = G.PPtHashTable.insert set
               val look = G.PPtHashTable.find set
               val look = fn r => case look r of SOME s => s | NONE => []
               fun enter(r, []) = ()
                 | enter(r, pt::pts) = 
                   (add (pt, r::look pt);
                    addAffectedBlocks (blockNum pt, true);
                    enter(r, pts)
                   )
           in  enter
           end

           val insSpillSet  = ins spillSet
           val insReloadSet = ins reloadSet
           val insKillSet   = 
	     let
               val add  = G.PPtHashTable.insert killSet
               val look = G.PPtHashTable.find killSet
               val look = fn r => case look r of SOME s => s | NONE => []
               fun enter(r, []) = ()
                 | enter(r, pt::pts) = (add(pt, r::look pt); enter(r, pts))
             in  enter 
             end

           (* Mark all spill/reload locations *)
           fun markSpills(G.NODE{color, number, cell, defs, uses, ...}) =
               let fun spillIt(defs, uses) = 
                       (insSpillSet(cell, defs);
                        insReloadSet(cell, uses);
                        (* Definitions but no use! *) 
                        case uses of
                           [] => insKillSet(cell, defs)
                         | _ => ()
                       )
		   val d = !defs
		   val u = !uses
               in  
		 case !color 
		 of G.SPILLED     => spillIt(d,u)
	 	  | G.SPILL_LOC _ => spillIt(d,u)
		  | G.MEMREG _    => spillIt(d,u)
                  | G.PSEUDO      => spillIt(d,u)
                  | _ => ()
               end
           val _ = app markSpills nodesToSpill

           (* Rewrite all affected blocks *)
           fun rewriteAll (blknum, _) = let
	     val (_, CFG.BLOCK{insns as ref instrs, annotations, ...}) = 
	       A.sub(blockTable, blknum)
	     val instrs = 
	       spillRewrite{pt=progPt(blknum, length instrs),
			    instrs=instrs, annotations=annotations}
           in
	     insns := instrs
           end


	   fun mark(G.NODE{color, ...}) = 
	     (case !color
	      of PSEUDO => color := SPILLED
	       | SPILLED => ()
	       | SPILL_LOC _ => ()
               | ALIASED _ => ()
	       | MEMREG _ => ()
	       | COLORED _ => error "mark: COLORED"
	       | REMOVED =>  error "mark: REMOVED"
             (*esac*))
       in 
	 IntHashTable.appi rewriteAll affectedBlocks;
	 app mark nodesToSpill;
	 rebuild(cellkind, graph)
       end (* spill *)
   in  
     { build       = build, 
       spill       = spill, 
       programPoint= fn{block,instr} => progPt(block,instr),
       blockNum    = blockNum, 
       instrNum    = instrNum
      }
  end
end