1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
|
(* sparc.sml
*
* COPYRIGHT (c) 2002 Bell Labs, Lucent Technologies
*
* This is a new instruction selection module for Sparc,
* using the new instruction representation and the new MLTREE representation.
* Support for V9 has been added.
*
* The cc bit in arithmetic op are now embedded within the arithmetic
* opcode. This should save some space.
*
* -- Allen
*)
functor Sparc
(structure SparcInstr : SPARCINSTR
structure PseudoInstrs : SPARC_PSEUDO_INSTR (* where I = SparcInstr *)
where type I.Constant.const = SparcInstr.Constant.const
and type I.Region.region = SparcInstr.Region.region
and type I.T.Basis.cond = SparcInstr.T.Basis.cond
and type I.T.Basis.div_rounding_mode = SparcInstr.T.Basis.div_rounding_mode
and type I.T.Basis.ext = SparcInstr.T.Basis.ext
and type I.T.Basis.fcond = SparcInstr.T.Basis.fcond
and type I.T.Basis.rounding_mode = SparcInstr.T.Basis.rounding_mode
and type ('s,'r,'f,'c) I.T.Extension.ccx = ('s,'r,'f,'c) SparcInstr.T.Extension.ccx
and type ('s,'r,'f,'c) I.T.Extension.fx = ('s,'r,'f,'c) SparcInstr.T.Extension.fx
and type ('s,'r,'f,'c) I.T.Extension.rx = ('s,'r,'f,'c) SparcInstr.T.Extension.rx
and type ('s,'r,'f,'c) I.T.Extension.sx = ('s,'r,'f,'c) SparcInstr.T.Extension.sx
and type I.T.I.div_rounding_mode = SparcInstr.T.I.div_rounding_mode
and type I.T.ccexp = SparcInstr.T.ccexp
and type I.T.fexp = SparcInstr.T.fexp
(* and type I.T.labexp = SparcInstr.T.labexp *)
and type I.T.mlrisc = SparcInstr.T.mlrisc
and type I.T.oper = SparcInstr.T.oper
and type I.T.rep = SparcInstr.T.rep
and type I.T.rexp = SparcInstr.T.rexp
and type I.T.stm = SparcInstr.T.stm
and type I.arith = SparcInstr.arith
and type I.branch = SparcInstr.branch
and type I.cc = SparcInstr.cc
and type I.ea = SparcInstr.ea
and type I.farith1 = SparcInstr.farith1
and type I.farith2 = SparcInstr.farith2
and type I.fbranch = SparcInstr.fbranch
and type I.fcmp = SparcInstr.fcmp
and type I.fload = SparcInstr.fload
and type I.fsize = SparcInstr.fsize
and type I.fstore = SparcInstr.fstore
and type I.instr = SparcInstr.instr
and type I.instruction = SparcInstr.instruction
and type I.load = SparcInstr.load
and type I.operand = SparcInstr.operand
and type I.prediction = SparcInstr.prediction
and type I.rcond = SparcInstr.rcond
and type I.shift = SparcInstr.shift
and type I.store = SparcInstr.store
structure ExtensionComp : MLTREE_EXTENSION_COMP (* where I = SparcInstr and T = SparcInstr.T *)
where type I.addressing_mode = SparcInstr.addressing_mode
and type I.ea = SparcInstr.ea
and type I.instr = SparcInstr.instr
and type I.instruction = SparcInstr.instruction
and type I.operand = SparcInstr.operand
where type T.Basis.cond = SparcInstr.T.Basis.cond
and type T.Basis.div_rounding_mode = SparcInstr.T.Basis.div_rounding_mode
and type T.Basis.ext = SparcInstr.T.Basis.ext
and type T.Basis.fcond = SparcInstr.T.Basis.fcond
and type T.Basis.rounding_mode = SparcInstr.T.Basis.rounding_mode
and type T.Constant.const = SparcInstr.T.Constant.const
and type ('s,'r,'f,'c) T.Extension.ccx = ('s,'r,'f,'c) SparcInstr.T.Extension.ccx
and type ('s,'r,'f,'c) T.Extension.fx = ('s,'r,'f,'c) SparcInstr.T.Extension.fx
and type ('s,'r,'f,'c) T.Extension.rx = ('s,'r,'f,'c) SparcInstr.T.Extension.rx
and type ('s,'r,'f,'c) T.Extension.sx = ('s,'r,'f,'c) SparcInstr.T.Extension.sx
and type T.I.div_rounding_mode = SparcInstr.T.I.div_rounding_mode
and type T.Region.region = SparcInstr.T.Region.region
and type T.ccexp = SparcInstr.T.ccexp
and type T.fexp = SparcInstr.T.fexp
(* and type T.labexp = SparcInstr.T.labexp *)
and type T.mlrisc = SparcInstr.T.mlrisc
and type T.oper = SparcInstr.T.oper
and type T.rep = SparcInstr.T.rep
and type T.rexp = SparcInstr.T.rexp
and type T.stm = SparcInstr.T.stm
(*
* The client should also specify these parameters.
* These are the estimated cost of these instructions.
* The code generator will use alternative sequences that are
* cheaper when their costs are lower.
*)
val muluCost : int ref (* cost of unsigned multiplication in cycles *)
val divuCost : int ref (* cost of unsigned division in cycles *)
val multCost : int ref (* cost of trapping/signed multiplication in cycles *)
val divtCost : int ref (* cost of trapping/signed division in cycles *)
(*
* If you don't want to use register windows at all, set this to false.
*)
val registerwindow : bool ref (* should we use register windows? *)
val V9 : bool (* should we use V9 instruction set? *)
val useBR : bool ref
(* should we use the BR instruction (when in V9)?
* I think it is a good idea to use it.
*)
) : MLTREECOMP =
struct
structure I = SparcInstr
structure T = I.T
structure TS = ExtensionComp.TS
structure R = T.Region
structure C = I.C
structure CB = CellsBasis
structure W = Word32
structure P = PseudoInstrs
structure A = MLRiscAnnotations
structure CFG = ExtensionComp.CFG
type instrStream = (I.instruction, C.cellset, CFG.cfg) TS.stream
type mltreeStream = (T.stm, T.mlrisc list, CFG.cfg) TS.stream
fun toInt n = T.I.toInt(32, n)
fun LI i = T.LI(T.I.fromInt(32, i))
fun LT (n,m) = T.I.LT(32, n, m)
fun LE (n,m) = T.I.LE(32, n, m)
fun COPY{dst, src, tmp} =
I.COPY{k=CB.GP, sz=32, dst=dst, src=src, tmp=tmp}
fun FCOPY{dst, src, tmp} =
I.COPY{k=CB.FP, sz=64, dst=dst, src=src, tmp=tmp}
val intTy = if V9 then 64 else 32
structure Gen = MLTreeGen(structure T = T
structure Cells = C
val intTy = intTy
val naturalWidths = if V9 then [32,64] else [32]
datatype rep = SE | ZE | NEITHER
val rep = NEITHER
)
structure Multiply32 = struct
structure I = I
structure T = T
structure CB = CellsBasis
type arg = {r1:CB.cell,r2:CB.cell,d:CB.cell}
type argi = {r:CB.cell,i:int,d:CB.cell}
val intTy = 32
fun mov{r,d} = COPY{dst=[d],src=[r],tmp=NONE}
fun add{r1,r2,d} = I.arith{a=I.ADD,r=r1,i=I.REG r2,d=d}
fun slli{r,i,d} = [I.shift{s=I.SLL,r=r,i=I.IMMED i,d=d}]
fun srli{r,i,d} = [I.shift{s=I.SRL,r=r,i=I.IMMED i,d=d}]
fun srai{r,i,d} = [I.shift{s=I.SRA,r=r,i=I.IMMED i,d=d}]
end
structure Multiply64 = struct
structure I = I
structure T = T
structure CB = CellsBasis
type arg = {r1:CB.cell,r2:CB.cell,d:CB.cell}
type argi = {r:CB.cell,i:int,d:CB.cell}
val intTy = 64
fun mov{r,d} = COPY{dst=[d],src=[r],tmp=NONE}
fun add{r1,r2,d} = I.arith{a=I.ADD,r=r1,i=I.REG r2,d=d}
fun slli{r,i,d} = [I.shift{s=I.SLLX,r=r,i=I.IMMED i,d=d}]
fun srli{r,i,d} = [I.shift{s=I.SRLX,r=r,i=I.IMMED i,d=d}]
fun srai{r,i,d} = [I.shift{s=I.SRAX,r=r,i=I.IMMED i,d=d}]
end
(* signed, trapping version of multiply and divide *)
structure Mult32 = MLTreeMult
(open Multiply32
val trapping = true
val multCost = multCost
fun addv{r1,r2,d} =
I.arith{a=I.ADDCC,r=r1,i=I.REG r2,d=d}::PseudoInstrs.overflowtrap32
fun subv{r1,r2,d} =
I.arith{a=I.SUBCC,r=r1,i=I.REG r2,d=d}::PseudoInstrs.overflowtrap32
val sh1addv = NONE
val sh2addv = NONE
val sh3addv = NONE
val signed = true)
(* unsigned, non-trapping version of multiply and divide *)
structure Mul32 = struct
open Multiply32
val trapping = false
val multCost = muluCost
fun addv{r1,r2,d} = [I.arith{a=I.ADD,r=r1,i=I.REG r2,d=d}]
fun subv{r1,r2,d} = [I.arith{a=I.SUB,r=r1,i=I.REG r2,d=d}]
val sh1addv = NONE
val sh2addv = NONE
val sh3addv = NONE
end
structure Mulu32 = MLTreeMult(open Mul32 val signed = false)
structure Muls32 = MLTreeMult(open Mul32 val signed = true)
(* signed, trapping version of multiply and divide *)
structure Mult64 = MLTreeMult
(open Multiply64
val trapping = true
val multCost = multCost
fun addv{r1,r2,d} =
I.arith{a=I.ADDCC,r=r1,i=I.REG r2,d=d}::PseudoInstrs.overflowtrap64
fun subv{r1,r2,d} =
I.arith{a=I.SUBCC,r=r1,i=I.REG r2,d=d}::PseudoInstrs.overflowtrap64
val sh1addv = NONE
val sh2addv = NONE
val sh3addv = NONE
val signed = true)
(* unsigned, non-trapping version of multiply and divide *)
structure Mul64 = struct
open Multiply64
val trapping = false
val multCost = muluCost
fun addv{r1,r2,d} = [I.arith{a=I.ADD,r=r1,i=I.REG r2,d=d}]
fun subv{r1,r2,d} = [I.arith{a=I.SUB,r=r1,i=I.REG r2,d=d}]
val sh1addv = NONE
val sh2addv = NONE
val sh3addv = NONE
end
structure Mulu64 = MLTreeMult(open Mul64 val signed = false)
structure Muls64 = MLTreeMult(open Mul64 val signed = true)
datatype commutative = COMMUTE | NOCOMMUTE
datatype cc = REG (* write to register *)
| CC (* set condition code *)
| CC_REG (* do both *)
fun error msg = MLRiscErrorMsg.error("Sparc",msg)
fun selectInstructions
(instrStream as
TS.S.STREAM{emit=emitInstruction,defineLabel,entryLabel,pseudoOp,annotation,getAnnotations,
beginCluster,endCluster,exitBlock,comment,...}) =
let
val emit = emitInstruction o I.INSTR
(* Flags *)
val useBR = !useBR
val registerwindow = !registerwindow
val trap32 = PseudoInstrs.overflowtrap32
val trap64 = PseudoInstrs.overflowtrap64
val zeroR = C.r0
val newReg = C.newReg
val newFreg = C.newFreg
fun immed13 n = LE(~4096, n) andalso LT(n, 4096)
fun immed13w w = let val x = W.~>>(w,0w12)
in x = 0w0 orelse (W.notb x) = 0w0 end
fun splitw w = {hi=W.toInt(W.>>(w,0w10)),lo=W.toInt(W.andb(w,0wx3ff))}
fun split n = splitw(T.I.toWord32(32, n))
val zeroOpn = I.REG zeroR (* zero value operand *)
fun cond T.LT = I.BL
| cond T.LTU = I.BCS
| cond T.LE = I.BLE
| cond T.LEU = I.BLEU
| cond T.EQ = I.BE
| cond T.NE = I.BNE
| cond T.GE = I.BGE
| cond T.GEU = I.BCC
| cond T.GT = I.BG
| cond T.GTU = I.BGU
| cond _ = error "cond"
fun rcond T.LT = I.RLZ
| rcond T.LE = I.RLEZ
| rcond T.EQ = I.RZ
| rcond T.NE = I.RNZ
| rcond T.GE = I.RGEZ
| rcond T.GT = I.RGZ
| rcond _ = error "rcond"
fun signedCmp(T.LT | T.LE | T.EQ | T.NE | T.GE | T.GT) = true
| signedCmp _ = false
fun fcond T.== = I.FBE
| fcond T.?<> = I.FBNE
| fcond T.? = I.FBU
| fcond T.<=> = I.FBO
| fcond T.> = I.FBG
| fcond T.>= = I.FBGE
| fcond T.?> = I.FBUG
| fcond T.?>= = I.FBUGE
| fcond T.< = I.FBL
| fcond T.<= = I.FBLE
| fcond T.?< = I.FBUL
| fcond T.?<= = I.FBULE
| fcond T.<> = I.FBLG
| fcond T.?= = I.FBUE
| fcond fc = error("fcond "^T.Basis.fcondToString fc)
fun annotate(i,[]) = i
| annotate(i,a::an) = annotate(I.ANNOTATION{i=i,a=a},an)
fun mark'(i,an) = emitInstruction(annotate(i,an))
fun mark(i,an) = emitInstruction(annotate(I.INSTR i,an))
(* convert an operand into a register *)
fun reduceOpn(I.REG r) = r
| reduceOpn(I.IMMED 0) = zeroR
| reduceOpn i =
let val d = newReg()
in emit(I.ARITH{a=I.OR,r=zeroR,i=i,d=d}); d end
(* emit parallel copies *)
fun copy(dst,src,an) =
mark'(COPY{dst=dst,src=src,
tmp=case dst of [_] => NONE
| _ => SOME(I.Direct(newReg()))},an)
fun fcopy(dst,src,an) =
mark'(FCOPY{dst=dst,src=src,
tmp=case dst of [_] => NONE
| _ => SOME(I.FDirect(newFreg()))},an)
(* move register s to register d *)
fun move(s,d,an) =
if CB.sameColor(s,d) orelse CB.registerId d = 0 then ()
else mark'(COPY{dst=[d],src=[s],tmp=NONE},an)
(* move floating point register s to register d *)
fun fmoved(s,d,an) =
if CB.sameColor(s,d) then ()
else mark'(FCOPY{dst=[d],src=[s],tmp=NONE},an)
fun fmoves(s,d,an) = fmoved(s,d,an) (* error "fmoves" for now!!! XXX *)
fun fmoveq(s,d,an) = error "fmoveq"
(* load immediate *)
and loadImmed(n,d,cc,an) =
let val or = if cc <> REG then I.ORCC else I.OR
in if immed13 n then mark(I.ARITH{a=or,r=zeroR,i=I.IMMED(toInt n),d=d},an)
else let val {hi,lo} = split n
in if lo = 0 then
(mark(I.SETHI{i=hi,d=d},an); genCmp0(cc,d))
else let val t = newReg()
in emit(I.SETHI{i=hi,d=t});
mark(I.ARITH{a=or,r=t,i=I.IMMED lo,d=d},an)
end
end
end
(* load label expression *)
and loadLabel(lab,d,cc,an) =
let val or = if cc <> REG then I.ORCC else I.OR
in mark(I.ARITH{a=or,r=zeroR,i=I.LAB lab,d=d},an) end
(* emit an arithmetic op *)
and arith(a,acc,e1,e2,d,cc,comm,trap,an) =
let val (a,d) = case cc of
REG => (a,d)
| CC => (acc,zeroR)
| CC_REG => (acc,d)
in case (opn e1,opn e2,comm) of
(i,I.REG r,COMMUTE)=> mark(I.ARITH{a=a,r=r,i=i,d=d},an)
| (I.REG r,i,_) => mark(I.ARITH{a=a,r=r,i=i,d=d},an)
| (r,i,_) => mark(I.ARITH{a=a,r=reduceOpn r,i=i,d=d},an)
;
case trap of [] => () | _ => app emitInstruction trap
end
(* emit a shift op *)
and shift(s,e1,e2,d,cc,an) =
(mark(I.SHIFT{s=s,r=expr e1,i=opn e2,d=d},an);
genCmp0(cc,d)
)
(* emit externally defined multiply or division operation (V8) *)
and extarith(gen,genConst,e1,e2,d,cc,comm) =
let fun nonconst(e1,e2) =
case (opn e1,opn e2,comm) of
(i,I.REG r,COMMUTE) => gen({r=r,i=i,d=d},reduceOpn)
| (I.REG r,i,_) => gen({r=r,i=i,d=d},reduceOpn)
| (r,i,_) => gen({r=reduceOpn r,i=i,d=d},reduceOpn)
fun const(e,i) =
let val r = expr e
in genConst{r=r,i=toInt i,d=d}
handle _ => gen({r=r,i=opn(T.LI i),d=d},reduceOpn)
end
val instrs =
case (comm,e1,e2) of
(_,e1,T.LI i) => const(e1,i)
| (COMMUTE,T.LI i,e2) => const(e2,i)
| _ => nonconst(e1,e2)
in app emitInstruction instrs;
genCmp0(cc,d)
end
(* emit 64-bit multiply or division operation (V9) *)
and muldiv64(a,genConst,e1,e2,d,cc,comm,an) =
let fun nonconst(e1,e2) =
[annotate(
case (opn e1,opn e2,comm) of
(i,I.REG r,COMMUTE) => I.arith{a=a,r=r,i=i,d=d}
| (I.REG r,i,_) => I.arith{a=a,r=r,i=i,d=d}
| (r,i,_) => I.arith{a=a,r=reduceOpn r,i=i,d=d},an)
]
fun const(e,i) =
let val r = expr e
in genConst{r=r,i=toInt i,d=d}
handle _ => [annotate(I.arith{a=a,r=r,i=opn(T.LI i),d=d},an)]
end
val instrs =
case (comm,e1,e2) of
(_,e1,T.LI i) => const(e1,i)
| (COMMUTE,T.LI i,e2) => const(e2,i)
| _ => nonconst(e1,e2)
in app emitInstruction instrs;
genCmp0(cc,d)
end
(* divisions *)
and divu32 x = Mulu32.divide{mode=T.TO_ZERO,stm=doStmt} x
and divs32 x = Muls32.divide{mode=T.TO_ZERO,stm=doStmt} x
and divt32 x = Mult32.divide{mode=T.TO_ZERO,stm=doStmt} x
and divu64 x = Mulu64.divide{mode=T.TO_ZERO,stm=doStmt} x
and divs64 x = Muls64.divide{mode=T.TO_ZERO,stm=doStmt} x
and divt64 x = Mult64.divide{mode=T.TO_ZERO,stm=doStmt} x
(* emit an unary floating point op *)
and funary(a,e,d,an) = mark(I.FPop1{a=a,r=fexpr e,d=d},an)
(* emit a binary floating point op *)
and farith(a,e1,e2,d,an) =
mark(I.FPop2{a=a,r1=fexpr e1,r2=fexpr e2,d=d},an)
(* convert an expression into an addressing mode *)
and addr(T.ADD(ty, (T.ADD (_, e, T.LI n)|
T.ADD (_, T.LI n, e)), T.LI n')) =
addr(T.ADD (ty, e, T.LI (T.I.ADD (ty, n, n'))))
| addr(T.ADD(ty, T.SUB (_, e, T.LI n), T.LI n')) =
addr(T.ADD (ty, e, T.LI (T.I.SUB (ty, n', n))))
| addr(T.ADD(_,e,T.LI n)) =
if immed13 n then (expr e,I.IMMED(toInt n))
else let val d = newReg()
in loadImmed(n,d,REG,[]); (d,opn e) end
| addr(T.ADD(_,e,x as T.CONST c)) = (expr e,I.LAB x)
| addr(T.ADD(_,e,x as T.LABEL l)) = (expr e,I.LAB x)
| addr(T.ADD(_,e,T.LABEXP x)) = (expr e,I.LAB x)
| addr(T.ADD(ty,i as T.LI _,e)) = addr(T.ADD(ty,e,i))
| addr(T.ADD(_,x as T.CONST c,e)) = (expr e,I.LAB x)
| addr(T.ADD(_,x as T.LABEL l,e)) = (expr e,I.LAB x)
| addr(T.ADD(_,T.LABEXP x,e)) = (expr e,I.LAB x)
| addr(T.ADD(_,e1,e2)) = (expr e1,I.REG(expr e2))
| addr(T.SUB(ty,e,T.LI n)) = addr(T.ADD(ty,e,T.LI(T.I.NEG(32,n))))
| addr(x as T.LABEL l) = (zeroR,I.LAB x)
| addr(T.LABEXP x) = (zeroR,I.LAB x)
| addr a = (expr a,zeroOpn)
(* emit an integer load *)
and load(l,a,d,mem,cc,an) =
let val (r,i) = addr a
in mark(I.LOAD{l=l,r=r,i=i,d=d,mem=mem},an);
genCmp0(cc,d)
end
(* emit an integer store *)
and store(s,a,d,mem,an) =
let val (r,i) = addr a
in mark(I.STORE{s=s,r=r,i=i,d=expr d,mem=mem},an) end
(* emit a floating point load *)
and fload(l,a,d,mem,an) =
let val (r,i) = addr a
in mark(I.FLOAD{l=l,r=r,i=i,d=d,mem=mem},an) end
(* emit a floating point store *)
and fstore(s,a,d,mem,an) =
let val (r,i) = addr a
in mark(I.FSTORE{s=s,r=r,i=i,d=fexpr d,mem=mem},an) end
(* emit a jump *)
and jmp(a,labs,an) =
let val (r,i) = addr a
in mark(I.JMP{r=r,i=i,labs=labs,nop=true},an) end
(* convert mlrisc to cellset *)
and cellset mlrisc =
let fun g([],set) = set
| g(T.GPR(T.REG(_,r))::regs,set) = g(regs,CB.CellSet.add(r,set))
| g(T.FPR(T.FREG(_,f))::regs,set) = g(regs,CB.CellSet.add(f,set))
| g(T.CCR(T.CC(_,cc))::regs,set) = g(regs,CB.CellSet.add(cc,set))
| g(_::regs, set) = g(regs,set)
in g(mlrisc, C.empty) end
(* emit a function call *)
and call(a,flow,defs,uses,mem,cutsTo,an,0) =
let val (r,i) = addr a
val defs=cellset(defs)
val uses=cellset(uses)
in case (CB.registerId r,i) of
(0,I.LAB(T.LABEL l)) =>
mark(I.CALL{label=l,defs=C.addReg(C.linkReg,defs),uses=uses,
cutsTo=cutsTo,mem=mem,nop=true},an)
| _ => mark(I.JMPL{r=r,i=i,d=C.linkReg,defs=defs,uses=uses,
cutsTo=cutsTo,mem=mem,nop=true},an)
end
| call _ = error "pops<>0 not implemented"
(* emit an integer branch instruction *)
and branch(T.CMP(ty,cond,a,b),lab,an) =
let val (cond,a,b) =
case a of
(T.LI _ | T.CONST _ | T.LABEL _) =>
(T.Basis.swapCond cond,b,a)
| _ => (cond,a,b)
in if V9 then
branchV9(cond,a,b,lab,an)
else
(doExpr(T.SUB(ty,a,b),newReg(),CC,[]); br(cond,lab,an))
end
| branch(T.CC(cond,r),lab,an) =
if CB.sameColor(r, C.psr) then br(cond,lab,an)
else (genCmp0(CC,r); br(cond,lab,an))
| branch(T.FCMP(fty,cond,a,b),lab,an) =
let val cmp = case fty of
32 => I.FCMPs
| 64 => I.FCMPd
| _ => error "fbranch"
in emit(I.FCMP{cmp=cmp,r1=fexpr a,r2=fexpr b,nop=true});
mark(I.FBfcc{b=fcond cond,a=false,label=lab,nop=true},an)
end
| branch _ = error "branch"
and branchV9(cond,a,b,lab,an) =
let val size = Gen.Size.size a
in if useBR andalso signedCmp cond then
let val r = newReg()
in doExpr(T.SUB(size,a,b),r,REG,[]);
brcond(cond,r,lab,an)
end
else
let val cc = case size of 32 => I.ICC
| 64 => I.XCC
| _ => error "branchV9"
in doExpr(T.SUB(size,a,b),newReg(),CC,[]);
bp(cond,cc,lab,an)
end
end
and br(c,lab,an) = mark(I.Bicc{b=cond c,a=true,label=lab,nop=true},an)
and brcond(c,r,lab,an) =
mark(I.BR{rcond=rcond c,r=r,p=I.PT,a=true,label=lab,nop=true},an)
and bp(c,cc,lab,an) =
mark(I.BP{b=cond c,cc=cc,p=I.PT,a=true,label=lab,nop=true},an)
(* generate code for a statement *)
and stmt(T.MV(_,d,e),an) = doExpr(e,d,REG,an)
| stmt(T.FMV(_,d,e),an) = doFexpr(e,d,an)
| stmt(T.CCMV(d,e),an) = doCCexpr(e,d,an)
| stmt(T.COPY(_,dst,src),an) = copy(dst,src,an)
| stmt(T.FCOPY(_,dst,src),an) = fcopy(dst,src,an)
| stmt(T.JMP(T.LABEL l,_),an) =
mark(I.Bicc{b=I.BA,a=true,label=l,nop=false},an)
| stmt(T.JMP(e,labs),an) = jmp(e,labs,an)
| stmt(T.CALL{funct,targets,defs,uses,region,pops,...},an) =
call(funct,targets,defs,uses,region,[],an,pops)
| stmt(T.FLOW_TO
(T.CALL{funct,targets,defs,uses,region,pops,...},cutsTo),an) =
call(funct,targets,defs,uses,region,cutsTo,an,pops)
| stmt(T.RET _,an) = mark(I.RET{leaf=not registerwindow,nop=true},an)
| stmt(T.STORE(8,a,d,mem),an) = store(I.STB,a,d,mem,an)
| stmt(T.STORE(16,a,d,mem),an) = store(I.STH,a,d,mem,an)
| stmt(T.STORE(32,a,d,mem),an) = store(I.ST,a,d,mem,an)
| stmt(T.STORE(64,a,d,mem),an) =
store(if V9 then I.STX else I.STD,a,d,mem,an)
| stmt(T.FSTORE(32,a,d,mem),an) = fstore(I.STF,a,d,mem,an)
| stmt(T.FSTORE(64,a,d,mem),an) = fstore(I.STDF,a,d,mem,an)
| stmt(T.BCC(cc,lab),an) = branch(cc,lab,an)
| stmt(T.DEFINE l,_) = defineLabel l
| stmt(T.ANNOTATION(s,a),an) = stmt(s,a::an)
| stmt(T.EXT s,an) = ExtensionComp.compileSext(reducer()) {stm=s, an=an}
| stmt(s,an) = doStmts(Gen.compileStm s)
and doStmt s = stmt(s,[])
and doStmts ss = app doStmt ss
(* convert an expression into a register *)
and expr e = let
fun comp() = let
val d = newReg()
in doExpr(e, d, REG, []); d
end
in case e
of T.REG(_,r) => r
| T.LI z => if z = 0 then zeroR else comp()
| _ => comp()
end
(* compute an integer expression and put the result in register d
* If cc is set then set the condition code with the result.
*)
and doExpr(e,d,cc,an) =
case e of
T.REG(_,r) => (move(r,d,an); genCmp0(cc,r))
| T.LI n => loadImmed(n,d,cc,an)
| T.LABEL l => loadLabel(e,d,cc,an)
| T.CONST c => loadLabel(e,d,cc,an)
| T.LABEXP x => loadLabel(x,d,cc,an)
(* generic 32/64 bit support *)
| T.ADD(_,a,b) => arith(I.ADD,I.ADDCC,a,b,d,cc,COMMUTE,[],an)
| T.SUB(_,a,b) => let
fun default() = arith(I.SUB,I.SUBCC,a,b,d,cc,NOCOMMUTE,[],an)
in
case b
of T.LI z =>
if z = 0 then doExpr(a,d,cc,an) else default()
| _ => default()
(*esac*)
end
| T.ANDB(_,a,T.NOTB(_,b)) =>
arith(I.ANDN,I.ANDNCC,a,b,d,cc,NOCOMMUTE,[],an)
| T.ORB(_,a,T.NOTB(_,b)) =>
arith(I.ORN,I.ORNCC,a,b,d,cc,NOCOMMUTE,[],an)
| T.XORB(_,a,T.NOTB(_,b)) =>
arith(I.XNOR,I.XNORCC,a,b,d,cc,COMMUTE,[],an)
| T.ANDB(_,T.NOTB(_,a),b) =>
arith(I.ANDN,I.ANDNCC,b,a,d,cc,NOCOMMUTE,[],an)
| T.ORB(_,T.NOTB(_,a),b) =>
arith(I.ORN,I.ORNCC,b,a,d,cc,NOCOMMUTE,[],an)
| T.XORB(_,T.NOTB(_,a),b) =>
arith(I.XNOR,I.XNORCC,b,a,d,cc,COMMUTE,[],an)
| T.NOTB(_,T.XORB(_,a,b)) =>
arith(I.XNOR,I.XNORCC,a,b,d,cc,COMMUTE,[],an)
| T.ANDB(_,a,b) => arith(I.AND,I.ANDCC,a,b,d,cc,COMMUTE,[],an)
| T.ORB(_,a,b) => arith(I.OR,I.ORCC,a,b,d,cc,COMMUTE,[],an)
| T.XORB(_,a,b) => arith(I.XOR,I.XORCC,a,b,d,cc,COMMUTE,[],an)
| T.NOTB(_,a) => arith(I.XNOR,I.XNORCC,a,LI 0,d,cc,COMMUTE,[],an)
(* 32 bit support *)
| T.SRA(32,a,b) => shift(I.SRA,a,b,d,cc,an)
| T.SRL(32,a,b) => shift(I.SRL,a,b,d,cc,an)
| T.SLL(32,a,b) => shift(I.SLL,a,b,d,cc,an)
| T.ADDT(32,a,b)=>
arith(I.ADDCC,I.ADDCC,a,b,d,CC_REG,COMMUTE,trap32,an)
| T.SUBT(32,a,b)=>
arith(I.SUBCC,I.SUBCC,a,b,d,CC_REG,NOCOMMUTE,trap32,an)
| T.MULU(32,a,b) => extarith(P.umul32,
Mulu32.multiply,a,b,d,cc,COMMUTE)
| T.MULS(32,a,b) => extarith(P.smul32,
Muls32.multiply,a,b,d,cc,COMMUTE)
| T.MULT(32,a,b) => extarith(P.smul32trap,
Mult32.multiply,a,b,d,cc,COMMUTE)
| T.DIVU(32,a,b) => extarith(P.udiv32,divu32,a,b,d,cc,NOCOMMUTE)
| T.DIVS(T.DIV_TO_ZERO,32,a,b) =>
extarith(P.sdiv32,divs32,a,b,d,cc,NOCOMMUTE)
| T.DIVT(T.DIV_TO_ZERO,32,a,b) =>
extarith(P.sdiv32trap,divt32,a,b,d,cc,NOCOMMUTE)
(* 64 bit support *)
| T.SRA(64,a,b) => shift(I.SRAX,a,b,d,cc,an)
| T.SRL(64,a,b) => shift(I.SRLX,a,b,d,cc,an)
| T.SLL(64,a,b) => shift(I.SLLX,a,b,d,cc,an)
| T.ADDT(64,a,b)=>
arith(I.ADDCC,I.ADDCC,a,b,d,CC_REG,COMMUTE,trap64,an)
| T.SUBT(64,a,b)=>
arith(I.SUBCC,I.SUBCC,a,b,d,CC_REG,NOCOMMUTE,trap64,an)
| T.MULU(64,a,b) =>
muldiv64(I.MULX,Mulu64.multiply,a,b,d,cc,COMMUTE,an)
| T.MULS(64,a,b) =>
muldiv64(I.MULX,Muls64.multiply,a,b,d,cc,COMMUTE,an)
| T.MULT(64,a,b) =>
(muldiv64(I.MULX,Mult64.multiply,a,b,d,CC_REG,COMMUTE,an);
app emitInstruction trap64)
| T.DIVU(64,a,b) => muldiv64(I.UDIVX,divu64,a,b,d,cc,NOCOMMUTE,an)
| T.DIVS(T.DIV_TO_ZERO,64,a,b) =>
muldiv64(I.SDIVX,divs64,a,b,d,cc,NOCOMMUTE,an)
| T.DIVT(T.DIV_TO_ZERO,64,a,b) =>
muldiv64(I.SDIVX,divt64,a,b,d,cc,NOCOMMUTE,an)
(* loads *)
| T.LOAD(8,a,mem) => load(I.LDUB,a,d,mem,cc,an)
| T.SX(_,_,T.LOAD(8,a,mem)) => load(I.LDSB,a,d,mem,cc,an)
| T.LOAD(16,a,mem) => load(I.LDUH,a,d,mem,cc,an)
| T.SX(_,_,T.LOAD(16,a,mem)) => load(I.LDSH,a,d,mem,cc,an)
| T.LOAD(32,a,mem) => load(I.LD,a,d,mem,cc,an)
| T.LOAD(64,a,mem) =>
load(if V9 then I.LDX else I.LDD,a,d,mem,cc,an)
(* conditional expression *)
| T.COND exp => doStmts (Gen.compileCond{exp=exp,rd=d,an=an})
(* misc *)
| T.LET(s,e) => (doStmt s; doExpr(e, d, cc, an))
| T.MARK(e,A.MARKREG f) => (f d; doExpr(e,d,cc,an))
| T.MARK(e,a) => doExpr(e,d,cc,a::an)
| T.PRED(e,c) => doExpr(e,d,cc,A.CTRLUSE c::an)
| T.REXT e => ExtensionComp.compileRext (reducer()) {e=e, rd=d, an=an}
| e => doExpr(Gen.compileRexp e,d,cc,an)
(* generate a comparison with zero *)
and genCmp0(REG,_) = ()
| genCmp0(_,d) = emit(I.ARITH{a=I.SUBCC,r=d,i=zeroOpn,d=zeroR})
(* convert an expression into a floating point register *)
and fexpr(T.FREG(_,r)) = r
| fexpr e = let val d = newFreg() in doFexpr(e,d,[]); d end
(* compute a floating point expression and put the result in d *)
and doFexpr(e,d,an) =
case e of
(* single precision *)
T.FREG(32,r) => fmoves(r,d,an)
| T.FLOAD(32,ea,mem) => fload(I.LDF,ea,d,mem,an)
| T.FADD(32,a,b) => farith(I.FADDs,a,b,d,an)
| T.FSUB(32,a,b) => farith(I.FSUBs,a,b,d,an)
| T.FMUL(32,a,b) => farith(I.FMULs,a,b,d,an)
| T.FDIV(32,a,b) => farith(I.FDIVs,a,b,d,an)
| T.FABS(32,a) => funary(I.FABSs,a,d,an)
| T.FNEG(32,a) => funary(I.FNEGs,a,d,an)
| T.FSQRT(32,a) => funary(I.FSQRTs,a,d,an)
(* double precision *)
| T.FREG(64,r) => fmoved(r,d,an)
| T.FLOAD(64,ea,mem) => fload(I.LDDF,ea,d,mem,an)
| T.FADD(64,a,b) => farith(I.FADDd,a,b,d,an)
| T.FSUB(64,a,b) => farith(I.FSUBd,a,b,d,an)
| T.FMUL(64,a,b) => farith(I.FMULd,a,b,d,an)
| T.FDIV(64,a,b) => farith(I.FDIVd,a,b,d,an)
| T.FABS(64,a) => funary(I.FABSd,a,d,an)
| T.FNEG(64,a) => funary(I.FNEGd,a,d,an)
| T.FSQRT(64,a) => funary(I.FSQRTd,a,d,an)
(* quad precision *)
| T.FREG(128,r) => fmoveq(r,d,an)
| T.FADD(128,a,b) => farith(I.FADDq,a,b,d,an)
| T.FSUB(128,a,b) => farith(I.FSUBq,a,b,d,an)
| T.FMUL(128,a,b) => farith(I.FMULq,a,b,d,an)
| T.FDIV(128,a,b) => farith(I.FDIVq,a,b,d,an)
| T.FABS(128,a) => funary(I.FABSq,a,d,an)
| T.FNEG(128,a) => funary(I.FNEGq,a,d,an)
| T.FSQRT(128,a) => funary(I.FSQRTq,a,d,an)
(* floating point to floating point *)
| T.CVTF2F(ty,ty',e) =>
(case (ty,ty') of
(32,32) => doFexpr(e,d,an)
| (64,32) => funary(I.FsTOd,e,d,an)
| (128,32) => funary(I.FsTOq,e,d,an)
| (32,64) => funary(I.FdTOs,e,d,an)
| (64,64) => doFexpr(e,d,an)
| (128,64) => funary(I.FdTOq,e,d,an)
| (32,128) => funary(I.FqTOs,e,d,an)
| (64,128) => funary(I.FqTOd,e,d,an)
| (128,128) => doFexpr(e,d,an)
| _ => error "CVTF2F"
)
(* integer to floating point *)
| T.CVTI2F(32,32,e) => app emitInstruction (P.cvti2s({i=opn e,d=d},reduceOpn))
| T.CVTI2F(64,32,e) => app emitInstruction (P.cvti2d({i=opn e,d=d},reduceOpn))
| T.CVTI2F(128,32,e) => app emitInstruction (P.cvti2q({i=opn e,d=d},reduceOpn))
| T.FMARK(e,A.MARKREG f) => (f d; doFexpr(e,d,an))
| T.FMARK(e,a) => doFexpr(e,d,a::an)
| T.FPRED(e,c) => doFexpr(e,d,A.CTRLUSE c::an)
| T.FEXT e => ExtensionComp.compileFext (reducer()) {e=e, fd=d, an=an}
| e => doFexpr(Gen.compileFexp e,d,an)
and doCCexpr(T.CMP(ty,cond,e1,e2),cc,an) =
if CB.sameColor(cc,C.psr) then
doExpr(T.SUB(ty,e1,e2),newReg(),CC,an)
else error "doCCexpr"
| doCCexpr(T.CC(_,r),d,an) =
if CB.sameColor(r,C.psr) then error "doCCexpr"
else move(r,d,an)
| doCCexpr(T.CCMARK(e,A.MARKREG f),d,an) = (f d; doCCexpr(e,d,an))
| doCCexpr(T.CCMARK(e,a),d,an) = doCCexpr(e,d,a::an)
| doCCexpr(T.CCEXT e,d,an) =
ExtensionComp.compileCCext (reducer()) {e=e, ccd=d, an=an}
| doCCexpr e = error "doCCexpr"
and ccExpr e = let val d = newReg() in doCCexpr(e,d,[]); d end
(* convert an expression into an operand *)
and opn(x as T.CONST c) = I.LAB x
| opn(x as T.LABEL l) = I.LAB x
| opn(T.LABEXP x) = I.LAB x
| opn(e as T.LI n) =
if n = 0 then zeroOpn
else if immed13 n then I.IMMED(toInt n)
else I.REG(expr e)
| opn e = I.REG(expr e)
and reducer() =
TS.REDUCER{reduceRexp = expr,
reduceFexp = fexpr,
reduceCCexp = ccExpr,
reduceStm = stmt,
operand = opn,
reduceOperand = reduceOpn,
addressOf = addr,
emit = emitInstruction o annotate,
instrStream = instrStream,
mltreeStream = self()
}
and self() =
TS.S.STREAM
{ beginCluster = beginCluster,
endCluster = endCluster,
emit = doStmt,
pseudoOp = pseudoOp,
defineLabel = defineLabel,
entryLabel = entryLabel,
comment = comment,
annotation = annotation,
getAnnotations = getAnnotations,
exitBlock = fn regs => exitBlock(cellset regs)
}
in self()
end
end
(*
* Machine code generator for SPARC.
*
* The SPARC architecture has 32 general purpose registers (%g0 is always 0)
* and 32 single precision floating point registers.
*
* Some Ugliness: double precision floating point registers are
* register pairs. There are no double precision moves, negation and absolute
* values. These require two single precision operations. I've created
* composite instructions FMOVd, FNEGd and FABSd to stand for these.
*
* All integer arithmetic instructions can optionally set the condition
* code register. We use this to simplify certain comparisons with zero.
*
* Integer multiplication, division and conversion from integer to floating
* go thru the pseudo instruction interface, since older sparcs do not
* implement these instructions in hardware.
*
* In addition, the trap instruction for detecting overflow is a parameter.
* This allows different trap vectors to be used.
*
* -- Allen
*)
|