1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
|
(* x86-fp.sml
*
* COPYRIGHT (c) 2001 Bell Labs, Lucent Technologies
*
* This phase takes a cluster with pseudo x86 fp instructions, performs
* liveness analysis to determine their live ranges, and rewrite the
* program into the correct stack based code.
*
* The Basics
* ----------
* o We assume there are 7 pseudo fp registers, %fp(0), ..., %fp(6),
* which are mapped onto the %st stack. One stack location is reserved
* for holding temporaries.
* o Important: for floating point comparisons, we actually need
* two extra stack locations in the worst case. We handle this by
* specifying that the instruction define an extra temporary fp register
* when necessary.
* o The mapping between %fp <-> %st may change from program point to
* program point. We keep track of this lazy renaming and try to minimize
* the number of FXCH that we insert.
* o At split and merge points, we may get inconsistent %fp <-> %st mappings.
* We handle this by inserting the appropriate renaming code.
* o Parallel copies (renaming) are rewritten into a sequence of FXCHs!
*
* Pseudo fp instructions Semantics
* --------------------------------------
* FMOVE src, dst dst := src
* FILOAD ea, dst dst := cvti2f(mem[ea])
* FBINOP lsrc, rsrc, dst dst := lsrc * rsrc
* FIBINOP lsrc, rsrc, dst dst := lsrc * cvti2f(rsrc)
* FUNOP src, dst dst := unaryOp src
* FCMP lsrc, rsrc fp condition code := fcmp(lsrc, rsrc)
*
* An instruction may use its source operand(s) destructively.
* We find this info using a global liveness analysis.
*
* The Translation
* ---------------
* o We keep track of the bindings between %fp registers and the
* %st(..) staack locations.
* o FXCH and FLDL are inserted at the appropriate places to move operands
* to %st(0). FLDL is used if the operand is not dead. FXCH is used
* if the operand is the last use.
* o FCOPY's between pseudo %fp registers are done by software renaming
* and generate no code by itself!
* o FSTL %st(1) are also generated to pop the stack after the last use
* of an operand.
*
* Note
* ----
* 1. This module should be run after floating point register allocation.
*
* -- Allen Leung (leunga@cs.nyu.edu)
*)
functor X86FP
(structure X86Instr : X86INSTR
structure X86Props : INSN_PROPERTIES (* where I = X86Instr *)
where type I.addressing_mode = X86Instr.addressing_mode
and type I.ea = X86Instr.ea
and type I.instr = X86Instr.instr
and type I.instruction = X86Instr.instruction
and type I.operand = X86Instr.operand
structure Flowgraph : CONTROL_FLOW_GRAPH (* where I = X86Instr *)
where type I.addressing_mode = X86Instr.addressing_mode
and type I.ea = X86Instr.ea
and type I.instr = X86Instr.instr
and type I.instruction = X86Instr.instruction
and type I.operand = X86Instr.operand
structure Liveness : LIVENESS (* where CFG = Flowgraph *)
where type CFG.I.addressing_mode = Flowgraph.I.addressing_mode
and type CFG.I.ea = Flowgraph.I.ea
and type CFG.I.instr = Flowgraph.I.instr
and type CFG.I.instruction = Flowgraph.I.instruction
and type CFG.I.operand = Flowgraph.I.operand
and type CFG.P.Client.pseudo_op = Flowgraph.P.Client.pseudo_op
and type CFG.P.T.Basis.cond = Flowgraph.P.T.Basis.cond
and type CFG.P.T.Basis.div_rounding_mode = Flowgraph.P.T.Basis.div_rounding_mode
and type CFG.P.T.Basis.ext = Flowgraph.P.T.Basis.ext
and type CFG.P.T.Basis.fcond = Flowgraph.P.T.Basis.fcond
and type CFG.P.T.Basis.rounding_mode = Flowgraph.P.T.Basis.rounding_mode
and type CFG.P.T.Constant.const = Flowgraph.P.T.Constant.const
and type ('s,'r,'f,'c) CFG.P.T.Extension.ccx = ('s,'r,'f,'c) Flowgraph.P.T.Extension.ccx
and type ('s,'r,'f,'c) CFG.P.T.Extension.fx = ('s,'r,'f,'c) Flowgraph.P.T.Extension.fx
and type ('s,'r,'f,'c) CFG.P.T.Extension.rx = ('s,'r,'f,'c) Flowgraph.P.T.Extension.rx
and type ('s,'r,'f,'c) CFG.P.T.Extension.sx = ('s,'r,'f,'c) Flowgraph.P.T.Extension.sx
and type CFG.P.T.I.div_rounding_mode = Flowgraph.P.T.I.div_rounding_mode
and type CFG.P.T.Region.region = Flowgraph.P.T.Region.region
and type CFG.P.T.ccexp = Flowgraph.P.T.ccexp
and type CFG.P.T.fexp = Flowgraph.P.T.fexp
(* and type CFG.P.T.labexp = Flowgraph.P.T.labexp *)
and type CFG.P.T.mlrisc = Flowgraph.P.T.mlrisc
and type CFG.P.T.oper = Flowgraph.P.T.oper
and type CFG.P.T.rep = Flowgraph.P.T.rep
and type CFG.P.T.rexp = Flowgraph.P.T.rexp
and type CFG.P.T.stm = Flowgraph.P.T.stm
and type CFG.block = Flowgraph.block
and type CFG.block_kind = Flowgraph.block_kind
and type CFG.edge_info = Flowgraph.edge_info
and type CFG.edge_kind = Flowgraph.edge_kind
and type CFG.info = Flowgraph.info
structure Asm : INSTRUCTION_EMITTER (* where I = X86Instr and S.P = Flowgraph.P *)
where type I.addressing_mode = X86Instr.addressing_mode
and type I.ea = X86Instr.ea
and type I.instr = X86Instr.instr
and type I.instruction = X86Instr.instruction
and type I.operand = X86Instr.operand
where type S.P.Client.pseudo_op = Flowgraph.P.Client.pseudo_op
and type S.P.T.Basis.cond = Flowgraph.P.T.Basis.cond
and type S.P.T.Basis.div_rounding_mode = Flowgraph.P.T.Basis.div_rounding_mode
and type S.P.T.Basis.ext = Flowgraph.P.T.Basis.ext
and type S.P.T.Basis.fcond = Flowgraph.P.T.Basis.fcond
and type S.P.T.Basis.rounding_mode = Flowgraph.P.T.Basis.rounding_mode
and type S.P.T.Constant.const = Flowgraph.P.T.Constant.const
and type ('s,'r,'f,'c) S.P.T.Extension.ccx = ('s,'r,'f,'c) Flowgraph.P.T.Extension.ccx
and type ('s,'r,'f,'c) S.P.T.Extension.fx = ('s,'r,'f,'c) Flowgraph.P.T.Extension.fx
and type ('s,'r,'f,'c) S.P.T.Extension.rx = ('s,'r,'f,'c) Flowgraph.P.T.Extension.rx
and type ('s,'r,'f,'c) S.P.T.Extension.sx = ('s,'r,'f,'c) Flowgraph.P.T.Extension.sx
and type S.P.T.I.div_rounding_mode = Flowgraph.P.T.I.div_rounding_mode
and type S.P.T.Region.region = Flowgraph.P.T.Region.region
and type S.P.T.ccexp = Flowgraph.P.T.ccexp
and type S.P.T.fexp = Flowgraph.P.T.fexp
(* and type S.P.T.labexp = Flowgraph.P.T.labexp *)
and type S.P.T.mlrisc = Flowgraph.P.T.mlrisc
and type S.P.T.oper = Flowgraph.P.T.oper
and type S.P.T.rep = Flowgraph.P.T.rep
and type S.P.T.rexp = Flowgraph.P.T.rexp
and type S.P.T.stm = Flowgraph.P.T.stm
) : CFG_OPTIMIZATION =
struct
val debug = false (* set this to true to debug this module
* set this to false for production use.
*)
val debugLiveness = true (* debug liveness analysis *)
val debugDead = false (* debug dead code removal *)
val sanityCheck = true
structure CFG = Flowgraph
structure G = Graph
structure I = X86Instr
structure T = I.T
structure P = X86Props
structure C = I.C
structure A = Array
structure L = Label
structure An = Annotations
structure CB = CellsBasis
structure SL = CB.SortedCells
structure HT = IntHashTable
structure IM = IntRedBlackMap
type flowgraph = CFG.cfg
type an = An.annotations
val name = "X86 floating point rewrite"
val debugOn = MLRiscControl.mkFlag ("x86-fp-debug", "x86 fp debug mode")
val traceOn = MLRiscControl.mkFlag ("x86-fp-trace", "x86 fp trace mode")
fun error msg = MLRiscErrorMsg.error("X86FP",msg)
fun pr msg = TextIO.output(!MLRiscControl.debug_stream,msg)
val i2s = Int.toString
(*
* No overflow checking is needed for integer arithmetic in this module
*)
fun celllistToCellset l = List.foldr CB.CellSet.add CB.CellSet.empty l
fun celllistToString l = CB.CellSet.toString(celllistToCellset l)
(* Annotation to mark split edges *)
exception TargetMovedTo of G.node_id
(*-----------------------------------------------------------------------
* Primitive instruction handling routines
*-----------------------------------------------------------------------*)
(* Annotation an instruction *)
fun mark(instr, []) = instr
| mark(instr, a::an) = mark(I.ANNOTATION{i=instr,a=a}, an)
(* Add pop suffix to a binary operator *)
fun pop I.FADDL = I.FADDP | pop I.FADDS = I.FADDP
| pop I.FSUBL = I.FSUBP | pop I.FSUBS = I.FSUBP
| pop I.FSUBRL = I.FSUBRP | pop I.FSUBRS = I.FSUBRP
| pop I.FMULL = I.FMULP | pop I.FMULS = I.FMULP
| pop I.FDIVL = I.FDIVP | pop I.FDIVS = I.FDIVP
| pop I.FDIVRL = I.FDIVRP | pop I.FDIVRS = I.FDIVRP
| pop _ = error "fbinop.pop"
(* Invert the operator *)
fun invert I.FADDL = I.FADDL | invert I.FADDS = I.FADDS
| invert I.FSUBL = I.FSUBRL | invert I.FSUBS = I.FSUBRS
| invert I.FSUBRL = I.FSUBL | invert I.FSUBRS = I.FSUBS
| invert I.FMULL = I.FMULL | invert I.FMULS = I.FMULS
| invert I.FDIVL = I.FDIVRL | invert I.FDIVS = I.FDIVRS
| invert I.FDIVRL = I.FDIVL | invert I.FDIVRS = I.FDIVS
| invert I.FADDP = I.FADDP | invert I.FMULP = I.FMULP
| invert I.FSUBP = I.FSUBRP | invert I.FSUBRP = I.FSUBP
| invert I.FDIVP = I.FDIVRP | invert I.FDIVRP = I.FDIVP
| invert _ = error "invert"
(* Pseudo instructions *)
fun FLD(I.FP32, ea) = I.flds ea
| FLD(I.FP64, ea) = I.fldl ea
| FLD(I.FP80, ea) = I.fldt ea
fun FILD(I.I8, ea) = error "FILD"
| FILD(I.I16, ea) = I.fild ea
| FILD(I.I32, ea) = I.fildl ea
| FILD(I.I64, ea) = I.fildll ea
fun FSTP(I.FP32, ea) = I.fstps ea
| FSTP(I.FP64, ea) = I.fstpl ea
| FSTP(I.FP80, ea) = I.fstpt ea
fun FST(I.FP32, ea) = I.fsts ea
| FST(I.FP64, ea) = I.fstl ea
| FST(I.FP80, ea) = error "FSTT"
(*-----------------------------------------------------------------------
* Pretty print routines
*-----------------------------------------------------------------------*)
fun fregToString f = "%f"^i2s(CB.registerNum f)
fun fregsToString s =
List.foldr (fn (r,"") => fregToString r |
(r,s) => fregToString r^" "^s) "" s
fun blknumOf(CFG.BLOCK{id, ...}) = id
(*-----------------------------------------------------------------------
* A stack datatype that mimics the x86 floating point stack
* and keeps track of bindings between %st(n) and %fp(n).
*-----------------------------------------------------------------------*)
structure ST :>
sig
type stack
type stnum = int (* 0 -- 7 *)
val create : unit -> stack
val stack0 : stack
val copy : stack -> stack
val clear : stack -> unit
val fp : stack * CB.register_id -> stnum
val st : stack * stnum -> CB.register_id
val set : stack * stnum * CB.register_id -> unit
val push : stack * CB.register_id -> unit
val xch : stack * stnum * stnum -> unit
val pop : stack -> unit
val depth : stack -> int
val nonFull : stack -> unit
val kill : stack * CellsBasis.cell -> unit
val stackToString : stack -> string
val equal : stack * stack -> bool
end =
struct
type stnum = int
datatype stack =
STACK of
{ st : CB.register_id A.array, (* mapping %st -> %fp registers *)
fp : stnum A.array, (* mapping %fp -> %st registers *)
sp : int ref (* stack pointer *)
}
(* Create a new stack *)
fun create() = STACK{st=A.array(8,~1), fp=A.array(7,16), sp=ref ~1}
val stack0 = create()
(* Copy a stack *)
fun copy(STACK{st, fp, sp}) =
let val st' = A.array(8, ~1)
val fp' = A.array(7, 16)
in A.copy{src=st,dst=st',di=0};
A.copy{src=fp,dst=fp',di=0};
STACK{st=st', fp=fp', sp=ref(!sp)}
end
(* Depth of stack *)
fun depth(STACK{sp, ...}) = !sp + 1
fun nonFull(STACK{sp, ...}) =
if !sp >= 7 then error "stack overflow" else ()
(* Given %st(n), lookup the corresponding %fp(n) *)
fun st(STACK{st, sp, ...}, n) = A.sub(st, !sp - n)
(* Given %fp(n), lookup the corresponding %st(n) *)
fun fp(STACK{fp, sp, ...}, n) = !sp - A.sub(fp, n)
fun stackToString stack =
let val depth = depth stack
fun f i = if i >= depth then " ]"
else "%st("^i2s i^")=%f"^i2s(st(stack,i))^" "^f(i+1)
in "[ "^f 0 end
fun clear(STACK{st, fp, sp, ...}) =
(sp := ~1; A.modify(fn _ => ~1) st; A.modify(fn _ => 16) fp)
(* Set %st(n) := %f *)
fun set(STACK{st, fp, sp, ...}, n, f) =
(A.update(st, !sp - n, f);
if f >= 0 then A.update(fp, f, !sp - n) else ()
)
(* Pop one entry *)
fun pop(STACK{sp, st, fp, ...}) = sp := !sp - 1
(* Push %fp(f) onto %st(0) *)
fun push(stack as STACK{sp, ...}, f) = (sp := !sp + 1; set(stack, 0, f))
(* Exchange the contents of %st(m) and %st(n) *)
fun xch(stack, m, n) =
let val f_m = st(stack, m)
val f_n = st(stack, n)
in set(stack, m, f_n);
set(stack, n, f_m)
end
fun kill(STACK{fp, ...}, f) = A.update(fp, CB.registerNum f, 16)
fun equal(st1, st2) =
let val m = depth st1
val n = depth st2
fun loop i =
i >= m orelse (st(st1, i) = st(st2, i) andalso loop(i+1))
in m = n andalso loop(0)
end
end (* struct *)
(*-----------------------------------------------------------------------
* Module to handle forward propagation.
* Forward propagation does the following:
* Given an instruction
* fmove mem, %fp(n)
* We delay the generation of the load until the first use of %fp(n),
* which we can further optimize by folding the load into the operand
* of the instruction, if it is the last use of this operand.
* If %fp(n) is dead then no load is necessary.
* Of course, we have to be careful whenever we encounter other
* instruction with a write.
*-----------------------------------------------------------------------*)
(*
structure ForwardPropagation :>
sig
type readbuffer
val create : ST.stack -> readbuffer
val load : readbuffer * C.cell * I.fsize * I.ea -> unit
val getreg : readbuffer * bool * C.cell * I.instruction list ->
I.operand * I.instruction list
val flush : readbuffer * I.instruction list -> I.instruction list
end =
struct
datatype readbuffer =
READ of { stack : ST.stack,
loads : (I.fsize * I.ea) option A.array,
pending : int ref
}
fun create stack =
READ{stack =stack,
loads =A.array(8, NONE),
pending =ref 0
}
fun load(READ{pending, loads, ...}, fd, fsize, mem) =
(A.update(loads, fd, SOME(fsize, mem));
pending := !pending + 1
)
(* Extract the operand for a register
* If it has a delayed load associated with it then
* we perform the load at this time.
*)
fun getreg(READ{pending, loads, stack, ...}, isLastUse, fs, code) =
case A.sub(loads, fs) of
NONE =>
let val n = ST.st(stack, fs)
in if isLastUse
then (ST n, code)
else let val code = I.FLDL(ST n)::code
in ST.push(stack, fs); (ST0, code)
end
end
| SOME(fsize, mem) =>
let val code = FLD(fsize, mem)::code
in A.update(loads, fs, NONE); (* delete load *)
pending := !pending - 1;
ST.push(stack, fs); (* fs is now in place *)
(ST0, code)
end
(* Extract a binary operand.
* We'll try to fold this into the operand
*)
fun getopnd(READ{pending, loads, stack,...}, isLastUse, I.FPR fs, code) =
(case A.sub(loads, fs) of
NONE =>
let val n = ST.st(stack, fs)
in if isLastUse fs (* regmap XXX *)
then (ST n, code)
else let val code = I.FLDL(ST n)::code
in ST.push(stack, fs); (ST0, code)
end
end
| SOME(fsize, mem) =>
(A.update(loads, fs, NONE); (* delete load *)
pending := !pending - 1;
if isLastUse fs then (mem, code)
else let val code = FLD(fsize, mem)::code
in ST.push(stack, fs);
(ST0, code)
end
)
)
| getopnd(_, _, ea, code) = (ea, code)
fun flush(READ{pending=ref 0,...}, code) = code
end (* struct *)
*)
(*-----------------------------------------------------------------------
* Module to handle delayed stores.
* Delayed store does the following:
* Given an instruction
* fstore %fp(n), %mem
* We delay the generation of the store until necessary.
* This gives us an opportunity to rearrange the order of the stores
* to eliminate unnecessary fxch.
*-----------------------------------------------------------------------*)
(*
structure DelayStore :>
sig
type writebuffer
val create : ST.stack -> writebuffer
val flush : writebuffer * I.instruction list -> I.instruction list
end =
struct
datatype writebuffer =
WRITE of { front : (I.ea * C.cell) list ref,
back : (I.ea * C.cell) list ref,
stack : ST.stack,
pending : int ref
}
fun create stack = WRITE{front=ref [], back=ref [],
stack=stack, pending=ref 0}
fun flush(WRITE{pending=ref 0,...}, code) = code
end (* struct *)
*)
(*-----------------------------------------------------------------------
* Main routine.
*
* Algorithm:
* 1. Perform liveness analysis.
* 2. For each fp register, mark all its last use point(s).
* Registers are popped at their last uses.
* 3. Rewrite the instructions basic block by basic block.
* 4. Insert shuffle code at basic block boundaries.
* When necessary, split critical edges.
* 5. Sacrifice a goat to make sure things don't go wrong.
*-----------------------------------------------------------------------*)
fun run(Cfg as G.GRAPH cfg) =
let
val numberOfBlks = #capacity cfg ()
val ENTRY = List.hd (#entries cfg ())
val EXIT = List.hd (#exits cfg ())
val getCell = C.getCellsByKind CB.FP
(*extract the fp component of cellset*)
val stTable = A.tabulate(8, fn n => I.ST(C.ST n))
fun ST n = (if sanityCheck andalso (n < 0 orelse n >= 8) then
pr("WARNING BAD %st("^i2s n^")\n")
else ();
A.sub(stTable, n)
)
fun FXCH n = I.fxch{opnd=C.ST n}
val ST0 = ST 0
val ST1 = ST 1
val POP_ST = I.fstpl ST0 (* Instruction to pop an entry *)
(* Dump instructions *)
fun dump instrs =
let val Asm.S.STREAM{emit, ...} =
AsmStream.withStream (!MLRiscControl.debug_stream)
Asm.makeStream []
in app emit (rev instrs)
end
(* Create assembly of instruction *)
fun assemble instr =
let val buf = StringOutStream.mkStreamBuf()
val stream = StringOutStream.openStringOut buf
val Asm.S.STREAM{emit, ...} =
AsmStream.withStream stream Asm.makeStream []
val _ = emit instr
val s = StringOutStream.getString buf
val n = String.size s
in if n = 0 then s else String.substring(s, 0, n - 1)
end
(*------------------------------------------------------------------
* Perform liveness analysis on the floating point variables
* P.S. I'm glad I didn't throw away the code liveness code.
*------------------------------------------------------------------*)
val defUse = P.defUse CB.FP (* def/use properties *)
val {liveIn=liveInTable, liveOut=liveOutTable} = Liveness.liveness {
defUse=defUse,
(* updateCell=C.updateCellsByKind CB.FP, *)
getCell=getCell
} Cfg
(*------------------------------------------------------------------
* Scan the instructions compute the last uses and dead definitions
* at each program point. Ideally we can do this during the code
* rewriting phase. But that's probably too error prone for now.
*------------------------------------------------------------------*)
fun computeLastUse(blknum, insns, liveOut) =
let fun scan([], _, lastUse) = lastUse
| scan(i::instrs, live, lastUse) =
let val (d, u) = defUse i
val d = SL.uniq(d)(* definitions *)
val u = SL.uniq(u)(* uses *)
val dead = SL.return(SL.difference(d, live))
val live = SL.difference(live, d)
val last = SL.return(SL.difference(u, live))
val live = SL.union(live, u)
val _ =
if debug andalso debugLiveness then
(case last of
[] => ()
| _ => print(assemble i^"\tlast use="^
fregsToString last^"\n")
)
else ()
in scan(instrs, live, (last,dead)::lastUse)
end
val liveOutSet = SL.uniq liveOut
val _ =
if debug andalso debugLiveness then
print("LiveOut("^i2s blknum^") = "^
fregsToString(SL.return liveOutSet)^"\n")
else ()
in scan(!insns, liveOutSet, [])
end
(*------------------------------------------------------------------
* Temporary work space
*------------------------------------------------------------------*)
val {high, low} = C.cellRange CB.FP
val n = high+1
val lastUseTbl = A.array(n,~1) (* table for marking last uses *)
val useTbl = A.array(n,~1) (* table for marking uses *)
(* %fp register bindings before and after a basic block *)
val bindingsIn = A.array(numberOfBlks, NONE)
val bindingsOut = A.array(numberOfBlks, NONE)
val stampCounter = ref ~4096
(* Edges that need splitting *)
exception NoEdgesToSplit
val edgesToSplit = IntHashTable.mkTable(32, NoEdgesToSplit)
val addEdgesToSplit = IntHashTable.insert edgesToSplit
fun lookupEdgesToSplit b =
getOpt(IntHashTable.find edgesToSplit b, [])
(*------------------------------------------------------------------
* Code for handling bindings between basic block
*------------------------------------------------------------------*)
fun splitEdge(title, source, target, e) =
(if debug andalso !traceOn then
pr(title^" SPLITTING "^i2s source^"->"^ i2s target^"\n")
else ();
addEdgesToSplit(target,(source,target,e)::lookupEdgesToSplit target)
)
fun computeFreq(_,_,CFG.EDGE{w,...}) = !w
(* Given a cellset, return a sorted and unique
* list of elements with all non-physical registers removed
*)
fun removeNonPhysical celllist =
let fun loop([], S) = SL.return(SL.uniq S)
| loop(f::fs, S) =
let val fx = CB.registerNum f
in loop(fs,if fx <= 7 then f::S else S)
end
in loop(celllist, [])
end
(* Given a sorted and unique list of registers,
* Return a stack with these elements
*)
fun newStack fregs =
let val stack = ST.create()
in app (fn f => ST.push(stack, CB.registerNum f)) (rev fregs);
stack
end
(*
* This function looks at all the entries on the stack,
* and generate code to deallocate all the dead values.
* The stack is updated.
*)
fun removeDeadValues(stack, liveSet, code) =
let val stamp = !stampCounter
val _ = stampCounter := !stampCounter - 1
fun markLive [] = ()
| markLive(r::rs) =
(A.update(useTbl, CB.registerNum r, stamp); markLive rs)
fun isLive f = A.sub(useTbl, f) = stamp
fun loop(i, depth, code) =
if i >= depth then code else
let val f = ST.st(stack, i)
in if isLive f (* live? *)
then loop(i+1, depth, code)
else
(if debug andalso !traceOn then
pr("REMOVING %f"^i2s f^" in %st("^i2s i^")"^
" current stack="^ST.stackToString stack^"\n")
else ();
if i = 0 then
(ST.pop stack;
loop(0, depth-1, POP_ST::code)
)
else (ST.xch(stack,0,i);
ST.pop stack;
loop(0, depth-1, I.fstpl(ST i)::code)
)
)
end
in markLive liveSet;
loop(0, ST.depth stack, code)
end
(*------------------------------------------------------------------
* Given two stacks, source and target, where the bindings are
* permutation of each other, generate the minimal number of
* fxchs to match source with target.
*
* Important: source and target MUST be permutations of each other.
*
* Essentially, we first decompose the permutation into cycles,
* and process each cycle.
*------------------------------------------------------------------*)
fun shuffle(source, target, code) =
let val stamp = !stampCounter
val _ = stampCounter := !stampCounter - 1
val permutation = lastUseTbl (* reuse the space *)
val _ = if debug andalso !traceOn then
pr("SHUFFLE "^ST.stackToString source^
"->"^ST.stackToString target^"\n")
else ()
(* Compute the initial permutation *)
val n = ST.depth source
fun computeInitialPermutation(i) =
if i >= n
then ()
else let val f = ST.st(source, i)
val j = ST.fp(target, f)
in A.update(permutation, j, i);
computeInitialPermutation(i+1)
end
val _ = computeInitialPermutation 0
(* Decompose the initial permutation into cycles.
* The cycle involving 0 is treated specially.
*)
val visited = useTbl
fun isVisited i = A.sub(visited,i) = stamp
fun markAsVisited i = A.update(visited,i,stamp)
fun decomposeCycles(i, cycle0, cycles) =
if i >= n then (cycle0, cycles)
else if isVisited i orelse
A.sub(permutation, i) = i (* trivial cycle *)
then decomposeCycles(i+1, cycle0, cycles)
else let fun makeCycle(j, cycle, zero) =
let val k = A.sub(permutation, j)
val cycle = j::cycle
val zero = zero orelse j = 0
in markAsVisited j;
if k = i then (cycle, zero)
else makeCycle(k, cycle, zero)
end
val (cycle, zero) = makeCycle(i, [], false)
in if zero then decomposeCycles(i+1, [cycle], cycles)
else decomposeCycles(i+1, cycle0, cycle::cycles)
end
val (cycle0, cycles) = decomposeCycles(0, [], [])
(*
* Generate shuffle for a cycle that does not involve 0.
* Given a cycle (c_1, ..., c_k), we generate this code:
* fxch %st(c_1),
* fxch %st(c_2),
* ...
* fxch %st(c_k),
* fxch %st(c_1)
*)
fun genxch([], code) = code
| genxch(c::cs, code) = genxch(cs, FXCH c::code)
fun gen([], code) = error "shuffle.gen"
| gen(cs as (c::_), code) = FXCH c::genxch(cs, code)
(*
* Generate shuffle for a cycle that involves 0.
* Given a cycle (c_1,...,c_k) we first shuffle this to
* an equivalent cycle (c_1, ..., c_k) where c'_k = 0,
* then we generate this code:
* fxch %st(c'_1),
* fxch %st(c'_2),
* ...
* fxch %st(c'_{k-1}),
*)
fun gen0([], code) = error "shuffle.gen0"
| gen0(cs, code) =
let fun rearrange(0::cs, cs') = cs@rev cs'
| rearrange(c::cs, cs') = rearrange(cs, c::cs')
| rearrange([], _) = error "shuffle.rearrange"
val cs = rearrange(cs, [])
in genxch(cs, code)
end
(*
* Generate code. Must process the non-zero cycles first.
*)
val code = List.foldr gen code cycles
val code = List.foldr gen0 code cycle0
in code
end (* shuffle *)
(*------------------------------------------------------------------
* Insert code at the end of a basic block.
* Make sure we put code in front of a transfer instruction
*------------------------------------------------------------------*)
fun insertAtEnd(insns, code) =
(case insns of
[] => code
| jmp::rest =>
if P.instrKind jmp = P.IK_JUMP then
jmp::code@rest
else
code@insns
)
(*------------------------------------------------------------------
* Magic for inserting shuffle code at the end of a basic block
*------------------------------------------------------------------*)
fun shuffleOut(stackOut, insns, b, block, liveOut) =
let
val liveOut = removeNonPhysical(liveOut)
(* Generate code that remove unnecessary values *)
val code = removeDeadValues(stackOut, liveOut, [])
fun done(stackOut, insns, code) =
(A.update(bindingsOut,b,SOME stackOut);
insertAtEnd(insns, code)
)
(* Generate code that shuffle values from source to target *)
fun match(source, target) =
done(target, insns, shuffle(source, target, []))
(* Generate code that shuffle values from source to liveOut *)
fun matchLiveOut() =
case liveOut of
[] => done(stackOut, insns, code)
| _ => match(stackOut, newStack liveOut)
(* With multiple successors, find out which one we
* should connect to. Choose the one from the block that
* follows from this one, if that exists, or else choose
* from the edge with the highest frequency.
*)
fun find([], _, id, best) = (id, best)
| find((_, target, _)::edges, highestFreq, id, best) =
let val CFG.BLOCK{freq, ...} = #node_info cfg target
in if target = b+1 then (target, A.sub(bindingsIn, target))
else (case A.sub(bindingsIn, target) of
NONE => find(edges, highestFreq, id, best)
| this as SOME stack =>
if highestFreq < !freq then
find(edges, !freq, target, this)
else
find(edges, highestFreq, id, best)
)
end
(*
* Split all edges source->target except omitThis.
*)
fun splitAllEdgesExcept([], omitThis) = ()
| splitAllEdgesExcept((source,target,e)::edges, omitThis) =
if target = EXIT then error "can't split exit edge!"
else
(if target <> omitThis andalso
target <= b andalso (* XXX *)
target <> ENTRY
then splitEdge("ShuffleOut",source,target,e) else ();
splitAllEdgesExcept(edges, omitThis)
)
(* Just one successor;
* try to match the bindings of the successor if it exist.
*)
fun matchIt succ =
let val (succBlock, target) = find(succ, ~1.0, ~1, NONE)
in splitAllEdgesExcept(succ, succBlock);
case target of
SOME stackIn => match(stackOut, stackIn)
| NONE => done(stackOut,insns,code)
end
in case #out_edges cfg b of
[] => matchLiveOut()
| succ as [(_,target,_)] =>
if target = EXIT then matchLiveOut()
else matchIt succ
| succ => matchIt succ
end (* shuffleOut *)
(*------------------------------------------------------------------
* Compute the initial fp stack bindings for basic block b.
*------------------------------------------------------------------*)
fun shuffleIn(b, block, liveIn) =
let
val liveInSet = removeNonPhysical liveIn
(* With multiple predecessors, find out which one we
* should connect to. Choose the one from the block that
* falls into this one, if that exists, or else choose
* from the edge with the highest frequency.
*)
fun find([], _, best) = best
| find((source, _, _)::edges, highestFreq, best) =
let val CFG.BLOCK{freq, ...} = #node_info cfg source
in case A.sub(bindingsOut, source) of
NONE => find(edges, highestFreq, best)
| this as SOME stack =>
if source = b-1
then this (* falls into b *)
else if highestFreq < !freq then find(edges, !freq, this)
else find(edges, highestFreq, best)
end
fun splitAllDoneEdges [] = ()
| splitAllDoneEdges ((source, target, e)::edges) =
(if source < b andalso
source <> ENTRY andalso
source <> EXIT
then splitEdge("ShuffleIn", source, target, e) else ();
splitAllDoneEdges edges
)
(* The initial stack bindings are determined by the live set.
* No compensation code is needed.
*)
fun fromLiveIn() =
let val stackIn =
case liveInSet of
[] => ST.stack0
| _ =>
(pr("liveIn="^celllistToString liveIn^"\n");
newStack liveInSet
)
val stackOut = ST.copy stackIn
in (stackIn, stackOut, [])
end
val pred = #in_edges cfg b
val (stackIn, stackOut, code) =
case find(pred, ~1.0, NONE) of
NONE => (splitAllDoneEdges(pred); fromLiveIn())
| SOME stackIn' =>
(case pred of
[_] => (* one predecessor *)
(* Use the bindings as from the previous block
* We first have to deallocate all unused values.
*)
let val stackOut = ST.copy stackIn'
(* Clean the stack of unused entries *)
val code = removeDeadValues(stackOut, liveInSet, [])
in (stackIn', stackOut, code) end
| pred => (* more than one predecessors *)
let val stackIn = ST.copy stackIn'
val code = removeDeadValues(stackIn, liveInSet, [])
val stackOut = ST.copy stackIn
in (* If we have to generate code to deallocate
* the stack then we have split the edge.
*)
case code of
[] => ()
| _ => splitAllDoneEdges(pred);
(stackIn, stackOut, [])
end
)
in A.update(bindingsIn, b, SOME stackIn);
A.update(bindingsOut, b, SOME stackOut);
(stackIn, stackOut, code)
end
(*------------------------------------------------------------------
* Code for patching up critical edges.
* The trick is finding a good place to insert the critical edges.
* Let's call an edge x->y that requires compensation
* code c to be inserted an candidate edge. We write this as x->y(c)
*
* Here are the heuristics that we use to improve the final code:
*
* 1. Given two candidate edges a->x(c1) and b->x(c2) where c1=c2
* then we can merge the two copies of compensation code.
* This is quite common. This generalizes to any number of edges.
*
* 2. Given two candidate edges a->x(c1) and b->x(c2) and where
* c1 and c2 are pops, we can partially share c1 and c2.
* Currently, I think I only recognize this case when
* x has no fp registers live-in.
*
* 3. Given two candidate edges a->x(c1) and b->x(c2),
* if a->x has a higher frequency then put the compensation
* code in front of x (so that it falls through into x)
* whenever possible.
*
* As you can see, the voodoo is strong here.
*
* The routine has two main phases:
* 1. Determine the compensation code by applying the heuristics
* above.
* 2. Then insert them and rebuild the cfg by renaming all block
* ids. This is currently necessary to keep the layout order
* consistent with the order of the id.
*------------------------------------------------------------------*)
fun repairCriticalEdges(Cfg as G.GRAPH cfg) =
let
val cleanup = [#create MLRiscAnnotations.COMMENT "cleanup edge"]
val critical = [#create MLRiscAnnotations.COMMENT "critical edge"]
fun annotate(gen, an) =
app (fn ((_,CFG.BLOCK{annotations, ...}),_) => annotations := an)
gen
(*
* Special case: target block has stack depth of 0.
* Just generate code that pop entries from the sources.
* To make things interesting, we try to share code among
* all the critical edges.
*)
fun genPoppingCode(_, []) = ()
| genPoppingCode(targetId, edges) =
let (* Edges annotated with the source stack depth
* Ordered by increasing stack height
*)
val edges =
IM.listItemsi
(foldr (fn (edge as (sourceId, _, _), M) =>
let val n = ST.depth(valOf(A.sub(bindingsOut,sourceId)))
in IM.insert(M, n, edge :: getOpt(IM.find(M, n), []))
end) IM.empty edges)
(* Generate n pops *)
fun pops(0, code) = code
| pops(n, code) = pops(n-1, POP_ST::code)
(* Create the chain of blocks *)
fun makeChain(depth, [], chain) = chain
| makeChain(depth, (d, es)::es', chain) =
let val code = pops(d - depth, [])
in makeChain(d, es', (es, code)::chain)
end
val chain = makeChain(0, edges, [])
in annotate(CFG.splitEdges Cfg {groups=chain, jump=false}, cleanup)
end
(*
* Generate repair code.
*)
fun genRepairCode(targetId, stackIn, edges) =
let val liveIn = IntHashTable.lookup liveInTable targetId
val liveInSet = removeNonPhysical liveIn
val _ = if debug then
pr("LiveIn = "^celllistToString liveIn^"\n")
else ()
(* Group all edges whose output stack configurations
* are the same. Each group is merged together into
* a single compensation block
*)
fun partition([], S) = S
| partition((e as (src,_,_))::es, S) =
let val stackOut = ST.copy(valOf(A.sub(bindingsOut,src)))
fun find([], S) = partition(es, ([e],stackOut)::S)
| find((x as (es',st'))::S', S) =
if ST.equal(stackOut,st') then
partition(es, (e::es',st')::S' @ S)
else
find(S', x::S)
in find(S, [])
end
(* Partition by the source bindings *)
val S = partition(edges, [])
(* Compute frequencies *)
val S = map (fn (es,st) => (CFG.sumEdgeFreqs es,es,st)) S
(* Ordered by non-increasing frequencies *)
val S = ListMergeSort.sort (fn ((x,_,_),(y,_,_)) => x < y) S
(* Generate code *)
fun gen(freq, edges, stackOut) =
let (* deallocate unused values *)
val code = removeDeadValues(stackOut,liveInSet,[])
(* shuffle values *)
val code = shuffle(stackOut, stackIn, code)
in annotate(
CFG.splitEdges Cfg {groups=[(edges,code)], jump=false},
critical)
end
in app gen S
end
(* Split all edges entering targetId *)
fun split(targetId, edges) =
let val stackIn = valOf(A.sub(bindingsIn,targetId))
fun log(s, t, e) =
case A.sub (bindingsOut, s) of
SOME stackOut =>
(pr("SPLIT "^i2s s^"->"^i2s t^" "^
ST.stackToString stackOut^"->"^
ST.stackToString stackIn^"\n"))
| NONE => error "split:stackOut"
val _ = if debug andalso !traceOn then app log edges else ()
in if ST.depth stackIn = 0 then genPoppingCode(targetId, edges)
else genRepairCode(targetId, stackIn, edges)
end
in IntHashTable.appi split edgesToSplit;
CFG.changed Cfg;
Cfg
end
(*------------------------------------------------------------------
* Process all blocks which are not the entry or the exit
*------------------------------------------------------------------*)
val stamp = ref 0
fun rewriteAllBlocks (_, CFG.BLOCK{kind=CFG.START, ...}) = ()
| rewriteAllBlocks (_, CFG.BLOCK{kind=CFG.STOP, ...}) = ()
| rewriteAllBlocks
(blknum, block as CFG.BLOCK{insns, labels, annotations, ...}) =
let val _ =
if debug andalso !debugOn then
app (fn l => pr(L.toString l^":\n")) (!labels)
else ();
val liveIn = HT.lookup liveInTable blknum
val liveOut = HT.lookup liveOutTable blknum
val st = rewrite(!stamp, blknum, block,
insns, liveIn, liveOut,
annotations)
in stamp := st (* update stamp *)
end
(*------------------------------------------------------------------
* Translate code within a basic block.
* Each instruction is given a unique stamp for identifying last
* uses.
*------------------------------------------------------------------*)
and rewrite(stamp, blknum, block, insns, liveIn, liveOut,
annotations) =
let val (stackIn, stack, code) = shuffleIn(blknum, block, liveIn)
(* Dump instructions when encountering a bug *)
fun bug msg =
(pr("-------- bug in block "^i2s blknum^" ----\n");
dump(!insns);
error msg
)
fun loop(stamp, [], [], code) = (stamp, code)
| loop(stamp, instr::rest, (lastUse,dead)::lastUses, code) =
let fun mark(tbl, []) = ()
| mark(tbl, r::rs) =
(A.update(tbl, CB.registerNum r, stamp); mark(tbl, rs))
in mark(lastUseTbl,lastUse); (* mark all last uses *)
trans(stamp, instr, [], rest, dead, lastUses, code)
end
| loop _ = error "loop"
(*
* Main routine that does the actual translation.
* A few reminders:
* o The instructions are processed in normal order
* and generated in the reversed order.
* o (Local) liveness is computed at the same time.
* o For each use, we have to find out whether it is
* the last use. If so, we can kill it and reclaim
* the stack entry at the same time.
*)
and trans(stamp, instr, an, rest, dead, lastUses, code) =
let (* Call this continuation when done with code generation *)
fun FINISH code = loop(stamp+1, rest, lastUses, code)
fun KILL_THE_DEAD(dead, code) =
let fun kill([], code) = FINISH code
| kill(f::fs, code) =
let val fx = CB.registerNum f
in if debug andalso debugDead then
pr("DEAD "^fregToString f^" in "^
ST.stackToString stack^"\n")
else ();
(* not a physical register *)
if fx >= 8 then kill(fs, code)
else
let val i = ST.fp(stack, fx)
in if debug andalso debugDead then
pr("KILLING "^fregToString f^
"=%st("^i2s i^")\n")
else ();
if i < 0 then kill(fs, code) (* dead already *)
else if i = 0 then
(ST.pop stack; kill(fs, POP_ST::code))
else
(ST.xch(stack,0,i); ST.pop stack;
kill(fs, I.fstpl(ST i)::code)
)
end
end
in kill(dead, code)
end
(* Call this continuation when done with floating point
* code generation. Remove all dead code first.
*)
fun DONE code = KILL_THE_DEAD(dead, code)
(* Is this the last use of register f? *)
fun isLastUse f = A.sub(lastUseTbl, f) = stamp
(* Is this value dead? *)
fun isDead f =
let fun loop [] = false
| loop(r::rs) = CB.sameColor(f,r) orelse loop rs
in loop dead end
(* Dump the stack before each intruction for debugging *)
fun log() = if debug andalso !traceOn then
pr(ST.stackToString stack^assemble instr^"...\n")
else ()
(* Find the location of a source register *)
fun getfs(f) =
let val fx = CB.registerNum f
val s = ST.fp(stack, fx)
in (isLastUse fx,s) end
(* Generate memory to memory move *)
fun mmmove(fsize,src,dst) =
let val _ = ST.nonFull stack
val code = FLD(fsize,src)::code
val code = mark(FSTP(fsize,dst),an)::code
in DONE code end
(* Allocate a new register in %st(0) *)
fun alloc(f,code) = (ST.push(stack,CB.registerNum f); code)
(* register -> register move *)
fun rrmove(fs,fd) =
if CB.sameColor(fs,fd) then DONE code
else
let val (dead,ss) = getfs fs
in if dead then (* fs is dead *)
(ST.set(stack,ss,CB.registerNum fd); (* rename fd to fs *)
DONE code (* no code is generated *)
)
else (* fs is not dead; push it onto %st(0);
* set fd to %st(0)
*)
let val code = alloc(fd, code)
in DONE(mark(I.fldl(ST ss),an)::code)
end
end
(* memory -> register move.
* Do dead code elimination here.
*)
fun mrmove(fsize,src,fd) =
if isDead fd
then FINISH code (* value has been killed *)
else
let val code = alloc(fd, code)
in DONE(mark(FLD(fsize,src),an)::code)
end
(* exchange %st(n) and %st(0) *)
fun xch(n) = (ST.xch(stack,0,n); FXCH n)
(* push %st(n) onto the stack *)
fun push(n) = (ST.push(stack,~2); I.fldl(ST n))
(* push mem onto the stack *)
fun pushmem(src) = (ST.push(stack,~2); I.fldl(src))
(* register -> memory move.
* Use pop version of the opcode if it is the last use.
*)
fun rmmove(fsize,fs,dst) =
let fun fstp(code) =
(ST.pop stack; DONE(mark(FSTP(fsize,dst),an)::code))
fun fst(code) = DONE(mark(FST(fsize,dst),an)::code)
in case getfs fs of
(true, 0) => fstp code
| (true, n) => fstp(xch n::code)
| (false, 0) => fst(code)
| (false, n) => fst(xch n::code)
end
(* Floating point move *)
fun fmove{fsize,src=I.FPR fs,dst=I.FPR fd} = rrmove(fs,fd)
| fmove{fsize,src,dst=I.FPR fd} = mrmove(fsize,src,fd)
| fmove{fsize,src=I.FPR fs,dst} = rmmove(fsize,fs,dst)
| fmove{fsize,src,dst} = mmmove(fsize,src,dst)
(* Floating point integer load operator *)
fun fiload{isize,ea,dst=I.FPR fd} =
let val code = alloc(fd, code)
val code = mark(FILD(isize,ea),an)::code
in DONE code
end
| fiload{isize,ea,dst} =
let val code = mark(FILD(isize,ea),an)::code
val code = I.fstpl(dst)::code (* XXX *)
in DONE code
end
(* Make a copy of register fs to %st(0). *)
fun moveregtotop(fs, code) =
(case getfs fs of
(true, 0) => code
| (true, n) => xch n::code
| (false, n) => push n::code
)
fun movememtotop(fsize, mem, code) =
(ST.push(stack, ~2); FLD(fsize, mem)::code)
(* Move an operand to top of stack *)
fun movetotop(fsize, I.FPR fs, code) = moveregtotop(fs, code)
| movetotop(fsize, mem, code) = movememtotop(fsize, mem, code)
fun storeResult(fsize, dst, n, code) =
case dst of
I.FPR fd => (ST.set(stack, n, CB.registerNum fd); DONE code)
| mem =>
let val code = if n = 0 then code else xch n::code
in ST.pop stack; DONE(FSTP(fsize, mem)::code) end
(* Floating point unary operator *)
fun funop{fsize,unOp,src,dst} =
let val code = movetotop(fsize, src, code)
val code = mark(I.funary unOp,an)::code
(* Moronic hack to deal with partial tangent! *)
val code =
case unOp of
I.FPTAN =>
(if ST.depth stack >= 7 then error "FPTAN"
else ();
POP_ST::code (* pop the useless 1.0 *)
)
| _ => code
in storeResult(fsize, dst, 0, code)
end
(* Floating point binary operator.
* Note:
* binop src, dst
* means dst := dst binop src
* (lsrc := lsrc binop rsrc)
* on the x86
*)
fun fbinop{fsize,binOp,lsrc,rsrc,dst} =
let (* generate code and set %st(n) = fd *)
(* op2 := op1 - op2 *)
fun oper(binOp,op1,op2,n,code) =
let val code =
mark(I.fbinary{binOp=binOp,src=op1,dst=op2},an)
::code
in storeResult(I.FP64, dst, n, code)
end
fun operR(binOp,op1,op2,n,code) =
oper(invert binOp,op1,op2,n,code)
fun operP(binOp,op1,op2,n,code) =
(ST.pop stack; oper(pop binOp,op1,op2,n-1,code))
fun operRP(binOp,op1,op2,n,code) =
(ST.pop stack; operR(pop binOp,op1,op2,n-1,code))
(* Many special cases to consider.
* Basically, try to reuse stack space as
* much as possible by taking advantage of last uses.
*
* Stack=[st(0)=3.0 st(1)=2.0]
* fsub %st(1), %st [1,2.0]
* fsubr %st(1), %st [-1,2.0]
* fsub %st, %st(1) [3.0,1.0]
* fsubr %st, %st(1) [3.0,-1.0]
*
* fsubp %st, %st(1) [1]
* fsubrp %st, %st(1) [-1]
* So,
* fsub %st(n), %st (means %st - %st(n) -> %st)
* fsub %st, %st(n) (means %st - %st(n) -> %st(n))
* fsubr %st(n), %st (means %st(n) - %st -> %st)
* fsubr %st, %st(n) (means %st(n) - %st -> %st(n))
*)
fun reg2(fx, fy) =
let val (dx, sx) = getfs fx
val (dy, sy) = getfs fy
fun loop(dx, sx, dy, sy, code) =
(* op1, op2 (dst) *)
case (dx, sx, dy, sy) of
(true, 0, false, n) => oper(binOp,ST n,ST0,0,code)
| (false, n, true, 0) => operR(binOp,ST n,ST0,0,code)
| (true, n, true, 0) => operRP(binOp,ST0,ST n,n,code)
| (true, 0, true, n) => operP(binOp,ST0,ST n,n,code)
| (false, 0, true, n) => oper(binOp,ST0,ST n,n,code)
| (true, n, false, 0) => operR(binOp,ST0,ST n,n,code)
| (true, sx, dy, sy) =>
loop(true, 0, dy, sy, xch sx::code)
| (dx, sx, true, sy) =>
loop(dx, sx, true, 0, xch sy::code)
| (false, sx, false, sy) =>
loop(true, 0, false, sy+1, push sx::code)
in if sx = sy then (* same register *)
let val code =
case (dx, sx) of
(true, 0) => code
| (true, n) => xch n::code
| (false, n) => push n::code
in oper(binOp,ST0,ST0,0,code)
end
else loop(dx, sx, dy, sy, code)
end
(* reg/mem operands *)
fun regmem(binOp, fx, mem) =
case getfs fx of
(true, 0) => oper(binOp,mem,ST0,0,code)
| (true, n) => oper(binOp,mem,ST0,0,xch n::code)
| (false, n) => oper(binOp,mem,ST0,0,push n::code)
(* Two memory operands. Optimize the case when
* the two operands are identical.
*)
fun mem2(lsrc, rsrc) =
let val _ = ST.push(stack,~2)
val code = FLD(fsize,lsrc)::code
val rsrc = if P.eqOpn(lsrc, rsrc) then ST0 else rsrc
in oper(binOp,rsrc,ST0,0,code)
end
fun process(I.FPR fx, I.FPR fy) = reg2(fx, fy)
| process(I.FPR fx, mem) = regmem(binOp, fx, mem)
| process(mem, I.FPR fy) = regmem(invert binOp, fy, mem)
| process(lsrc, rsrc) = mem2(lsrc, rsrc)
in process(lsrc, rsrc)
end
(* Floating point binary operator with integer conversion *)
fun fibinop{isize,binOp,lsrc,rsrc,dst} =
let fun oper(binOp,src,code) =
let val code = mark(I.fibinary{binOp=binOp,src=src},an)
::code
in storeResult(I.FP64, dst, 0, code)
end
fun regmem(binOp, fx, mem) =
case getfs fx of
(true, 0) => oper(binOp, mem, code)
| (true, n) => oper(binOp, mem, xch n::code)
| (false, n) => oper(binOp, mem, push n::code)
in case (lsrc, rsrc) of
(I.FPR fx, mem) => regmem(binOp, fx, mem)
| (lsrc, rsrc) => oper(binOp, rsrc, pushmem lsrc::code)
end
(* Floating point comparison
* We have to make sure there are enough registers.
* The trick is that tmp is always a physical register.
* So we can always use it as temporary space if we
* have run out.
*)
fun fcmp{i,fsize,lsrc,rsrc} =
let fun fucompp code =
(ST.pop stack; ST.pop stack;
if i then
POP_ST :: mark(I.fucomip(ST 1), an) :: code
else
mark(I.fucompp,an) :: code
)
fun fucomp(n) =
(ST.pop stack;
mark((if i then I.fucomip else I.fucomp)(ST n),an))
fun fucom(n) =
mark((if i then I.fucomi else I.fucom)(ST n),an)
fun genmemcmp() =
let val code = movememtotop(fsize, rsrc, code)
val code = movememtotop(fsize, lsrc, code)
in FINISH(fucompp(code))
end
fun genmemregcmp(lsrc, fy) =
case getfs fy of
(false, n) =>
let val code = movememtotop(fsize, lsrc, code)
in FINISH(fucomp(n+1)::code) end
| (true, n) =>
let val code = if n = 0 then code else xch n::code
val code = movememtotop(fsize, lsrc, code)
in FINISH(fucompp(code))
end
fun genregmemcmp(fx, rsrc) =
let val code =
case getfs fx of
(true, n) =>
let val code = if n = 0 then code
else xch n::code
val code = movememtotop(fsize, rsrc, code)
in xch 1::code end
| (false, n) =>
let val code = movememtotop(fsize, rsrc, code)
in push(n+1)::code
end
in FINISH(fucompp(code))
end
(* Deal with the special case when both sources are
* in the same register
*)
fun regsame(dx, sx) =
let val (code, cmp) =
case (dx, sx) of
(true, 0) => (code, fucomp 0) (* pop once! *)
| (false, 0) => (code, fucom 0) (* don't pop! *)
| (true, n) => (xch n::code, fucomp 0)
| (false, n) => (xch n::code, fucom 0)
in FINISH(cmp::code) end
fun reg2(fx, fy) =
(* special case is when things are already in place.
* Note: should also generate FUCOM and FUCOMP!!!
*)
let val (dx, sx) = getfs fx
val (dy, sy) = getfs fy
fun fstp(n) =
(ST.xch(stack,n,0); ST.pop stack; I.fstpl(ST n))
in if sx = sy then regsame(dx, sx) (* same register!*)
else
(* first, move sx to %st(0) *)
let val (sy, code) =
if sx = 0 then (sy, code) (* there already *)
else (if sy = 0 then sx else sy,
xch sx::code)
(* Generate the appropriate comparison op *)
val (sy, code, popY) =
case (dx, dy, sy) of
(true, true, 0) => (~1,fucompp code, false)
| (true, _, _) => (sy-1,fucomp sy::code,dy)
| (false, _, _) => (sy, fucom sy::code, dy)
(* Pop fy if it is dead and hasn't already
* been popped.
*)
val code = if popY then fstp sy::code else code
in FINISH code
end
end
in case (lsrc, rsrc) of
(I.FPR x, I.FPR y) => reg2(x, y)
| (I.FPR x, mem) => genregmemcmp(x, mem)
| (mem, I.FPR y) => genmemregcmp(mem, y)
| _ => genmemcmp()
end
fun prCopy(dst, src) =
ListPair.app(fn (fd, fs) =>
pr(fregToString(fd)^"<-"^fregToString fs^" "))
(dst, src)
(* Parallel copy magic.
* For each src registers, we find out
* 1. whether it is the last use, and if so,
* 2. whether it is used more than once.
* If a source is a last and unique use, then we
* can simply rename it to appropriate destination register.
*)
fun fcopy(I.COPY{dst,src,tmp,...}) = let
fun loop([], [], copies, renames) = (copies, renames)
| loop(fd::fds, fs::fss, copies, renames) =
let val fsx = CB.registerNum fs
in if isLastUse fsx then
if A.sub(useTbl,fsx) <> stamp
(* unused *)
then (A.update(useTbl,fsx,stamp);
loop(fds, fss, copies,
if CB.sameColor(fd,fs) then renames
else (fd, fs)::renames)
)
else loop(fds, fss, (fd, fs)::copies, renames)
else loop(fds, fss, (fd, fs)::copies, renames)
end
| loop _ = error "fcopy.loop"
(* generate code for the copies *)
fun genCopy([], code) = code
| genCopy((fd, fs)::copies, code) =
let val ss = ST.fp(stack, CB.registerNum fs)
val _ = ST.push(stack, CB.registerNum fd)
val code = I.fldl(ST ss)::code
in genCopy(copies, code) end
(* perform the renaming; it must be done in parallel! *)
fun renaming(renames) =
let val ss = map (fn (_,fs) =>
ST.fp(stack,CB.registerNum fs)) renames
in ListPair.app (fn ((fd,_),ss) =>
ST.set(stack,ss,CB.registerNum fd))
(renames, ss)
end
(* val _ = if debug then
(ListPair.app (fn (fd, fs) =>
pr(fregToString(regmap fd)^"<-"^
fregToString(regmap fs)^" ")
) (dst, src);
pr "\n")
else () *)
val (copies, renames) = loop(dst, src, [], [])
val code = genCopy(copies, code)
in renaming renames;
case tmp of
SOME(I.FPR f) =>
(if debug andalso debugDead
then pr("KILLING tmp "^fregToString f^"\n")
else ();
ST.kill(stack, f)
)
| _ => ();
DONE code
end
| fcopy _ = error "fcopy"
fun call(instr, return) = let
val code = mark(I.INSTR instr, an)::code
val returnSet = SL.return(SL.uniq(getCell return))
in
case returnSet of
[] => ()
| [r] => ST.push(stack, CB.registerNum r)
| _ =>
error "can't return more than one fp argument (yet)";
KILL_THE_DEAD(List.filter isDead returnSet, code)
end
fun x86trans instr =
(case instr
of I.FMOVE x => (log(); fmove x)
| I.FBINOP x => (log(); fbinop x)
| I.FIBINOP x => (log(); fibinop x)
| I.FUNOP x => (log(); funop x)
| I.FILOAD x => (log(); fiload x)
| I.FCMP x => (log(); fcmp x)
(* handle calling convention *)
| I.CALL{return, ...} => (log(); call(instr,return))
(*
* Catch instructions that absolutely
* should not have been generated at this point.
*)
| (I.FLD1 | I.FLDL2E | I.FLDLG2 | I.FLDLN2 | I.FLDPI |
I.FLDZ | I.FLDL _ | I.FLDS _ | I.FLDT _ |
I.FILD _ | I.FILDL _ | I.FILDLL _ |
I.FENV _ | I.FBINARY _ | I.FIBINARY _ | I.FUNARY _ |
I.FUCOMPP | I.FUCOM _ | I.FUCOMP _ | I.FCOMPP | I.FXCH _ |
I.FCOMI _ | I.FCOMIP _ | I.FUCOMI _ | I.FUCOMIP _ |
I.FSTPL _ | I.FSTPS _ | I.FSTPT _ | I.FSTL _ | I.FSTS _
) => bug("Illegal FP instructions")
(* Other instructions are untouched *)
| instr => FINISH(mark(I.INSTR instr, an)::code)
(*esac*))
in
case instr
of I.ANNOTATION{a,i} =>
trans(stamp, i, a::an, rest, dead, lastUses, code)
| I.COPY{k=CB.FP, ...} => (log(); fcopy instr)
| I.LIVE _ => DONE(mark(instr, an)::code)
| I.INSTR instr => x86trans(instr)
| _ => FINISH(mark(instr, an)::code)
end (* trans *)
(*
* Check the translation result to see if it matches the original
* code.
*)
fun checkTranslation(stackIn, stackOut, insns) =
let val n = ref(ST.depth stackIn)
fun push() = n := !n + 1
fun pop() = n := !n - 1
fun scan(I.INSTR(I.FBINARY{binOp, ...})) =
(case binOp of
( I.FADDP | I.FSUBP | I.FSUBRP | I.FMULP
| I.FDIVP | I.FDIVRP) => pop()
| _ => ()
)
| scan(I.INSTR(I.FIBINARY{binOp, ...})) = ()
| scan(I.INSTR(I.FUNARY I.FPTAN)) = push()
| scan(I.INSTR(I.FUNARY _)) = ()
| scan(I.INSTR(I.FLDL(I.ST n))) = push()
| scan(I.INSTR(I.FLDL mem)) = push()
| scan(I.INSTR(I.FLDS mem)) = push()
| scan(I.INSTR(I.FLDT mem)) = push()
| scan(I.INSTR(I.FSTL(I.ST n))) = ()
| scan(I.INSTR(I.FSTPL(I.ST n))) = pop()
| scan(I.INSTR(I.FSTL mem)) = ()
| scan(I.INSTR(I.FSTS mem)) = ()
| scan(I.INSTR(I.FSTPL mem)) = pop()
| scan(I.INSTR(I.FSTPS mem)) = pop()
| scan(I.INSTR(I.FSTPT mem)) = pop()
| scan(I.INSTR(I.FXCH{opnd=i,...})) = ()
| scan(I.INSTR(I.FUCOM _)) = ()
| scan(I.INSTR(I.FUCOMP _)) = pop()
| scan(I.INSTR(I.FUCOMPP)) = (pop(); pop())
| scan(I.INSTR(I.FILD mem)) = push()
| scan(I.INSTR(I.FILDL mem)) = push()
| scan(I.INSTR(I.FILDLL mem)) = push()
| scan(I.INSTR(I.CALL{return, ...})) =
(n := 0; (* clear the stack *)
(* Simulate the pushing of arguments *)
let val returnSet = SL.return(SL.uniq(getCell return))
in app (fn _ => push()) returnSet
end
)
| scan _ = ()
val _ = app scan (rev insns);
val n = !n
val m = ST.depth stackOut
in
if n <> m then
(dump(insns);
bug("Bad translation n="^i2s n^ " expected="^i2s m^"\n")
)
else ()
end
(* Dump the initial code *)
val _ = if debug andalso !debugOn then
(pr("-------- block "^i2s blknum^" ----"^
celllistToString liveIn^" "^
ST.stackToString stackIn^"\n");
dump (!insns);
pr("succ=");
app (fn b => pr(i2s b^" ")) (#succ cfg blknum);
pr("\n")
)
else ()
(* Compute the last uses *)
val lastUse = computeLastUse(blknum, insns, liveOut)
(* Rewrite the code *)
val (stamp, insns') = loop(stamp, rev(!insns), lastUse, code)
(* Insert shuffle code at the end if necessary *)
val insns' = shuffleOut(stack, insns', blknum, block, liveOut)
(* Dump translation *)
val _ = if debug andalso !debugOn then
(pr("-------- translation "^i2s blknum^"----"^
celllistToString liveIn^" "^
ST.stackToString stackIn^"\n");
dump insns';
pr("-------- done "^i2s blknum^"----"^
celllistToString liveOut^" "^
ST.stackToString stack^"\n")
)
else ()
(* Check if things are okay *)
val _ = if debug andalso sanityCheck then
checkTranslation(stackIn, stack, insns')
else ()
in insns := insns'; (* update the instructions *)
stamp
end (* process *)
in (* Translate all blocks *)
stamp := C.firstPseudo;
#forall_nodes cfg rewriteAllBlocks;
(* If we found critical edges, then we have to split them... *)
if IntHashTable.numItems edgesToSplit = 0 then Cfg
else repairCriticalEdges(Cfg)
end
end (* functor *)
|