1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
|
(*
* X86 specific register allocator.
* This module abstracts out all the nasty RA business on the x86.
* So you should only have to write the callbacks.
*
* Here's more some info on the x86 functor.
*Basically the new functor encapsulates all the features in the
*x86 register allocator, including things like memory pseudo registers,
*and the new floating point allocator that maps things onto the %st registers.
*For floating point, we can also switch between the sethi-ullman mode and
*the %st register mode.
*
* Notes on the parameters of the functor:
*
*> structure SpillHeur : RA_SPILL_HEURISTICS
*
* This should be one of the spill heuristic module like ChaitinSpillHeur or
* Command ('i' to return to index): you can also roll your own.
*
*> structure Spill : RA_SPILL
*
* This should be either RASpill or RASpillWithRenaming.
*
*> val fast_floating_point : bool ref
*
* This flag is used to turn on the new x86 fp mode. The same flag
* is also passed to the x86 instruction selection module.
*
*> datatype raPhase = SPILL_PROPAGATION | SPILL_COLORING
*
* This datatype specifies which additional phases we should run.
*
*> val beforeRA : flowgraph -> spill_info
*
* This callback is invoked before each call to RA. The RA may have
* to perform both integer and floating point RA. This is called before
* integer RA.
*
* The callbacks for integer and floating point are separated into
* the substructures Int and Float.
*
*> structure Int :
*> sig
*> val avail : I.C.cell list
*> val dedicated : I.C.cell list
*> val memRegs : I.C.cell list
*> val phases : raPhase list
*> val spillLoc : spill_info * Annotations.annotations ref *
*> RAGraph.logical_spill_id -> I.operand
*> val spillInit : RAGraph.interferenceGraph -> unit
*> end
*
* avail is the list of registers available for allocation
* memRegs is the list of memory registers that may appear in the program
* phases is a list of additional RA phases. I recommend turning on
* everything:
*
* [SPILL_PROPAGATION, SPILL_COLORING]
*
* spillInit is called once before spilling occurs.
*
* spillLoc is a callback that maps logical_spill_ids into an x86
* effective address. The list of allocations is from the block in which
* the spilled instruction occurs. The client should keep track of
* existing ids, and allocate a new effective address when a new id occurs.
* In general, the client should keep track of a single table of free
* spill space for both integer and floating point registers.
*
* Previously, the spill/reload routines have to do special things in the
* presence of memory registers, but that stuff is taken care of in the
* new module, so all spillLoc has to do is map logical_spill_ids into
* effective address.
*
*> structure Float :
*> sig
*> val avail : I.C.cell list
*> val dedicated : I.C.cell list
*> val memRegs : I.C.cell list
*> val phases : raPhase list
*> val spillLoc : spill_info * Annotations.annotations ref *
*> RAGraph.logical_spill_id -> I.operand
*> val spillInit : RAGraph.interferenceGraph -> unit
*> end
*
* For floating point, it is similar.
*
*>
*> val fastMemRegs : I.C.cell list
*> val fastPhases : raPhase list
*
* When fast_floating_point is turned on, we use different parameters:
*
* avail is set to [%st(0), ..., %st(6)]
* dedicated is set to []
* memRegs is set to fastMemRegs
*
* In general, the flow of the module is like this:
*
* ra:
* call beforeRA()
* integer RA --- call Int.spillInit() once if spilling is needed
* floating fp RA --- call Real.spillInit() once if spilling is needed
* if !fast_floating_point then
* invoke the module X86FP to convert fake %fp registers
* into real %st registers
* endif
*
*)
functor X86RA
( structure I : X86INSTR
structure InsnProps : INSN_PROPERTIES (* where I = I *)
where type I.addressing_mode = I.addressing_mode
and type I.ea = I.ea
and type I.instr = I.instr
and type I.instruction = I.instruction
and type I.operand = I.operand
structure CFG : CONTROL_FLOW_GRAPH (* where I = I *)
where type I.addressing_mode = I.addressing_mode
and type I.ea = I.ea
and type I.instr = I.instr
and type I.instruction = I.instruction
and type I.operand = I.operand
structure Asm : INSTRUCTION_EMITTER (* where I = I and S.P = CFG.P *)
where type I.addressing_mode = I.addressing_mode
and type I.ea = I.ea
and type I.instr = I.instr
and type I.instruction = I.instruction
and type I.operand = I.operand
where type S.P.Client.pseudo_op = CFG.P.Client.pseudo_op
and type S.P.T.Basis.cond = CFG.P.T.Basis.cond
and type S.P.T.Basis.div_rounding_mode = CFG.P.T.Basis.div_rounding_mode
and type S.P.T.Basis.ext = CFG.P.T.Basis.ext
and type S.P.T.Basis.fcond = CFG.P.T.Basis.fcond
and type S.P.T.Basis.rounding_mode = CFG.P.T.Basis.rounding_mode
and type S.P.T.Constant.const = CFG.P.T.Constant.const
and type ('s,'r,'f,'c) S.P.T.Extension.ccx = ('s,'r,'f,'c) CFG.P.T.Extension.ccx
and type ('s,'r,'f,'c) S.P.T.Extension.fx = ('s,'r,'f,'c) CFG.P.T.Extension.fx
and type ('s,'r,'f,'c) S.P.T.Extension.rx = ('s,'r,'f,'c) CFG.P.T.Extension.rx
and type ('s,'r,'f,'c) S.P.T.Extension.sx = ('s,'r,'f,'c) CFG.P.T.Extension.sx
and type S.P.T.I.div_rounding_mode = CFG.P.T.I.div_rounding_mode
and type S.P.T.Region.region = CFG.P.T.Region.region
and type S.P.T.ccexp = CFG.P.T.ccexp
and type S.P.T.fexp = CFG.P.T.fexp
(* and type S.P.T.labexp = CFG.P.T.labexp *)
and type S.P.T.mlrisc = CFG.P.T.mlrisc
and type S.P.T.oper = CFG.P.T.oper
and type S.P.T.rep = CFG.P.T.rep
and type S.P.T.rexp = CFG.P.T.rexp
and type S.P.T.stm = CFG.P.T.stm
(* Spilling heuristics determines which node should be spilled
* You can use Chaitin, ChowHenessey, or one of your own.
*)
structure SpillHeur : RA_SPILL_HEURISTICS
(* The Spill module figures out the strategies for inserting
* spill code. You can use RASpill, or RASpillWithRenaming,
* or write your own if you are feeling adventurous.
*)
structure Spill : RA_SPILL (* where I = I *)
where type I.addressing_mode = I.addressing_mode
and type I.ea = I.ea
and type I.instr = I.instr
and type I.instruction = I.instruction
and type I.operand = I.operand
type spill_info (* user-defined abstract type *)
(* Should we use allocate register on the floating point stack?
* Note that this flag must match the one passed to the code generator
* module.
*)
val fast_floating_point : bool ref
datatype raPhase = SPILL_PROPAGATION
| SPILL_COLORING
datatype spillOperandKind = SPILL_LOC | CONST_VAL
(* Called before register allocation; perform your initialization here. *)
val beforeRA : CFG.cfg -> spill_info
(* Integer register allocation parameters *)
structure Int :
sig
val avail : CellsBasis.cell list
val dedicated : CellsBasis.cell list
val memRegs : CellsBasis.cell list
val phases : raPhase list
val spillLoc : {info:spill_info,
an :Annotations.annotations ref,
cell:CellsBasis.cell, (* spilled cell *)
id :RAGraph.logical_spill_id
} ->
{ opnd: I.ea,
kind: spillOperandKind
}
(* This function is called once before spilling begins *)
val spillInit : RAGraph.interferenceGraph -> unit
end
(* Floating point register allocation parameters *)
structure Float :
sig
(* Sethi-Ullman mode *)
val avail : CellsBasis.cell list
val dedicated : CellsBasis.cell list
val memRegs : CellsBasis.cell list
val phases : raPhase list
val spillLoc : spill_info * Annotations.annotations ref * RAGraph.logical_spill_id
-> I.ea
(* This function is called once before spilling begins *)
val spillInit : RAGraph.interferenceGraph -> unit
(* When fast_floating_point is on, use these instead: *)
val fastMemRegs : CellsBasis.cell list
val fastPhases : raPhase list
end
) : CFG_OPTIMIZATION =
struct
structure CFG = CFG
structure I = I
structure C = I.C
structure CB = CellsBasis
val name = "X86RA"
type flowgraph = CFG.cfg
val intSpillCnt = MLRiscControl.mkCounter ("ra-int-spills", "RA int spill count")
val intReloadCnt = MLRiscControl.mkCounter ("ra-int-reloads", "RA int reload count")
val intRenameCnt = MLRiscControl.mkCounter ("ra-int-renames", "RA int rename count")
val floatSpillCnt = MLRiscControl.mkCounter ("ra-float-spills", "RA float spill count")
val floatReloadCnt = MLRiscControl.mkCounter ("ra-float-reloads", "RA float reload count")
val floatRenameCnt = MLRiscControl.mkCounter ("ra-float-renames", "RA float rename count")
fun inc c = c := !c + 1
val x86CfgDebugFlg = MLRiscControl.mkFlag ("x86-cfg-debug", "x86 CFG debug mode")
fun error msg = MLRiscErrorMsg.error("X86RA",msg)
(*
val deadcode = MLRiscControl.getCounter "x86-dead-code"
val deadblocks = MLRiscControl.getCounter "x86-dead-blocks"
*)
structure PrintFlowgraph=
PrintFlowgraph(structure CFG=CFG
structure Asm = Asm)
structure X86FP =
X86FP(structure X86Instr = I
structure X86Props = InsnProps
structure Flowgraph = CFG
structure Liveness = Liveness(CFG)
structure Asm = Asm
)
structure X86SpillInstr = X86SpillInstr(structure Instr=I structure Props=InsnProps)
val spillFInstr = X86SpillInstr.spill CB.FP
val reloadFInstr = X86SpillInstr.reload CB.FP
val spillInstr = X86SpillInstr.spill CB.GP
val reloadInstr = X86SpillInstr.reload CB.GP
fun annotate([], i) = i
| annotate(a::an, i) = annotate(an, I.ANNOTATION{a=a, i=i})
(*
* Dead code elimination
*)
exception X86DeadCode
val affectedBlocks =
IntHashTable.mkTable(32,X86DeadCode) : bool IntHashTable.hash_table
val deadRegs =
IntHashTable.mkTable(32,X86DeadCode) : bool IntHashTable.hash_table
fun removeDeadCode(cfg as Graph.GRAPH graph) = let
val blocks = #nodes graph ()
val find = IntHashTable.find deadRegs
fun isDead r =
case find (CB.cellId r) of
SOME _ => true
| NONE => false
fun isAffected i = getOpt (IntHashTable.find affectedBlocks i, false)
fun isDeadInstr(I.ANNOTATION{i, ...}) = isDeadInstr i
| isDeadInstr(I.INSTR(I.MOVE{dst=I.Direct rd, ...})) = isDead rd
| isDeadInstr(I.INSTR(I.MOVE{dst=I.MemReg rd, ...})) = isDead rd
| isDeadInstr(I.COPY{k=CB.GP, dst=[rd], ...}) = isDead rd
| isDeadInstr _ = false
fun scan [] = ()
| scan((blknum, CFG.BLOCK{insns, ...})::rest) =
(if isAffected blknum then
((* deadblocks := !deadblocks + 1; *)
insns := elim(!insns, [])
) else ();
scan rest)
and elim([], code) = rev code
| elim(i::instrs, code) =
if isDeadInstr i then
((* deadcode := !deadcode + 1; *) elim(instrs, code))
else elim(instrs, i::code)
in if IntHashTable.numItems affectedBlocks > 0 then
(scan blocks;
IntHashTable.clear deadRegs;
IntHashTable.clear affectedBlocks)
else ()
end
(* This function finds out which pseudo memory registers are unused.
* Those that are unused are made available for spilling.
* The register allocator calls this function right before spilling
* a set of nodes.
*)
val firstSpill = ref true
val firstFPSpill = ref true
fun spillInit(graph, CB.GP) =
if !firstSpill then (* only do this once! *)
(Int.spillInit graph;
firstSpill := false
)
else ()
| spillInit(graph, CB.FP) =
if !firstFPSpill then
(Float.spillInit graph;
firstFPSpill := false
)
else ()
| spillInit _ = error "spillInit"
(* This is the generic register allocator *)
structure Ra =
RegisterAllocator
(structure SpillHeuristics = SpillHeur
structure Flowgraph = MemoryRA (* for memory coalescing *)
(RADeadCodeElim (* do the funky dead code elimination stuff *)
(structure Flowgraph = ClusterRA
(structure Flowgraph = CFG
structure Asm = Asm
structure InsnProps = InsnProps
structure Spill = Spill
)
fun cellkind CB.GP = true | cellkind _ = false
val deadRegs = deadRegs
val affectedBlocks = affectedBlocks
val spillInit = spillInit
)
)
)
(* -------------------------------------------------------------------
* Floating point stuff
* -------------------------------------------------------------------*)
val KF32 = length Float.avail
structure FR32 = GetReg(val nRegs=KF32
val available=map CB.registerId Float.avail
val first=CB.registerId(I.C.ST 8))
val availF8 = C.Regs CB.FP {from=0, to=6, step=1}
val KF8 = length availF8
structure FR8 = GetReg(val nRegs=KF8
val available=map CB.registerId availF8
val first=CB.registerId(I.C.ST 0))
(* -------------------------------------------------------------------
* Callbacks for floating point K=32
* -------------------------------------------------------------------*)
fun fcopy{dst, src, tmp} =
I.COPY{k=CB.FP, sz=64, dst=dst, src=src, tmp=tmp}
fun copyInstrF((rds as [_], rss as [_]), _) =
fcopy{dst=rds, src=rss, tmp=NONE}
| copyInstrF((rds, rss), I.COPY{k=CB.FP, tmp, ...}) =
fcopy{dst=rds, src=rss, tmp=tmp}
| copyInstrF(x, I.ANNOTATION{i,a}) =
I.ANNOTATION{i=copyInstrF(x, i), a=a}
| copyInstrF _ = error "copyInstrF"
val copyInstrF = fn x => [copyInstrF x]
fun getFregLoc(S, an, Ra.FRAME loc) = Float.spillLoc(S, an, loc)
| getFregLoc(S, an, Ra.MEM_REG r) = I.FDirect r
(* spill floating point *)
fun spillF S {annotations=an, kill, reg, spillLoc, instr} = let
(* preserve annotation on instruction *)
fun spill(instrAn, I.ANNOTATION{a, i}) = spill(a::instrAn, i)
| spill(instrAn, I.KILL{regs, spilled}) =
{code=
[annotate
(instrAn,
I.KILL {regs=C.rmvFreg(reg, regs),
spilled=C.addFreg(reg, spilled)})],
proh = [],
newReg=NONE}
| spill(instrAn, I.LIVE _) = error "spillF: LIVE"
| spill(_, I.COPY _) = error "spillF: COPY"
| spill(instrAn, I.INSTR _) =
(inc floatSpillCnt;
spillFInstr(instr, reg, getFregLoc(S, an, spillLoc)))
in spill([], instr)
end
fun spillFreg S {src, reg, spillLoc, annotations=an} =
(inc floatSpillCnt;
let val fstp = [I.fstpl(getFregLoc(S, an, spillLoc))]
in if CB.sameColor(src,C.ST0) then fstp
else I.fldl(I.FDirect(src))::fstp
end
)
fun spillFcopyTmp S {copy=I.COPY{k=CB.FP, dst, src, ...}, spillLoc, reg,
annotations=an} =
(inc floatSpillCnt;
fcopy{dst=dst, src=src, tmp=SOME(getFregLoc(S, an, spillLoc))}
)
| spillFcopyTmp S {copy=I.ANNOTATION{i,a}, spillLoc, reg, annotations} =
let val i = spillFcopyTmp S {copy=i, spillLoc=spillLoc, reg=reg,
annotations=annotations}
in I.ANNOTATION{i=i, a=a} end
| spillFcopyTmp _ _ = error "spillFcopyTmp"
(* rename floating point *)
fun renameF{instr, fromSrc, toSrc} =
(inc floatRenameCnt;
reloadFInstr(instr, fromSrc, I.FDirect toSrc)
)
(* reload floating point *)
fun reloadF S {annotations=an,reg,spillLoc,instr} = let
fun reload(instrAn, I.ANNOTATION{a,i}) = reload(a::instrAn, i)
| reload(instrAn, I.LIVE{regs, spilled}) =
{code=[I.LIVE{regs=C.rmvFreg(reg, regs), spilled=C.addFreg(reg, spilled)}],
proh=[],
newReg=NONE}
| reload(_, I.KILL _) = error "reloadF: KILL"
| reload (_, I.COPY _) = error "reloadF: COPY"
| reload(instrAn, instr as I.INSTR _) =
(inc floatReloadCnt;
reloadFInstr(instr, reg, getFregLoc(S, an, spillLoc)))
in reload([], instr)
end
fun reloadFreg S {dst, reg, spillLoc, annotations=an} =
(inc floatReloadCnt;
if CB.sameColor(dst,C.ST0) then
[I.fldl(getFregLoc(S, an, spillLoc))]
else
[I.fldl(getFregLoc(S, an, spillLoc)), I.fstpl(I.FDirect dst)]
)
(* -------------------------------------------------------------------
* Callbacks for floating point K=7
* -------------------------------------------------------------------*)
fun FMemReg f = let val fx = CB.registerNum f
in if fx >= 8 andalso fx < 32
then I.FDirect f else I.FPR f
end
fun copyInstrF'((rds as [d], rss as [s]), _) =
I.fmove{fsize=I.FP64,src=FMemReg s,dst=FMemReg d}
| copyInstrF'((rds, rss), I.COPY{k=CB.FP, tmp, ...}) =
fcopy{dst=rds, src=rss, tmp=tmp}
| copyInstrF'(x, I.ANNOTATION{i, a}) =
I.ANNOTATION{i=copyInstrF'(x,i), a=a}
| copyInstrF' _ = error "copyInstrF'"
val copyInstrF' = fn x => [copyInstrF' x]
fun spillFreg' S {src, reg, spillLoc, annotations=an} =
(inc floatSpillCnt;
[I.fmove{fsize=I.FP64, src=FMemReg src,
dst=getFregLoc(S, an,spillLoc)}]
)
fun renameF'{instr, fromSrc, toSrc} =
(inc floatRenameCnt;
reloadFInstr(instr, fromSrc, I.FPR toSrc)
)
fun reloadFreg' S {dst, reg, spillLoc, annotations=an} =
(inc floatReloadCnt;
[I.fmove{fsize=I.FP64, dst=FMemReg dst,
src=getFregLoc(S,an,spillLoc)}]
)
(* -------------------------------------------------------------------
* Integer 8 stuff
* -------------------------------------------------------------------*)
fun copy{dst, src, tmp} = I.COPY{k=CB.GP, sz=32, dst=dst, src=src, tmp=tmp}
fun memToMemMove{dst, src} =
let val tmp = I.C.newReg()
in [I.move{mvOp=I.MOVL,src=src,dst=I.Direct tmp},
I.move{mvOp=I.MOVL,src=I.Direct tmp,dst=dst}
]
end
fun copyInstrR((rds as [d], rss as [s]), _) =
if CB.sameColor(d,s) then [] else
let val dx = CB.registerNum d and sx = CB.registerNum s
in case (dx >= 8 andalso dx < 32, sx >= 8 andalso sx < 32) of
(false, false) => [copy{dst=rds, src=rss, tmp=NONE}]
| (true, false) => [I.move{mvOp=I.MOVL,src=I.Direct s,
dst=I.MemReg d}]
| (false, true) => [I.move{mvOp=I.MOVL,src=I.MemReg s,
dst=I.Direct d}]
| (true, true) => memToMemMove{src=I.MemReg s, dst=I.MemReg d}
end
| copyInstrR((rds, rss), I.COPY{k=CB.GP, tmp, ...}) =
[copy{dst=rds, src=rss, tmp=tmp}]
| copyInstrR(x, I.ANNOTATION{i, a}) =
copyInstrR(x, i) (* XXX *)
| copyInstrR _ = error "copyInstrR"
fun getRegLoc(S, an, cell, Ra.FRAME loc) =
Int.spillLoc{info=S, an=an, cell=cell, id=loc}
| getRegLoc(S, an, cell, Ra.MEM_REG r) = {opnd=I.MemReg r,kind=SPILL_LOC}
(* No, logical spill locations... *)
structure GR8 = GetReg(val nRegs=8
val available=map CB.registerId Int.avail
val first=0)
val K8 = length Int.avail
(* register allocation for general purpose registers *)
fun spillR8 S {annotations=an, kill, reg, spillLoc, instr} = let
fun annotate([], i) = i
| annotate(a::an, i) = annotate(an, I.ANNOTATION{a=a, i=i})
(* preserve annotation on instruction *)
fun spill(instrAn, I.ANNOTATION{a,i}) = spill(a::instrAn, i)
| spill(instrAn, I.KILL{regs, spilled}) =
{code=
[annotate
(instrAn,
I.KILL {regs=C.rmvReg(reg, regs),
spilled=C.addReg(reg, spilled)})],
proh = [],
newReg=NONE}
| spill(instrAn, I.LIVE _) = error "spill: LIVE"
| spill(_, I.COPY _) = error "spill: COPY"
| spill(instrAn, I.INSTR _) =
(case getRegLoc(S, an, reg, spillLoc)
of {opnd=spillLoc, kind=SPILL_LOC} =>
( inc intSpillCnt;
spillInstr(annotate(instrAn, instr), reg, spillLoc)
)
| _ => (* don't have to spill a constant *)
{code=[], newReg=NONE, proh=[]}
(*esac*))
in spill([], instr)
end
fun isMemReg r = let val x = CB.registerNum r
in x >= 8 andalso x < 32 end
fun spillReg S {src, reg, spillLoc, annotations=an} =
let val _ = inc intSpillCnt
val {opnd=dstLoc,kind} = getRegLoc(S,an,reg,spillLoc)
val isMemReg = isMemReg src
val srcLoc = if isMemReg then I.MemReg src else I.Direct src
in if kind=CONST_VAL orelse InsnProps.eqOpn(srcLoc, dstLoc) then []
else if isMemReg then memToMemMove{dst=dstLoc, src=srcLoc}
else [I.move{mvOp=I.MOVL, src=srcLoc, dst=dstLoc}]
end
fun spillCopyTmp S {copy=I.COPY{k=CB.GP, src, dst,...},
reg, spillLoc, annotations=an} =
(case getRegLoc(S, an, reg, spillLoc) of
{opnd=tmp, kind=SPILL_LOC} =>
(inc intSpillCnt;
copy{dst=dst, src=src, tmp=SOME tmp}
)
| _ => error "spillCopyTmp"
)
| spillCopyTmp S {copy=I.ANNOTATION{i, a}, reg, spillLoc, annotations} =
I.ANNOTATION{i=spillCopyTmp S {copy=i, reg=reg, spillLoc=spillLoc,
annotations=annotations}, a=a}
| spillCopyTmp _ _ = error "spillCopyTmp(2)"
fun renameR8{instr, fromSrc, toSrc} =
(inc intRenameCnt;
reloadInstr(instr, fromSrc, I.Direct toSrc)
)
fun reloadR8 S {annotations=an, reg, spillLoc, instr} = let
fun reload(instrAn, I.ANNOTATION{a,i}) = reload(a::instrAn, i)
| reload(instrAn, I.LIVE{regs, spilled}) =
{code=[I.LIVE{regs=C.rmvReg(reg, regs), spilled=C.addReg(reg, spilled)}],
proh=[],
newReg=NONE}
| reload(_, I.KILL _) = error "reload: KILL"
| reload (_, I.COPY _) = error "reload: COPY"
| reload(instrAn, instr as I.INSTR _) =
( inc intReloadCnt;
reloadInstr(annotate(instrAn, instr), reg, #opnd(getRegLoc(S,an,reg,spillLoc)))
)
in reload([], instr)
end
fun reloadReg S {dst, reg, spillLoc, annotations=an} =
let val _ = inc intReloadCnt
val srcLoc = #opnd(getRegLoc(S, an, reg, spillLoc))
val isMemReg = isMemReg dst
val dstLoc = if isMemReg then I.MemReg dst else I.Direct dst
in if InsnProps.eqOpn(srcLoc,dstLoc) then []
else if isMemReg then memToMemMove{dst=dstLoc, src=srcLoc}
else [I.move{mvOp=I.MOVL, src=srcLoc, dst=dstLoc}]
end
fun resetRA() =
(firstSpill := true;
firstFPSpill := true;
IntHashTable.clear affectedBlocks;
IntHashTable.clear deadRegs;
if !fast_floating_point then FR8.reset() else FR32.reset();
GR8.reset()
)
(* Dedicated + available registers *)
local
fun mark(arr, _, [], others) = others
| mark(arr, len, r::rs, others) = let
val r = CB.registerId r
in
if r >= len then mark(arr, len, rs, r::others)
else (Array.update(arr, r, true); mark(arr, len, rs, others))
end
val dedicatedR = Array.array(32,false)
val dedicatedF32 = Array.array(64,false)
val otherR = mark(dedicatedR, 32, Int.dedicated, [])
val otherF32 = mark(dedicatedF32, 64, Float.dedicated, [])
fun isDedicated (len, arr, other) r =
(r < len andalso Array.sub(arr, r)) orelse List.exists (fn d => r = d) other
in
val isDedicatedR : int -> bool = isDedicated (32, dedicatedR, otherR)
val isDedicatedF32 : int -> bool = isDedicated (64, dedicatedF32, otherF32)
val isDedicatedF8 : int -> bool = fn _ => false
end
fun phases ps =
let fun f([], m) = m
| f(SPILL_PROPAGATION::ps, m) = f(ps, Ra.SPILL_PROPAGATION+m)
| f(SPILL_COLORING::ps, m) = f(ps, Ra.SPILL_COLORING+m)
in f(ps, Ra.NO_OPTIMIZATION)
end
(* RA parameters *)
(* How to allocate integer registers:
* Perform register alocation + memory allocation
*)
fun RAInt S =
{spill = spillR8 S,
spillSrc = spillReg S,
spillCopyTmp= spillCopyTmp S,
reload = reloadR8 S,
reloadDst = reloadReg S,
renameSrc = renameR8,
copyInstr = copyInstrR,
K = K8,
getreg = GR8.getreg,
cellkind = CB.GP,
dedicated = isDedicatedR,
spillProh = [],
memRegs = Int.memRegs,
mode = phases(Int.phases)
} : Ra.raClient
(* How to allocate floating point registers:
* Allocate all fp registers on the stack. This is the easy way.
*)
fun RAFP32 S =
{spill = spillF S,
spillSrc = spillFreg S,
spillCopyTmp= spillFcopyTmp S,
reload = reloadF S,
reloadDst = reloadFreg S,
renameSrc = renameF,
copyInstr = copyInstrF,
K = KF32,
getreg = FR32.getreg,
cellkind = CB.FP,
dedicated = isDedicatedF32,
spillProh = [],
memRegs = Float.memRegs,
mode = phases(Float.phases)
} : Ra.raClient
(* How to allocate floating point registers:
* Allocate fp registers on the %st stack. Also perform
* memory allcoation.
*)
fun RAFP8 S =
{spill = spillF S,
spillSrc = spillFreg' S,
spillCopyTmp= spillFcopyTmp S,
reload = reloadF S,
reloadDst = reloadFreg' S,
renameSrc = renameF',
copyInstr = copyInstrF',
K = KF8,
getreg = FR8.getreg,
cellkind = CB.FP,
dedicated = isDedicatedF8,
spillProh = [],
memRegs = Float.fastMemRegs,
mode = phases(Float.fastPhases)
} : Ra.raClient
(* Two RA modes, fast and normal *)
fun fast_fp S = [RAInt S, RAFP8 S]
fun normal_fp S = [RAInt S, RAFP32 S]
(* The main ra routine *)
fun run cluster =
let val printGraph =
if !x86CfgDebugFlg then
PrintFlowgraph.printCFG(!MLRiscControl.debug_stream)
else fn msg => fn _ => ()
val S = beforeRA cluster
val _ = resetRA()
(* generic register allocator *)
val cluster = Ra.ra
(if !fast_floating_point then fast_fp S else normal_fp S)
cluster
val _ = removeDeadCode cluster
val _ = printGraph "\t---After register allocation K=8---\n" cluster
(* Run the FP translation phase when fast floating point has
* been enabled
*)
val cluster =
if !fast_floating_point andalso I.C.numCell CB.FP () > 0 then
let val cluster = X86FP.run cluster
in printGraph "\t---After X86 FP translation ---\n" cluster;
cluster
end
else cluster
in cluster
end
end
|