1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
|
(*
* This has been upgraded to V9.
*)
architecture Sparc =
struct
superscalar
big endian
lowercase assembly
storage
GP = $r[32] of 64 bits where $r[0] = 0
asm: (fn (r,_) =>
if r < 8 then "%g"^Int.toString r
else if r = 14 then "%sp"
else if r < 16 then "%o"^Int.toString(r-8)
else if r < 24 then "%l"^Int.toString(r-16)
else if r = 30 then "%fp"
else if r < 32 then "%i"^Int.toString(r-24)
else "%r"^Int.toString r
)
| FP = $f[32] of 32 bits asm: (fn (f,_) => "%f"^Int.toString f)
| Y = $y[1] of 64 bits asm: "%y"
| PSR = $psr[1] of 64 bits
asm: (fn (0,_) => "%psr"
| (n,_) => "%psr"^Int.toString n)
| FSR = $fsr[1] of 64 bits
asm: (fn (0,_) => "%fsr"
| (n,_) => "%fsr"^Int.toString n)
| CC = $cc[] of 64 bits aliasing GP asm: "%cc"
| MEM = $m[] of 8 aggregable bits asm: (fn (r,_) => "m"^Int.toString r)
| CTRL = $ctrl[] asm: (fn (r,_) => "ctrl"^Int.toString r)
locations
stackptrR = $r[14] (* %o6 = %sp *)
and frameptrR = $r[30] (* %i6 = %fp *)
and asmTmpR = $r[10] (* %o2 *)
and linkReg = $r[15]
and fasmTmp = $f[30]
and y = $y[0]
and psr = $psr[0]
and fsr = $fsr[0]
and r0 = $r[0]
structure RTL =
struct
include "Tools/basis.mdl"
open Basis
infix 1 ||
infix 3 << >> ~>>
fun %% l = (l : #64 bits)
(* Updates condition code *)
fun cc{} = Kill $psr[0]
fun byte x = (x : #8 bits)
fun hword x = (x : #16 bits)
fun word x = (x : #32 bits)
fun dword x = (x : #64 bits)
fun single x = (x : #32 bits)
fun double x = (x : #64 bits)
fun quad x = (x : #128 bits)
fun disp(r,i) = $r[r] + i
(* read from/write to the y register *)
rtl RDY{d} = $r[d] := $y[0]
rtl WRY{r,i} = $y[0] := disp(r,i)
rtl SETHI{i,d} = $r[d] := i << 10
(* Integer load/store *)
rtl LDSB{r,i,d,mem} = $r[d] := sx(byte $m[disp(r,i):mem])
rtl LDSH{r,i,d,mem} = $r[d] := sx(hword $m[disp(r,i):mem])
rtl LDUB{r,i,d,mem} = $r[d] := zx(byte $m[disp(r,i):mem])
rtl LDUH{r,i,d,mem} = $r[d] := zx(hword $m[disp(r,i):mem])
rtl LD{r,i,d,mem} = $r[d] := zx(word $m[disp(r,i):mem])
rtl LDX{r,i,d,mem} = $r[d] := zx(quad $m[disp(r,i):mem])
rtl STB{r,i,d,mem} = $m[disp(r,i):mem] := $r[d] at [0..7]
rtl STH{r,i,d,mem} = $m[disp(r,i):mem] := $r[d] at [0..15]
rtl ST{r,i,d,mem} = $m[disp(r,i):mem] := $r[d] at [0..31]
rtl STX{r,i,d,mem} = $m[disp(r,i):mem] := $r[d] at [0..63]
(* Integer opcodes *)
(* These are built-in sparc bitops *)
fun andn(x,y) = andb(x,notb y)
fun orn(x,y) = orb(x,notb y)
fun xnor(x,y) = notb(xorb(x,y))
(* Tagged additions operators. We just fake these by
* generating new operators.
*)
rtl tadd taddtv tsub tsubtv : #n bits * #n bits -> #n bits
fun multiply opc {r,i,d} =
$r[d] := opc($r[r],i) ||
Kill $y[0]
fun multiplycc opc {r,i,d} = multiply opc {r,i,d} || cc{}
fun divide opc {r,i,d} =
$r[d] := opc($r[r],i) (* XXX *)
fun dividecc opc {r,i,d} = divide opc {r,i,d} || cc{}
fun logical opc {r,i,d} = $r[d] := opc($r[r],i)
fun logicalcc opc {r,i,d} = $r[d] := opc($r[r],i) || cc{}
fun arith opc {r,i,d} = $r[d] := opc($r[r],i)
fun arithcc opc {r,i,d} = $r[d] := opc($r[r],i) || cc{}
rtl li{i,d} = $r[d] := i (* load immediate *)
rtl [AND,ANDN,OR,ORN,XOR,XNOR] =
map logical [andb, andn, orb, orn, xorb, xnor]
rtl [ANDCC, ANDNCC, ORCC, ORNCC, XORCC, XNORCC] =
map logicalcc [andb, andn, orb, orn, xorb, xnor]
rtl [ADD, TADD, TADDTV, SUB, TSUB, TSUBTV] =
map arith [(+), tadd, taddtv, (-), tsub, tsubtv]
rtl [ADDCC, TADDCC, TADDTVCC, SUBCC, TSUBCC, TSUBTVCC] =
map arithcc [(+), tadd, taddtv, (-), tsub, tsubtv]
rtl [UMUL,SMUL] = map multiply [mulu,muls]
rtl [UMULCC,SMULCC] = map multiplycc [mulu,muls]
rtl [UDIV,SDIV] = map divide [divu,divs]
rtl [UDIVCC,SDIVCC] = map dividecc [divu,divs]
rtl [MULX, SDIVX, UDIVX] = map arith [muls, divs, divu]
rtl [SLL, SRL, SRA] = map logical [(<<), (>>), (~>>)] (* XXX *)
rtl [SLLX, SRLX, SRAX] = map logical [(<<), (>>), (~>>)] (* XXX *)
local fun xor(a, b) = a == b
(* Extract bits from the $psr *)
val N = ($psr[0] at [23]) == 1
val Z = ($psr[0] at [22]) == 1
val V = ($psr[0] at [21]) == 1
val C = ($psr[0] at [20]) == 1
in val [A, E, LE, L, LEU, CS, NEG, VS, (* XXX *)
N, NE, G, GE, GU, CC, POS, VC] =
[true, Z, Z, Z, Z, C, N, V,
false, not Z, Z, Z, Z, not C,not N,not V
]
end
val integer_tests =
[N, E, LE, L, LEU, CS, NEG, VS,
A, NE, G, GE, GU, CC, POS, VC]
(* Integer branches *)
fun branch status {label} = if status then Jmp(%%label) else ()
rtl [BN, BE, BLE, BL, BLEU, BCS, BNEG, BVS,
BA, BNE, BG, BGE, BGU, BCC, BPOS, BVC] =
map branch integer_tests
rtl JMP{r,i} = Jmp(disp(r,i))
(* Conditional moves *)
fun MOVicc icc {i, d} = if icc then $r[d] := i else ()
fun FMOVicc icc {r, d} = if icc then $f[d] := $f[r] else ()
val MOV ^^
[E, LE, L, LEU, CS, NEG, VS,
NE, G, GE, GU, CC, POS, VC] =
map MOVicc
[E, LE, L, LEU, CS, NEG, VS,
NE, G, GE, GU, CC, POS, VC]
val FMOV ^^
[E, LE, L, LEU, CS, NEG, VS,
NE, G, GE, GU, CC, POS, VC] =
map FMOVicc
[E, LE, L, LEU, CS, NEG, VS,
NE, G, GE, GU, CC, POS, VC]
fun MOVR rcc {r, i, d} = if rcc($r[r], 0) then $r[d] := i else ()
rtl MOVR ^^ [Z, LEZ, LZ, NZ, GZ, GEZ] =
map MOVR [(==), (<=), (<), (<>), (>), (>=)]
(* Floating point load/store *)
rtl LDF{r,i,d,mem} = $f[d] := $m[disp(r,i):mem]
rtl LDDF{r,i,d,mem} = $f[d] := $m[disp(r,i):mem]
rtl LDQF{r,i,d,mem} = $f[d] := $m[disp(r,i):mem]
rtl STF{r,i,d,mem} = $m[disp(r,i):mem] := $f[d]
rtl STDF{r,i,d,mem} = $m[disp(r,i):mem] := $f[d]
rtl LDFSR{r,i,mem} = $fsr[0] := $m[disp(r,i):mem] (* XXX *)
rtl LDXFSR{r,i,mem} = $fsr[0] := $m[disp(r,i):mem] (* XXX *)
rtl STFSR{r,i,mem} = $m[disp(r,i):mem] := $fsr[0] (* XXX *)
(* conversions *)
rtl fitos fitod fitoq fstoi fdtoi fqtoi fsqrt
fstod fstoq fdtos fdtoq fqtos fqtod : #n bits -> #n bits
fun fmovs x = x
fun fmovd x = x
fun fmovq x = x
fun funary opc {r,d} = $f[d] := opc $f[r]
(* Floating point unary operations *)
rtl [FiTOs, FiTOd, FiTOq, FsTOi, FdTOi, FqTOi,
FsTOd, FsTOq, FdTOs, FdTOq, FqTOs, FqTOd,
FMOVs, FNEGs, FABSs, FMOVd, FNEGd, FABSd,
FMOVq, FNEGq, FABSq, FSQRTs, FSQRTd, FSQRTq] = (* XXX *)
map funary
[fitos, fitod, fitoq, fstoi, fdtoi, fqtoi,
fstod, fstoq, fdtos, fdtoq, fqtos, fqtod,
fmovs, fneg, fabs, fmovd, fneg, fabs,
fmovq, fneg, fabs, fsqrt, fsqrt, fsqrt]
(* Floating point binary operations *)
fun fbinary opc {r1,r2,d} = $f[d] := opc($f[r1],$f[r2])
rtl fsmuld fdmulq : #n bits * #n bits -> #n bits (* XXX *)
rtl [FADDs, FADDd, FADDq, FSUBs, FSUBd, FSUBq, (* XXX *)
FMULs, FMULd, FMULq, FsMULd, FdMULq,
FDIVs, FDIVd, FDIVq] =
map fbinary
[fadd, fadd, fadd, fsub, fsub, fsub,
fmul, fmul, fmul, fsmuld, fdmulq,
fdiv, fdiv, fdiv]
(* Floating point comparisons *)
rtl Nan : #32 bits -> #32 bits
fun nan(r) = (* if Nan($f[r]) == 0 then () else () *) ()
rtl cmps cmpd cmpq : #n bits * #n bits -> #n bits
rtl FCMPs{r1,r2} = $fsr[0] := cmps($f[r1],$f[r2])
rtl FCMPd{r1,r2} = $fsr[0] := cmpd($f[r1],$f[r2])
rtl FCMPq{r1,r2} = $fsr[0] := cmpq($f[r1],$f[r2])
rtl FCMPEs{r1,r2} = $fsr[0] := cmps($f[r1],$f[r2]) || nan(r1) || nan(r2)
rtl FCMPEd{r1,r2} = $fsr[0] := cmpd($f[r1],$f[r2]) || nan(r1) || nan(r2)
rtl FCMPEq{r1,r2} = $fsr[0] := cmpq($f[r1],$f[r2]) || nan(r1) || nan(r2)
local val X = $fsr[0] == 0
in val floating_point_tests as
[FN, FNE, FLG, FUL, FL, FUG, FG, FU,
FA, FE, FUE, FGE, FUGE, FLE, FULE, FO] =
[X, X, X, X, X, X, X, X,
X, X, X, X, X, X, X, X
]
end
fun fbranch fcc {label} = if fcc then Jmp(%%label) else ()
rtl [FBN, FBNE, FBLG, FBUL, FBL, FBUG, FBG, FBU,
FBA, FBE, FBUE, FBGE, FBUGE, FBLE, FBULE, FBO] =
map fbranch floating_point_tests
(* Floating point conditional moves *)
fun MOVfcc fcc {i, d} = if fcc then $r[d] := i else ()
fun FMOVfcc fcc { r, d} = if fcc then $f[d] := $f[r] else ()
rtl MOV ^^ [N, NE, LG, UL, L, UG, G, U,
A, E, UE, GE, UGE, LE, ULE, O] =
map MOVfcc floating_point_tests
rtl FMOV ^^ [N, NE, LG, UL, L, UG, G, U,
A, E, UE, GE, UGE, LE, ULE, O] =
map FMOVfcc floating_point_tests
(* Traps *)
fun Trap x = Jmp x (* XXX *)
fun Ticc cc {r,i} = if cc then Trap(disp(r,i)) else ()
fun Txcc cc {r,i} = if cc then Trap(disp(r,i)) else ()
rtl TICC ^^ [BN,BE, BLE,BL, BLEU,BCS,BNEG,BVS,
BA,BNE,BG, BGE,BGU, BCC,BPOS,BVC] =
map Ticc integer_tests
rtl TXCC ^^ [BN,BE, BLE,BL, BLEU,BCS,BNEG,BVS,
BA,BNE,BG, BGE,BGU, BCC,BPOS,BVC] =
map Txcc integer_tests
(* Jmps, calls and returns *)
rtl JMP{r,i} = Jmp(disp(r,i))
rtl JMPL{r,i,d,defs,uses} =
Call(disp(r,i)) ||
$r[d] := ??? ||
Kill $cellset[defs] ||
Use $cellset[uses]
rtl CALL{label,defs,uses} =
Call(%%label) ||
Kill $cellset[defs] ||
Use $cellset[uses]
rtl RET{} = Ret
end (* RTL *)
structure Instruction =
struct
datatype load : op3! = LDSB 0b001001
| LDSH 0b001010
| LDUB 0b000001
| LDUH 0b000010
| LD 0b000000
| LDX 0b001011 (* v9 *)
| LDD 0b000011
datatype store : op3! = STB 0b000101
| STH 0b000110
| ST 0b000100
| STX 0b001110 (* v9 *)
| STD 0b000111
datatype fload : op3! = LDF 0b100000
| LDDF 0b100011
| LDQF 0b100010 (* v9 *)
| LDFSR 0b100001 (* rd = 0 *)
| LDXFSR 0b100001 (* v9 *) (* rd = 1 *)
datatype fstore : op3! = STF 0b100100
| STDF 0b100111
| STFSR 0b100101
datatype arith : op3! = AND 0b000001
| ANDCC 0b010001
| ANDN 0b000101
| ANDNCC 0b010101
| OR 0b000010
| ORCC 0b010010
| ORN 0b000110
| ORNCC 0b010110
| XOR 0b000011
| XORCC 0b010011
| XNOR 0b000111
| XNORCC 0b010111
| ADD 0b000000
| ADDCC 0b010000
| TADD 0b100000
| TADDCC 0b110000
| TADDTV 0b100010
| TADDTVCC 0b110010
| SUB 0b000100
| SUBCC 0b010100
| TSUB 0b100001
| TSUBCC 0b110001
| TSUBTV 0b100011
| TSUBTVCC 0b110011
| UMUL 0b001010
| UMULCC 0b011010
| SMUL 0b001011
| SMULCC 0b011011
| UDIV 0b001110
| UDIVCC 0b011110
| SDIV 0b001111
| SDIVCC 0b011111
(* v9 extensions *)
| MULX 0b001001
| SDIVX 0b101101
| UDIVX 0b001101
(* op3, x *)
datatype shift : op3! = SLL (0wb100101,0w0)
| SRL (0wb100110,0w0)
| SRA (0wb100111,0w0)
(* v9 extensions *)
| SLLX (0wb100101,0w1)
| SRLX (0wb100110,0w1)
| SRAX (0wb100111,0w1)
datatype farith1 : opf! = FiTOs 0b011000100
| FiTOd 0b011001000
| FiTOq 0b011001100
| FsTOi 0b011010001
| FdTOi 0b011010010
| FqTOi 0b011010011
| FsTOd 0b011001001
| FsTOq 0b011010101
| FdTOs 0b011000110
| FdTOq 0b011001110
| FqTOs 0b011000111
| FqTOd 0b011001011
| FMOVs 0b000000001
| FNEGs 0b000000101
| FABSs 0b000001001
| FMOVd | FNEGd | FABSd (* composite instr *)
| FMOVq | FNEGq | FABSq (* composite instr *)
| FSQRTs 0b000101001
| FSQRTd 0b000101010
| FSQRTq 0b000101011
datatype farith2 :opf! = FADDs 0b001000001
| FADDd 0b001000010
| FADDq 0b001000011
| FSUBs 0b001000101
| FSUBd 0b001000110
| FSUBq 0b001000111
| FMULs 0b001001001
| FMULd 0b001001010
| FMULq 0b001001011
| FsMULd 0b001101001
| FdMULq 0b001101110
| FDIVs 0b001001101
| FDIVd 0b001001110
| FDIVq 0b001001111
datatype fcmp : opf! = FCMPs 0b001010001
| FCMPd 0b001010010
| FCMPq 0b001010011
| FCMPEs 0b001010101
| FCMPEd 0b001010110
| FCMPEq 0b001010111
datatype branch [0..15] : cond! =
BN "n"
| BE "e"
| BLE "le"
| BL "l"
| BLEU "leu"
| BCS "cs"
| BNEG "neg"
| BVS "vs"
| BA ""
| BNE "ne"
| BG "g"
| BGE "ge"
| BGU "gu"
| BCC "cc"
| BPOS "pos"
| BVC "vs"
datatype rcond! = (* V9 integer conditions *)
RZ 0b001
| RLEZ 0b010
| RLZ 0b011
| RNZ 0b101
| RGZ 0b110
| RGEZ 0b111
datatype cc = (* V9 condition register *)
ICC 0b00
| XCC 0b10
datatype prediction! = (* V9 branch prediction bit *)
PT | PN
datatype fbranch [0..15] : cond! =
FBN
| FBNE
| FBLG
| FBUL
| FBL
| FBUG
| FBG
| FBU
| FBA "fb"
| FBE
| FBUE
| FBGE
| FBUGE
| FBLE
| FBULE
| FBO
datatype ea = Direct of $GP
| FDirect of $GP
| Displace of {base: $GP, disp: T.labexp, mem: Region.region}
(* used to encode the opf_low field V9 *)
datatype fsize! = S 0b00100
| D 0b00110
| Q 0b00111
datatype operand =
REG of $GP ``<GP>'' rtl: $r[GP]
| IMMED of int ``<int>'' rtl: immed int
| LAB of T.labexp ``<labexp>'' rtl: labexp
| LO of T.labexp ``%lo(<labexp>)'' rtl: lo(labexp)
| HI of T.labexp ``%hi(<labexp>)'' rtl: hi(labexp)
type addressing_mode = CellsBasis.cell * operand
end (* Instruction *)
functor Assembly(val V9 : bool) =
struct
(* Some helper functions for assembly generation *)
fun emit_leaf false = () | emit_leaf true = emit "l"
fun emit_nop false = () | emit_nop true = emit "\n\tnop"
fun emit_a false = () | emit_a true = emit ",a"
fun emit_cc false = () | emit_cc true = emit "cc"
end
instruction formats 32 bits
(* Extract the value of an operand *)
opn{i} =
let fun hi22 w = (itow w) ~>> 0w10
fun lo10 w = (itow w) at [0..9]
in case i of
I.REG rs2 => error "opn"
| I.IMMED i => itow i
| I.LAB l => itow(MLTreeEval.valueOf l)
| I.LO l => lo10(MLTreeEval.valueOf l)
| I.HI l => hi22(MLTreeEval.valueOf l)
end
(* basic formats, integer source registers, target type not determined.*)
| rr {op1:2, rd:5, op3:6, rs1:GP 5, i:1=0, asi:8=0, rs2:GP 5}
| ri {op1:2, rd:5, op3:6, rs1:GP 5, i:1=1, simm13:signed 13}
| rix{op1,op3,r,i,d} =
(case i of
I.REG rs2 => rr{op1,op3,rs1=r,rs2=rs2,rd=d}
| _ => ri{op1,op3,rs1=r,rd=d,simm13=opn{i}}
)
(* GP + imm/GP -> GP *)
| rir{op1,op3,r,i,d:GP} = rix{op1,op3,r,i,d}
(* GP + imm/GP -> FP *)
| rif{op1,op3,r,i,d:FP} = rix{op1,op3,r,i,d}
(* formats found in the Sparc architecture manual *)
| load{l:load,r,i,d} = rir{op1=0w3,op3=l,r,i,d} (* p90 *)
| store{s:store,r,i,d} = rir{op1=0w3,op3=s,r,i,d} (* p95 *)
| fload{l:fload,r,i,d} = rif{op1=0w3,op3=l,r,i,d} (* p92 *)
| fstore{s:fstore,r,i,d} = rif{op1=0w3,op3=s,r,i,d} (* p97 *)
| sethi {op1:2=0, rd:GP 5, op2:3=0b100, imm22:int signed 22} (* p104 *)
| NOP {op1:2=0, rd:5=0, op2:3=0b100, imm22:22=0} (* p105 *)
| unimp {op1:2=0, rd:5=0, op2:3=0, const22:int unsigned 22} (* p137 *)
| delay {nop} = if nop then NOP{} else () (* delay slot *)
| arith {a:arith,r,i,d} = (* p106 *)
rir{op1=0w2,op3=a,r,i,d}
| shiftr {op1:2=2, rd:5, op3:6, rs1:5, i:1=0, x:1, asi:7=0, rs2:GP 5}
| shifti {op1:2=2, rd:5, op3:6, rs1:5, i:1=1, x:1, asi:6=0, cnt:signed 6}
| shift {s:shift,r:GP,i,d:GP} =
let val (op3,x) = s
in case i of
I.REG rs2 => shiftr{op3,rs1=r,rs2=rs2,rd=d,x=x} (* p218 v9 *)
| _ => shifti{op3,rs1=r,cnt=opn{i},rd=d,x=x}
end
| save {r,i,d} = rir{op1=0w2,op3=0wb111100,r,i,d} (* p117 *)
| restore {r,i,d} = rir{op1=0w2,op3=0wb111101,r,i,d} (* p117 *)
| bicc{op1:2=0,a:bool 1, b:branch 4, op2:3=0b010, disp22:signed 22}
| fbfcc{op1:2=0,a:bool 1, b:fbranch 4, op2:3=0b110, disp22:signed 22}
| call {op1:2=1, disp30:signed 30} (* p125 *)
| jmpl {r,i,d} = rir{op1=0w2,op3=0wb111000,r,i,d} (* p126 *)
| jmp {r,i} = rix{op1=0w2,op3=0wb111000,r,i,d=0w0}
| ticcr {op1:2, rd:5, op3:6, rs1:GP 5, i:1=0, cc:cc 2, _:6=0, rs2:GP 5}
| ticci {op1:2, rd:5, op3:6, rs1:GP 5, i:1=1, cc:cc 2, _:4=0,
sw_trap:signed 7}
| ticcx{op1,op3,cc,r,i,d} =
(case i of
I.REG rs2 => ticcr{op1,op3,cc,rs1=r,rs2=rs2,rd=d}
| _ => ticci{op1,op3,cc,rs1=r,rd=d,sw_trap=opn{i}}
)
| ticc {t:branch,cc,r,i} =
ticcx{op1=0w2,d=t,op3=0wb111010,cc,r,i} (* p237 (V9) *)
| rdy {op2:2=2,d:GP 5,op3:6=0b101000,rs1:5=0,x:0..13=0} (* p131 *)
| wdy {r,i} = rix{op1=0w2,op3=0wb110000,r,i,d=0w0} (* p133 *)
(* one input floating point format *)
| fop_1 {op1:2=2, d:5, op3:6=0b110100, rs1:5=0, a:9, r:5}
| fop1 {a:farith1,r:FP,d:FP} = fop_1{a,r,d}
(* generate composite instruction *)
| fdouble{a:farith1,r:FP,d:FP} =
(fop_1{a,r,d};
fop_1{a=0w1,r=r+0w1,d=d+0w1}
)
| fquad{a:farith1,r:FP,d:FP} =
(fop_1{a,r,d};
fop_1{a=0w1,r=r+0w1,d=d+0w1};
fop_1{a=0w1,r=r+0w2,d=d+0w2};
fop_1{a=0w1,r=r+0w3,d=d+0w3}
)
(* two inputs floating point format *)
| fop2 {op1:2=2, d:FP 5, op3:6=0b110100, r1:FP 5, a:farith2 9, r2:FP 5}
| fcmp {op1:2=2, rd:25..29=0, op3:6=0b110101, rs1:FP 5, opf:fcmp 9,rs2:FP 5}
(* conditional moves formats (V9) *)
| cmovr{op1:2=2,op3:6,rd:5,cc2:1,cond:4,i:1=0,cc1:1,cc0:1,_:6=0,rs2:5}
| cmovi{op1:2=2,op3:6,rd:5,cc2:1,cond:4,i:1=1,cc1:1,cc0:1,simm11:signed 11}
| cmov{op3,cond,cc2,cc1,cc0,i,rd} =
(case i of
I.REG rs2 => cmovr{op3,cond,rs2=emit_GP rs2,rd,cc0,cc1,cc2}
| _ => cmovi{op3,cond,rd,cc0,cc1,cc2,simm11=opn{i}}
)
| movicc {b:branch,i,d:GP} =
cmov{op3=0wb101100,cond=b,i,rd=d,cc2=0w1,cc1=0w0,cc0=0w0}
| movfcc {b:fbranch,i,d:GP} = (* use fcc0 *)
cmov{op3=0wb101100,cond=b,i,rd=d,cc2=0w0,cc1=0w0,cc0=0w0}
| fmovicc{sz:fsize,b:branch,r:FP,d:FP} =
cmovr{op3=0wb101100,cond=b,rs2=r,rd=d,cc2=0w1,cc1=0w0,cc0=0w0}
| fmovfcc{sz:fsize,b:fbranch,r:FP,d:FP} = (* use fcc0 *)
cmovr{op3=0wb101100,cond=b,rs2=r,rd=d,cc2=0w0,cc1=0w0,cc0=0w0}
(* move integer register on register condition format *)
| movrr {op1:2=2, rd:GP 5, op3:6=0b101111, rs1:GP 5, i:1=0, rcond:3,
asi:5=0, rs2:GP 5}
| movri {op1:2=2, rd:GP 5, op3:6=0b101111, rs1:GP 5, i:1=1, rcond:3,
simm10:signed 10}
| movr{rcond:rcond,r,i,d} =
(case i of
I.REG rs2 => movrr{rcond,rs1=r,rs2=rs2,rd=d}
| _ => movri{rcond,rs1=r,rd=d,simm10=opn{i}}
)
structure MC =
struct
(* this computes the displacement address *)
fun disp label = itow((Label.addrOf label - !loc)) ~>> 0w2
val r15 = C.Reg CellsBasis.GP 15
and r31 = C.Reg CellsBasis.GP 31
end
(*
* Reservation tables and pipeline definitions for scheduling
*)
(* Function units *)
resource issue and mem and alu and falu and fmul and fdiv and branch
(* Different implementations of cpus *)
cpu default 2 [2 issue, 2 mem, 1 alu] (* 2 issue machine *)
(* Definitions of various reservation tables *)
pipeline NOP _ = [issue]
and ARITH _ = [issue^^alu]
and LOAD _ = [issue^^mem]
and STORE _ = [issue^^mem,mem,mem]
and FARITH _ = [issue^^falu]
and FMUL _ = [issue^^fmul,fmul]
and FDIV _ = [issue^^fdiv,fdiv*50]
and BRANCH _ = [issue^^branch]
(*
* Notation:
* r -- source register
* i -- source operand (immed or register)
* d -- destination register (or data register in store instructions)
*)
instruction
LOAD of { l:load, d: $GP, r: $GP, i:operand, mem:Region.region }
asm: ``<l>\t[<r>+<i>], <d><mem>''
mc: load{l,r,i,d}
rtl: ``<l>''
latency: 1
| STORE of { s:store, d: $GP, r: $GP, i:operand, mem:Region.region }
asm: ``<s>\t<d>, [<r>+<i>]<mem>''
mc: store{s,r,i,d}
rtl: ``<s>''
| FLOAD of { l:fload, r: $GP, i:operand, d: $FP, mem:Region.region }
asm: ``<l>\t[<r>+<i>], <d><mem>''
mc: fload{l,r,i,d}
rtl: ``<l>''
latency: 1
| FSTORE of { s:fstore, d: $FP, r: $GP, i:operand, mem:Region.region }
asm: ``<s>\t[<r>+<i>], <d><mem>''
mc: fstore{s,r,i,d}
rtl: ``<s>''
| UNIMP of { const22: int }
asm: ``unimp <const22>''
mc: unimp{const22}
| SETHI of { i:int, d: $GP }
asm: let val i = Word32.toString(Word32.<<(Word32.fromInt i,0w10))
in ``sethi\t%hi(0x<emit i>), <d>''
end
mc: sethi{imm22=i,rd=d}
rtl: ``SETHI''
| ARITH of { a:arith, r: $GP, i:operand, d: $GP }
asm: (case (a,CellsBasis.registerId r,CellsBasis.registerId d, i) of
(* generate abbreviations! *)
(I.OR,0,_,I.REG _) => ``mov\t<i>, <d>''
| (I.OR,0,_,_) => ``set\t<i>, <d>''
| (I.SUBCC,_,0,_) => ``cmp\t<r>, <i>''
| _ => ``<a>\t<r>, <i>, <d>''
)
mc: arith{a,r,i,d}
rtl: (case (a,CellsBasis.registerId r) of
(I.OR, 0) => ``<li>''
| _ => ``<a>''
)
| SHIFT of { s:shift, r: $GP, i:operand, d: $GP }
asm: ``<s>\t<r>, <i>, <d>''
mc: shift{s,r,i,d}
rtl: ``<s>''
(* Conditional moves! *)
| MOVicc of {b:branch, i:operand, d: $GP } (* V9 *)
asm: ``mov<b>\t<i>, <d>''
mc: movicc{b,i,d}
| MOVfcc of {b:fbranch, i:operand, d: $GP } (* V9 *)
asm: ``mov<b>\t<i>, <d>''
mc: movfcc{b,i,d}
| MOVR of {rcond:rcond, r: $GP, i: operand, d: $GP} (* V9 *)
asm: ``movr<rcond>\t<r>, <i>, <d>''
mc: movr{rcond,r,i,d}
| FMOVicc of {sz:fsize, b:branch, r: $FP, d: $FP } (* V9 *)
asm: ``fmov<sz><b>\t<r>, <d>''
mc: fmovicc{sz,b,r,d}
| FMOVfcc of {sz:fsize, b:fbranch, r: $FP, d: $FP } (* V9 *)
asm: ``fmov<sz><b>\t<r>, <d>''
mc: fmovfcc{sz,b,r,d}
| Bicc of { b:branch, a:bool, label:Label.label, nop:bool}
asm: ``b<b><a>\t<label><nop>''
mc: (bicc{b,a,disp22=disp label}; delay{nop})
rtl: ``<b>''
padding: nop = true
nullified: a = true and (case b of I.BA => false | _ => true)
delayslot candidate: false
| FBfcc of { b:fbranch, a:bool, label:Label.label, nop:bool }
asm: ``<b><a>\t<label><nop>''
mc: (fbfcc{b,a,disp22=disp label}; delay{nop})
rtl: ``<b>''
padding: nop = true
nullified: a = true
delayslot candidate: false
(* V9 branch on condition in integer register *)
| BR of {rcond:rcond, p:prediction, r: $GP, a:bool,
label:Label.label, nop:bool}
asm: ``b<rcond><a><p>\t<r>, <label><nop>''
(* V9 branch on integer condition code with prediction *)
| BP of {b:branch, p:prediction, cc:cc, a:bool, label:Label.label,nop:bool}
asm: ``bp<b><a><p>\t%<emit(if cc = I.ICC then "i" else "x")>cc, <label><nop>''
| JMP of { r: $GP, i:operand, labs : Label.label list, nop:bool}
asm: ``jmp\t<r>+<i><nop>''
mc: (jmp{r,i}; delay{nop})
rtl: ``JMP''
padding: nop = true
nullified: false
delayslot candidate: false
| JMPL of { r: $GP, i:operand, d: $GP,
defs: $cellset, uses: $cellset,
cutsTo : Label.label list, nop:bool, mem:Region.region
}
asm: ``jmpl\t<r>+<i>, <d><mem><emit_defs defs><emit_uses uses><emit_cutsTo cutsTo><nop>''
mc: (jmpl{r,i,d}; delay{nop})
rtl: ``JMPL''
padding: nop = true
nullified: false
delayslot candidate: false
| CALL of { defs: $cellset, uses: $cellset,
label:Label.label, cutsTo:Label.label list,
nop:bool, mem:Region.region
}
asm: ``call\t<label><mem><emit_defs(defs)><emit_uses(uses)><emit_cutsTo cutsTo><nop>''
mc: (call{disp30=disp label}; delay{nop})
rtl: ``CALL''
padding: nop
nullified: false
delayslot candidate: false
(* Note, for V8 the cc bit must be ICC *)
| Ticc of { t:branch, cc:cc, r: $GP, i:operand}
asm: ``t<t>\t<if cc = I.ICC then () else emit "%xcc, "><r>+<i>''
mc: ticc{t,r,cc,i}
rtl: ``T<cc><t>''
delayslot candidate: false
| FPop1 of { a:farith1, r: $FP, d: $FP }
asm: let fun f(a,r,d) =
(emit(a); emit "\t";
emit(C.showFP r);
emit ", ";
emit(C.showFP d))
fun g(a,r,d) =
let val r = CellsBasis.registerNum r and d = CellsBasis.registerNum d
in f(a,r,d); emit "\n\t";
f("fmovs",r+1,d+1)
end
fun h(a,r,d) =
let val r = CellsBasis.registerNum r and d = CellsBasis.registerNum d
in f(a,r,d); emit "\n\t";
f("fmovs",r+1,d+1); emit "\n\t";
f("fmovs",r+2,d+2); emit "\n\t";
f("fmovs",r+3,d+3)
end
in if V9 then ``<a>\t<r>, <d>''
else
case a of
I.FMOVd => g("fmovs",r,d)
| I.FNEGd => g("fnegs",r,d)
| I.FABSd => g("fabss",r,d)
| I.FMOVq => h("fmovs",r,d)
| I.FNEGq => h("fnegs",r,d)
| I.FABSq => h("fabss",r,d)
| _ => ``<a>\t<r>, <d>''
end
mc: (case a of
(* composite instructions *)
I.FMOVd => fdouble{a=I.FMOVs,r,d}
| I.FNEGd => fdouble{a=I.FNEGs,r,d}
| I.FABSd => fdouble{a=I.FABSs,r,d}
| I.FMOVq => fquad{a=I.FMOVs,r,d}
| I.FNEGq => fquad{a=I.FNEGs,r,d}
| I.FABSq => fquad{a=I.FABSs,r,d}
| _ => fop1{a,r,d}
)
rtl: ``<a>''
| FPop2 of { a:farith2, r1: $FP, r2: $FP, d: $FP }
asm: ``<a>\t<r1>, <r2>, <d>''
mc: fop2{a,r1,r2,d}
rtl: ``<a>''
| FCMP of { cmp:fcmp, r1: $FP, r2: $FP, nop:bool }
asm: ``<cmp>\t<r1>, <r2><nop>''
mc: (fcmp{opf=cmp,rs1=r1,rs2=r2}; delay{nop})
rtl: ``<cmp>''
padding: nop = true
nullified: false
delayslot candidate: false
latency: 1
| SAVE of {r: $GP, i:operand, d: $GP}
asm: ``save\t<r>, <i>, <d>''
mc: save{r,i,d}
| RESTORE of {r: $GP, i:operand, d: $GP}
asm: ``restore\t<r>, <i>, <d>''
mc: restore{r,i,d}
| RDY of {d: $GP}
asm: ``rd\t%y, <d>''
mc: rdy{d}
rtl: ``RDY''
| WRY of {r: $GP,i:operand}
asm: ``wr\t<r>, <i>, %y''
mc: wdy{r,i}
rtl: ``WRY''
| RET of {leaf:bool,nop:bool}
asm: ``ret<leaf><nop>''
mc: (jmp{r=if leaf then r31 else r15,i=I.IMMED 8}; delay{nop})
rtl: ``RET''
padding: nop = true
nullified: false
| SOURCE of {}
asm: ``source''
mc: ()
| SINK of {}
asm: ``sink''
mc: ()
| PHI of {}
asm: ``phi''
mc: ()
structure SSA =
struct
fun operand(ty,I.REG r) = T.REG(ty, r)
| operand(ty,I.IMMED i) = T.LI(IntInf.fromInt i)
(*| operand(ty,I.LAB le) = T.LABEL le*)
| operand(ty,_) = error "operand"
end
end
|