File: x86.mdl

package info (click to toggle)
mlton 20210117%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 58,464 kB
  • sloc: ansic: 27,682; sh: 4,455; asm: 3,569; lisp: 2,879; makefile: 2,347; perl: 1,169; python: 191; pascal: 68; javascript: 7
file content (1019 lines) | stat: -rw-r--r-- 34,740 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
(*
 * 32bit, x86 instruction set.
 *
 * Note:
 *  1. Segmentation registers and other weird stuff are not modelled.
 *  2. The instruction set that I model is 32-bit oriented.
 *     I don't try to fit that 16-bit mode stuff in.
 *  3. BCD arithmetic is missing
 *  4. Multi-precision stuff is incomplete
 *  5. No MMX (maybe we'll add this in later)
 *  6. Slegdehammer extensions from AMD (more later)
 *
 * Allen Leung (leunga@cs.nyu.edu)
 *
 *)
architecture X86 =
struct

   superscalar          (* superscalar machine *)

   little endian        (* little endian architecture *)

   lowercase assembly   (* print assembly in lower case *)

  (*------------------------------------------------------------------------
   * Note: While the x86 has only 8 integer and 8 floating point registers,
   * the SMLNJ compiler fakes it by assuming that it has 32 integer
   * and 32 floating point registers.  That's why we have 32 integer
   * and 32 floating point registers in this description.
   * Probably pseudo memory registers should understood directly by
   * the md tool.
   *
   *------------------------------------------------------------------------*)

   storage
      GP   = $r[32] of 32 bits
                asm: (fn (0,8)  => "%al" | (0,16) => "%ax" | (0,32) => "%eax"
                       | (1,8)  => "%cl" | (1,16) => "%cx" | (1,32) => "%ecx"
                       | (2,8)  => "%dl" | (2,16) => "%dx" | (2,32) => "%edx"
                       | (3,8)  => "%bl" | (3,16) => "%bx" | (3,32) => "%ebx"
                       | (4,16) => "%sp" | (4,32) => "%esp"
                       | (5,16) => "%bp" | (5,32) => "%ebp"
                       | (6,16) => "%si" | (6,32) => "%esi"
                       | (7,16) => "%di" | (7,32) => "%edi"
                       | (r,_) => "%"^Int.toString r
                      )
   |  FP   = $f[32] of 64 bits
                 asm: (fn (f,_) =>
                          if f < 8 then "%st("^Int.toString f^")"
                          else "%f"^Int.toString f (* pseudo register *)
                      )
   |  CC     = $cc[] of 32 bits aliasing GP asm: "cc"
   |  EFLAGS = $eflags[1] of 32 bits asm: "$eflags"
   |  FFLAGS = $fflags[1] of 32 bits asm: "$fflags"
   |  MEM    = $m[]    of 8 aggregable bits asm: "mem"
   |  CTRL   = $ctrl[] asm: "ctrl"

   locations
       eax       = $r[0]
   and ecx       = $r[1]
   and edx       = $r[2]
   and ebx       = $r[3]
   and esp       = $r[4]
   and ebp       = $r[5]
   and esi       = $r[6]
   and edi       = $r[7]
   and stackptrR = $r[4]
   and ST(x)     = $f[x]
   and ST0       = $f[0]
   and asmTmpR   = $r[0] (* not used *)
   and fasmTmp   = $f[0] (* not used *)
   and eflags    = $eflags[0]

  (*------------------------------------------------------------------------
   *
   * Representation for various opcodes.
   *
   *------------------------------------------------------------------------*)
   structure Instruction =
   struct
      (* An effective address can be any combination of
       *  base + index*scale + disp
       *   or
       *   B + I*SCALE + DISP
       *
       * where any component is optional. The operand datatype captures
       * all these combinations.
       *
       *  DISP 	         == Immed | ImmedLabel | Const
       *  B		 == Displace{base=B, disp=0}
       *  B+DISP	 == Displace{base=B, disp=DISP}
       *  I*SCALE+DISP   == Indexed{base=NONE,index=I,scale=SCALE,disp=D}
       *  B+I*SCALE+DISP == Indexed{base=SOME B,index=I,scale=SCALE,disp=DISP}
       * Note1: The index register cannot be EBP.
       *        The disp field must be one of Immed, ImmedLabel,  or Const.
       *)

      (* Note: Relative is only generated after sdi resolution *)
      datatype operand =
         Immed      of Int32.int	   rtl: int
       | ImmedLabel of T.labexp            rtl: labexp
       | Relative   of int		   (* no semantics given *)
       | LabelEA    of T.labexp            rtl: labexp (* XXX *)
       | Direct     of $GP		   rtl: $r[GP]
          (* pseudo memory register for floating point *)
       | FDirect    of $FP                 rtl: $f[FP]
          (* virtual floating point register *)
       | FPR        of $FP                 rtl: $f[FP]
       | ST         of $FP		   rtl: $f[FP]
          (* pseudo memory register *)
       | MemReg     of $GP                 rtl: $r[GP]
       | Displace   of {base: $GP, disp:operand, mem:Region.region}
              rtl: $m[$r[base] + disp : mem]
       | Indexed    of {base: $GP option, index: $GP, scale:int,
                        disp:operand, mem:Region.region}
              rtl: $m[$r[base] + $r[index] << scale + disp : mem]

      type addressing_mode = operand

      type ea = operand

      datatype cond! =
          EQ "e" 0w4 | NE 0w5 | LT "l" 0w12 | LE 0w14 | GT "g" 0w15 | GE 0w13
        | B  0w2 | BE (* below *) 0w6 | A 0w7 | AE (* above *) 0w3
        | C  0w2 | NC (* if carry *) 0w3 | P 0wxa | NP (* if parity *) 0wxb
        | O  0w0 | NO (* overflow *) 0w1

          (* LOCK can only be used in front of
           *                      (Intel ordering, not gasm ordering)
           * ADC, ADD, AND, BT   mem, reg/imm
           * BTS, BTR, BTC, OR   mem, reg/imm
           * SBB, SUB, XOR       mem, reg/imm
           * XCHG                reg, mem
           * XCHG                mem, reg
           * DEC, INC, NEG, NOT  mem
           *)

      datatype binaryOp! =
         ADDL | SUBL | ANDL | ORL | XORL | SHLL | SARL | SHRL | IMULL
       | ADCL | SBBL
       | ADDW | SUBW | ANDW | ORW | XORW | SHLW | SARW | SHRW | IMULW
       | ADDB | SUBB | ANDB | ORB | XORB | SHLB | SARB | SHRB | IMULB
       | BTSW | BTCW | BTRW | BTSL | BTCL | BTRL
       | ROLW | RORW | ROLL | RORL
       | XCHGB | XCHGW | XCHGL

         (* Moby need these but I'm not going to handle them in the optimzer
          * until Moby starts generating these things
          *)
       | LOCK_ADCW "lock\n\tadcw"
       | LOCK_ADCL "lock\n\tadcl"
       | LOCK_ADDW "lock\n\taddw"
       | LOCK_ADDL "lock\n\taddl"
       | LOCK_ANDW "lock\n\tandw"
       | LOCK_ANDL "lock\n\tandl"
       | LOCK_BTSW "lock\n\tbtsw"
       | LOCK_BTSL "lock\n\tbtsl"
       | LOCK_BTRW "lock\n\tbtrw"
       | LOCK_BTRL "lock\n\tbtrl"
       | LOCK_BTCW "lock\n\tbtcw"
       | LOCK_BTCL "lock\n\tbtcl"
       | LOCK_ORW  "lock\n\torw"
       | LOCK_ORL  "lock\n\torl"
       | LOCK_SBBW "lock\n\tsbbw"
       | LOCK_SBBL "lock\n\tsbbl"
       | LOCK_SUBW "lock\n\tsubw"
       | LOCK_SUBL "lock\n\tsubl"
       | LOCK_XORW "lock\n\txorw"
       | LOCK_XORL "lock\n\txorl"
       | LOCK_XADDB "lock\n\txaddb"
       | LOCK_XADDW "lock\n\txaddw"
       | LOCK_XADDL "lock\n\txaddl"

      (* One operand opcodes *)
      datatype multDivOp! =
               IMULL1 "imull" | MULL1 "mull" | IDIVL1 "idivl" | DIVL1 "divl"

      datatype unaryOp! = DECL | INCL | NEGL | NOTL
                        | DECW | INCW | NEGW | NOTW
                        | DECB | INCB | NEGB | NOTB
                        | LOCK_DECL "lock\n\tdecl"
                        | LOCK_INCL "lock\n\tincl"
                        | LOCK_NEGL "lock\n\tnegl"
                        | LOCK_NOTL "lock\n\tnotl"

      datatype shiftOp! = SHLDL | SHRDL

      datatype bitOp! = BTW
                      | BTL
                      | LOCK_BTW "lock\n\tbtw"
                      | LOCK_BTL "lock\n\tbtl"

      datatype move! = MOVL
                     | MOVB
                     | MOVW
                     | MOVSWL  (* sx(word) -> long *)
                     | MOVZWL  (* zx(word) -> long *)
                     | MOVSBL  (* sx(byte) -> long *)
                     | MOVZBL  (* zx(byte) -> long *)

     (* The Intel manual is incorrect on the description of FDIV and FDIVR *)
      datatype fbinOp! =
          FADDP   | FADDS
        | FMULP   | FMULS
                  | FCOMS
                  | FCOMPS
        | FSUBP   | FSUBS  	(* ST(1) := ST-ST(1); [pop] *)
        | FSUBRP  | FSUBRS 	(* ST(1) := ST(1)-ST; [pop] *)
        | FDIVP   | FDIVS   (* ST(1) := ST/ST(1); [pop] *)
        | FDIVRP  | FDIVRS 	(* ST(1) := ST(1)/ST; [pop] *)
                  | FADDL
                  | FMULL
                  | FCOML
                  | FCOMPL
                  | FSUBL 	(* ST(1) := ST-ST(1); [pop] *)
                  | FSUBRL 	(* ST(1) := ST(1)-ST; [pop] *)
                  | FDIVL   (* ST(1) := ST/ST(1); [pop] *)
                  | FDIVRL 	(* ST(1) := ST(1)/ST; [pop] *)

      datatype fibinOp! =
          FIADDS (0wxde,0) | FIMULS  (0wxde,1)
        | FICOMS (0wxde,2) | FICOMPS (0wxde,3)
        | FISUBS (0wxde,4) | FISUBRS (0wxde,5)
        | FIDIVS (0wxde,6) | FIDIVRS (0wxde,7)
        | FIADDL (0wxda,0) | FIMULL  (0wxda,1)
        | FICOML (0wxda,2) | FICOMPL (0wxda,3)
        | FISUBL (0wxda,4) | FISUBRL (0wxda,5)
        | FIDIVL (0wxda,6) | FIDIVRL (0wxda,7)

      datatype funOp! =
         (* the first byte is always d9; the second byte is listed *)
         FCHS     0wxe0
       | FABS     0wxe1
       | FTST     0wxe4
       | FXAM     0wxe5
       | FPTAN    0wxf2
       | FPATAN   0wxf3
       | FXTRACT  0wxf4
       | FPREM1   0wxf5
       | FDECSTP  0wxf6
       | FINCSTP  0wxf7
       | FPREM    0wxf8
       | FYL2XP1  0wxf9
       | FSQRT    0wxfa
       | FSINCOS  0wxfb
       | FRNDINT  0wxfc
       | FSCALE   0wxfd
       | FSIN     0wxfe
       | FCOS     0wxff

      datatype fenvOp! = FLDENV | FNLDENV | FSTENV | FNSTENV

      (* Intel floating point precision *)
      datatype fsize = FP32 "s" | FP64 "l" | FP80 "t"

      (* Intel integer precision *)
      datatype isize = I8 "8" | I16 "16" | I32 "32" | I64 "64"

  end (* Instruction *)

  (*------------------------------------------------------------------------
   *
   * Here, I'm going to define the semantics of the instructions
   *
   *------------------------------------------------------------------------*)
  structure RTL =
  struct

     (* Get the basis *)
     include "Tools/basis.mdl"
     open Basis
     infix 1 ||  (* parallel effects *)
     infix 2 :=  (* assignment *)

     (* Some type abbreviations *)
     fun byte x = (x : #8 bits)
     fun word x = (x : #16 bits)
     fun long x = (x : #32 bits)
     fun float x = (x : #32 bits)
     fun double x = (x : #64 bits)
     fun real80 x = (x : #80 bits)

     (* Intel register abbreviations *)
     val eax = $r[0] and ecx = $r[1] and edx = $r[2] and ebx = $r[3]
     and esp = $r[4] and ebp = $r[5] and esi = $r[6] and edi = $r[7]

     (* Condition codes bits in eflag.
      * Let's give symbolic name for each bit as per the Intel doc.
      *)
     rtl setFlag : #n bits -> #n bits
     fun flag b = andb($eflags[0] >> b, 1)
     val CF = flag 0 and PF = flag 2
     and ZF = flag 6 and SF = flag 7 and OF = flag 11

     (* Now gets use the bits to express the conditions.  Again from Intel. *)
     (* conditions *)                   (* aliases *)
     val B   = CF == 1                  val C = B and NAE = B
     val BE  = CF == 1 orelse ZF == 1   val NA = BE
     val E   = ZF == 1                  val Z = E
     val L   = SF <> OF                 val NGE = L
     val LE  = SF <> OF orelse ZF == 1  val NG = LE
     val NB  = CF == 0                  val AE = NB and NC = NB
     val NBE = CF == 0 andalso ZF == 0  val A  = NBE
     val NE  = ZF == 0                  val NZ = NE
     val NL  = SF == OF                 val GE = NL
     val NLE = ZF == 0 andalso SF == OF val G = NLE
     val NO  = OF == 0
     val NP  = PF == 0                  val PO = NP
     val NS  = SF == 0
     val O   = OF == 1
     val P   = PF == 1                  val PE = P
     val S   = SF == 1

     rtl NOP{} = () (* duh! *)
     rtl LEA{addr, r32} = $r[r32] := addr (* this is completely wrong! XXX *)

         (* moves with type conversion *)
     rtl MOVL{src,dst} = dst := long src
     rtl MOVW{src,dst} = dst := word src
     rtl MOVB{src,dst} = dst := byte src
     rtl MOVSWL{src,dst} = dst := long(sx(word src))
     rtl MOVZWL{src,dst} = dst := long(zx(word src))
     rtl MOVSBL{src,dst} = dst := long(sx(byte src))
     rtl MOVZBL{src,dst} = dst := long(zx(byte src))

     (* semantics of integer arithmetic;
      * all instructions sets the condition code
      *)
     fun binop typ oper {dst,src} = dst := typ(oper(dst,src))
     fun arith typ oper {dst,src} = dst := typ(oper(dst,src))
                                 || $eflags[0] := ??? (* XXX *)
     fun unary typ oper {opnd} = opnd := typ(oper opnd)

     fun inc x = x + 1
     fun dec x = x - 1

     (* I'm too lazy to specify the semantics of these for now *)
     rtl adc sbb bts btc btr rol ror xchg xadd cmpxchg
          : #n bits * #n bits -> #n bits

     rtl [ADD,SUB,AND,OR,XOR]^^B = map (arith byte) [(+),(-),andb,orb,xorb]
     rtl [ADD,SUB,AND,OR,XOR]^^W = map (arith word) [(+),(-),andb,orb,xorb]
     rtl [ADD,SUB,AND,OR,XOR]^^L = map (arith long) [(+),(-),andb,orb,xorb]
     rtl [SHR,SHL,SAR]^^B = map (binop byte) [(>>),(<<),(~>>)]
     rtl [SHR,SHL,SAR]^^W = map (binop word) [(>>),(<<),(~>>)]
     rtl [SHR,SHL,SAR]^^L = map (binop long) [(>>),(<<),(~>>)]
     rtl [NEG,NOT,INC,DEC]^^B = map (unary byte) [(~),notb,inc,dec]
     rtl [NEG,NOT,INC,DEC]^^W = map (unary word) [(~),notb,inc,dec]
     rtl [NEG,NOT,INC,DEC]^^L = map (unary long) [(~),notb,inc,dec]


     rtl [ADC,SBB,BTS,BTC,BTR,ROL,ROR,XCHG]^^B =
          map (arith byte) [adc,sbb,bts,btc,btr,rol,ror,xchg]
     rtl [ADC,SBB,BTS,BTC,BTR,ROL,ROR,XCHG]^^W =
          map (arith word) [adc,sbb,bts,btc,btr,rol,ror,xchg]
     rtl [ADC,SBB,BTS,BTC,BTR,ROL,ROR,XCHG]^^L =
          map (arith long) [adc,sbb,bts,btc,btr,rol,ror,xchg]

     fun lockarith typ oper {src,dst}=
             dst := typ(oper(dst,src))
          || Kill $eflags[0] (* XXX *)
     fun lockunary typ oper {opnd} =
             opnd := typ(oper(opnd))
          || Kill $eflags[0] (* XXX *)

     rtl LOCK_^^[ADD,SUB,AND,OR,XOR,XADD]^^B =
          map (lockarith byte) [(+),(-),andb,orb,xorb,xadd]
     rtl LOCK_^^[ADD,SUB,AND,OR,XOR,XADD]^^W =
          map (lockarith word) [(+),(-),andb,orb,xorb,xadd]
     rtl LOCK_^^[ADD,SUB,AND,OR,XOR,XADD]^^L =
          map (lockarith long) [(+),(-),andb,orb,xorb,xadd]
     rtl LOCK_^^[ADC,SBB,BTS,BTC,BTR,ROL,ROR,XCHG]^^B =
          map (lockarith byte) [adc,sbb,bts,btc,btr,rol,ror,xchg]
     rtl LOCK_^^[ADC,SBB,BTS,BTC,BTR,ROL,ROR,XCHG]^^W =
          map (lockarith word) [adc,sbb,bts,btc,btr,rol,ror,xchg]
     rtl LOCK_^^[ADC,SBB,BTS,BTC,BTR,ROL,ROR,XCHG]^^L =
          map (lockarith long) [adc,sbb,bts,btc,btr,rol,ror,xchg]
     rtl LOCK_^^[DEC,INC,NEG,NOT]^^L =
          map (lockunary long) [dec,inc,(~),notb]
     rtl LOCK_^^[CMPXCHG]^^B = map (lockarith byte) [cmpxchg]
     rtl LOCK_^^[CMPXCHG]^^W = map (lockarith word) [cmpxchg]
     rtl LOCK_^^[CMPXCHG]^^L = map (lockarith long) [cmpxchg]

     (* Multiplication/division *)
     rtl upperMultiply : #n bits * #n bits -> #n bits
     rtl MULL1{src}  = eax        := muls(eax, src) ||
                       edx        := upperMultiply(eax, src) ||
                       $eflags[0] := ???
     rtl IDIVL1{src} = eax := divs(eax, src) ||
                       edx := rems(eax, src) ||
                       $eflags[0] := ???
     rtl DIVL1{src}  = edx := divu(eax, src) ||
                       edx := remu(eax, src) ||
                       $eflags[0] := ???

     (* test[b,w,l] *)
     rtl TESTB {lsrc,rsrc} = $eflags[0] := setFlag(andb(byte lsrc, rsrc))
     rtl TESTW {lsrc,rsrc} = $eflags[0] := setFlag(andb(word lsrc, rsrc))
     rtl TESTL {lsrc,rsrc} = $eflags[0] := setFlag(andb(long lsrc, rsrc))

     (* setcc *)
     fun set cc {opnd} = opnd := byte(cond(cc, 0xff, 0x0))
     rtl SET^^   [EQ,NE,LT,LE,GT,GE,B,BE,A,AE,C,NC,P,NP,O,NO] =
         map set [E ,NE,L, LE,G ,GE,B,BE,A,AE,C,NC,P,NP,O,NO]

     (* conditional move *)
     fun cmov cc {src,dst} = if cc then $r[dst] := long src else ()
     rtl CMOV^^   [EQ,NE,LT,LE,GT,GE,B,BE,A,AE,C,NC,P,NP,O,NO] =
         map cmov [E ,NE,L, LE,G ,GE,B,BE,A,AE,C,NC,P,NP,O,NO]

     (* push and pops *)
     rtl PUSHL {operand} = $m[esp - 4] := long(operand) || esp := esp - 4
     rtl PUSHW {operand} = $m[esp - 2] := word(operand) || esp := esp - 2
     rtl PUSHB {operand} = $m[esp - 1] := byte(operand) || esp := esp - 1
     rtl POP  {operand} = operand := long($m[esp]) || esp := esp + 4

     (* semantics of branches and jumps *)
     rtl JMP{operand} = Jmp(long operand)
     fun jcc cc {opnd} = if cc then Jmp(long opnd) else ()
     rtl J^^     [EQ,NE,LT,LE,GT,GE,B,BE,A,AE,C,NC,P,NP,O,NO] =
         map jcc [E ,NE,L, LE,G ,GE,B,BE,A,AE,C,NC,P,NP,O,NO]
     rtl CALL{opnd,defs,uses} =
         Call(long opnd) ||
         Kill $cellset[defs] ||
         Use $cellset[uses]

     (* semantics of floating point operators
      * The 3-address fake operators first.
      *)
     fun fbinop typ oper {lsrc, rsrc, dst} = dst := typ(oper(lsrc, rsrc))
     fun funary typ oper {src, dst} = dst := typ(oper src)
     rtl F^^[ADD,SUB,MUL,DIV]^^L = map (fbinop double) f^^[add,sub,mul,div]
     rtl F^^[ADD,SUB,MUL,DIV]^^S = map (fbinop float) f^^[add,sub,mul,div]
     rtl F^^[ADD,SUB,MUL,DIV]^^T = map (fbinop real80) f^^[add,sub,mul,div]

      (* semantics of trig/transendental functions are abstract *)
     rtl fsqrt fsin fcos ftan fasin facos fatan fln fexp : #n bits -> #n bits
     rtl F^^[CHS,ABS,SQRT,SIN,COS,TAN,ASIN,ACOS,ATAN,LN,EXP] =
         map (funary real80)
         f^^[neg,abs,sqrt,sin,cos,tan,asin,acos,atan,ln,exp]
  end (* RTL *)

  (*------------------------------------------------------------------------
   * Machine Instruction encoding on the x86
   * Because of variable width instructions.
   * We decompose each byte field into a seperate format first, then combine
   * then to form the real instructions
   *------------------------------------------------------------------------*)
  instruction formats 8 bits
    modrm{mod:2, reg:3, rm:3}
  | reg{opc:5, reg:3}
  | sib{ss:2, index:3, base:3}
  | immed8{imm:8}

  instruction formats 32 bits
    immed32{imm:32}

  (*
   * Variable format instructions
   *)
  instruction formats
    immedOpnd{opnd} =
      (case opnd of
         I.Immed i32 => i32
       | I.ImmedLabel le => lexp le
       | I.LabelEA le => lexp le
       | _ => error "immedOpnd"
      )
  | extension{opc, opnd} = (* generate an extension *)
      (case opnd of
        I.Direct r => modrm{mod=3, reg=opc, rm=r}
      | I.MemReg _ => extension{opc,opnd=memReg opnd}
      | I.FDirect _ => extension{opc,opnd=memReg opnd}
      | I.Displace{base, disp, ...} =>
        let val immed = immedOpnd{opnd=disp}
        in  () (* XXX *)
        end
      | I.Indexed{base=NONE, index, scale, disp, ...} => ()
      | I.Indexed{base=SOME b, index, scale, disp, ...} => ()
      | _ => error "immedExt"
      )

   instruction formats 16 bits
     encodeST{prefix:8, opc:5, st: $FP 3}

   instruction formats
     encodeReg{prefix:8, reg: $GP 3, opnd} =
      (emit prefix; immedExt{opc=reg, opnd=opnd})
   | arith{opc1,opc2,src,dst} =
      (case (src, dst) of
        (I.ImmedLabel le, dst) => arith{opc1,opc2,src=I.Immed(lexp le),dst}
      | (I.LabelEA le, dst) => arith{opc1,opc2,src=I.Immed(lexp le),dst}
      | (I.Immed i,dst) => ()
      | (src, I.Direct r) => encodeReg{prefix=opc1+op3,reg,opnd=src}
      | (I.Direct r,dst) => encodeReg{prefix=opc1+0w1,reg,opnd=dst}
      | _ => error "arith"
      )

  (*------------------------------------------------------------------------
   * A bunch of routines for emitting assembly on the x86.
   * This is a headache because the syntax is quite non-orthorgonal.
   * So we have to write some code to help out the md tool
   * Assembly note:
   * Note: we are using the AT&T syntax (for Linux) and not the intel syntax
   * memory operands have the form:
   *       section:disp(base, index, scale)
   * Most of the complication is actually in emiting the correct
   * operand syntax.
   *------------------------------------------------------------------------*)

  functor Assembly
     (structure MemRegs : MEMORY_REGISTERS where I = Instr
      val memRegBase : CellsBasis.cell option) =
  struct
     fun memReg r = MemRegs.memReg {reg=r, base=Option.valOf memRegBase}
     fun emitInt32 i =
     let val s = Int32.toString i
         val s = if i >= 0 then s else "-"^String.substring(s,1,size s-1)
     in  emit s end

     val {low=SToffset, ...} = C.cellRange CellsBasis.FP

     fun emitScale 0 = emit "1"
       | emitScale 1 = emit "2"
       | emitScale 2 = emit "4"
       | emitScale 3 = emit "8"
       | emitScale _ = error "emitScale"

     and eImmed(I.Immed (i)) = emitInt32 i
       | eImmed(I.ImmedLabel lexp) = emit_labexp lexp
       | eImmed _ = error "eImmed"


     and emit_operand opn =
         case opn of
         I.Immed i => (emit "$"; emitInt32 i)
       | I.ImmedLabel lexp => (emit "$"; emit_labexp lexp)
       | I.LabelEA le => emit_labexp le
       | I.Relative _ => error "emit_operand"
       | I.Direct r => emitCell r
       | I.MemReg r => emit_operand(memReg opn)
       | I.ST f => emitCell f
       | I.FPR f => (emit "%f"; emit(Int.toString(CellsBasis.registerNum f)))
       | I.FDirect f => emit_operand(memReg opn)
       | I.Displace{base,disp,mem,...} =>
           (emit_disp disp; emit "("; emitCell base; emit ")";
            emit_region mem)
       | I.Indexed{base,index,scale,disp,mem,...} =>
          (emit_disp disp; emit "(";
           case base of
             NONE => ()
           | SOME base => emitCell base;
           comma();
           emitCell index; comma();
           emitScale scale; emit ")"; emit_region mem)

      and emit_operand8(I.Direct r) = emit(CellsBasis.toStringWithSize(r,8))
        | emit_operand8 opn = emit_operand opn

      and emit_disp(I.Immed 0) = ()
        | emit_disp(I.Immed i) = emitInt32 i
        | emit_disp(I.ImmedLabel lexp) = emit_labexp lexp
        | emit_disp _ = error "emit_disp"

     (* The gas assembler does not like the "$" prefix for immediate
      * labels in certain instructions.
      *)
      fun stupidGas(I.ImmedLabel lexp) = emit_labexp lexp
        | stupidGas opnd = (emit "*"; emit_operand opnd)

     (* Display the floating point binary opcode *)
      fun isMemOpnd(I.MemReg _) = true
        | isMemOpnd(I.FDirect f) = true
        | isMemOpnd(I.LabelEA _) = true
        | isMemOpnd(I.Displace _) = true
        | isMemOpnd(I.Indexed _) = true
        | isMemOpnd _ = false
      fun chop fbinOp =
          let val n = size fbinOp
          in  case Char.toLower(String.sub(fbinOp,n-1)) of
                (#"s" | #"l") => String.substring(fbinOp,0,n-1)
              | _ => fbinOp
          end

      fun isST0 (I.ST r) = CellsBasis.registerNum r = 0
        | isST0 _ = false

      (* Special syntax for binary operators *)
      fun emit_fbinaryOp(binOp,src,dst) =
          if isMemOpnd src then
              (emit_fbinOp binOp; emit "\t"; emit_operand src)
          else (emit(chop(asm_fbinOp binOp)); emit "\t";
                case (isST0 src, isST0 dst) of
                  (_, true) => (emit_operand src; emit ", %st")
                | (true, _) => (emit "%st, "; emit_operand dst)
                | _ => error "emit_fbinaryOp"
               )

      val emit_dst = emit_operand
      val emit_src = emit_operand
      val emit_opnd = emit_operand
      val emit_opnd8 = emit_operand8
      val emit_rsrc = emit_operand
      val emit_lsrc = emit_operand
      val emit_addr = emit_operand
      val emit_src1 = emit_operand
      val emit_ea = emit_operand
      val emit_count = emit_operand
  end (* Assembly *)


  (*------------------------------------------------------------------------
   *
   * Reservation tables and pipeline definitions for scheduling.
   * Faked for now as I don't have to time to look up the definitions
   * from the Intel doc.
   *
   *------------------------------------------------------------------------*)

   (* Function units *)
   resource issue and mem and alu and falu and fmul and fdiv and branch

   (* Different implementations of cpus *)
   cpu default 2 [2 issue, 2 mem, 1 alu, 1 falu, 1 fmul] (* 2 issue machine *)

   (* Definitions of various reservation tables *)
   pipeline NOP _    = [issue]
    and     ARITH _  = [issue^^alu]
    and     LOAD _   = [issue^^mem]
    and     STORE _  = [issue^^mem,mem,mem]
    and     FARITH _ = [issue^^falu]
    and     FMUL _   = [issue^^fmul,fmul]
    and     FDIV _   = [issue^^fdiv,fdiv*50]
    and     BRANCH _ = [issue^^branch]

  (*------------------------------------------------------------------------
   *
   * Compiler representation of the instruction set.
   *
   *------------------------------------------------------------------------*)
  instruction
      NOP
	asm: ``nop''
	rtl: ``NOP''

    | JMP of operand * Label.label list
	asm: ``jmp\t<stupidGas operand>''
	rtl: ``JMP''

    | JCC of {cond:cond, opnd:operand}
	asm: ``j<cond>\t<stupidGas opnd>''
	rtl: ``J<cond>''

    | CALL of {opnd: operand, defs: $cellset, uses: $cellset,
               return: $cellset, cutsTo: Label.label list, mem: Region.region,
 	       pops:Int32.int}
	asm: ``call\t<stupidGas opnd><mem><
          	emit_defs(defs)><
          	emit_uses(uses)><
          	emit_cellset("return",return)><
                emit_cutsTo cutsTo>''
	rtl: ``CALL''

    | ENTER of {src1:operand, src2:operand}
	asm: ``enter\t<emit_operand src1>, <emit_operand src2>''

    | LEAVE
	asm: ``leave''

    | RET of operand option
	asm: ``ret<case option of NONE => ()
                                | SOME e => (emit "\t"; emit_operand e)>''

   (* integer *)
    | MOVE of {mvOp:move, src:operand, dst:operand}
	asm: ``<mvOp>\t<src>, <dst>''
	rtl: ``<mvOp>''

    | LEA of {r32: $GP, addr: operand}
	asm: ``leal\t<addr>, <r32>''
	rtl: ``LEA''

    | CMPL of {lsrc: operand, rsrc: operand}
	asm: ``cmpl\t<rsrc>, <lsrc>''

    | CMPW of {lsrc: operand, rsrc: operand}
	``cmpb\t<rsrc>, <lsrc>''

    | CMPB of {lsrc: operand, rsrc: operand}
	``cmpb\t<rsrc>, <lsrc>''

    | TESTL of {lsrc: operand, rsrc: operand}
	asm: ``testl\t<rsrc>, <lsrc>''
	rtl: ``TESTL''

    | TESTW of {lsrc: operand, rsrc: operand}
	asm: ``testw\t<rsrc>, <lsrc>''
	rtl: ``TESTW''

    | TESTB of {lsrc: operand, rsrc: operand}
	asm: ``testb\t<rsrc>, <lsrc>''
	rtl: ``TESTB''

    | BITOP of {bitOp:bitOp, lsrc: operand, rsrc: operand}
	``<bitOp>\t<rsrc>, <lsrc>''

    | BINARY of {binOp:binaryOp, src:operand, dst:operand}
	asm: (case (src,binOp) of
               (I.Direct _,  (* tricky business here for shifts *)
               (I.SARL | I.SHRL | I.SHLL |
                I.SARW | I.SHRW | I.SHLW |
                I.SARB | I.SHRB | I.SHLB)) => ``<binOp>\t%cl, <dst>''
             | _ => ``<binOp>\t<src>, <dst>''
             )
	(*rtl: ``<binOp>''*)
    | SHIFT of {shiftOp:shiftOp, src:operand, dst:operand, count:operand}
        asm: (case count of (* must be %ecx if it is a register *)
                I.Direct ecx => ``<shiftOp>\t<src>, <dst>''
              | _            => ``<shiftOp>\t<src>, <count>, <dst>''
             )

    | CMPXCHG of {lock:bool, sz:isize, src: operand, dst:operand}
	asm: (if lock then ``lock\n\t'' else ();
              ``cmpxchg'';
              case sz of
                I.I8 => ``b''
              | I.I16 => ``w''
              | I.I32 => ``l''
	      | I.I64 => error "CMPXCHG: I64";
              ``\t<src>, <dst>''
             )

    | MULTDIV of {multDivOp:multDivOp, src:operand}
	asm: ``<multDivOp>\t<src>''

    | MUL3 of {dst: $GP, src2: Int32.int, src1:operand}
        (* Fermin: constant operand must go first *)
        asm: ``imull\t$<emitInt32 src2>, <src1>, <dst>''

    | UNARY of {unOp:unaryOp, opnd:operand}
	asm: ``<unOp>\t<opnd>''
	rtl: ``<unOp>''

      (* set byte on condition code; note that
       * this only sets the low order byte, so it also
       * uses its operand.
       *)
    | SET of {cond:cond, opnd:operand}
	asm: ``set<cond>\t<emit_opnd8 opnd>''
	rtl: ``SET<cond>''

        (* conditional move; Pentium Pro or higher only
         * Destination must be a register.
         *)
    | CMOV of {cond:cond, src:operand, dst: $GP}
	asm: ``cmov<cond>\t<src>, <dst>''
	rtl: ``CMOV<cond>''

    | PUSHL of operand
	asm: ``pushl\t<operand>''
	rtl: ``PUSHL''

    | PUSHW of operand
	asm: ``pushw\t<operand>''
	rtl: ``PUSHW''

    | PUSHB of operand
	asm: ``pushb\t<operand>''
	rtl: ``PUSHB''

    | PUSHFD     (* push $eflags onto stack *)
	``pushfd''

    | POPFD	(* pop $eflags onto stack *)
	``popfd''

    | POP of operand
	asm: ``popl\t<operand>''
	rtl: ``POP''

    | CDQ
	``cdq''

    | INTO
	``into''

    (* floating *)
    | FBINARY of {binOp:fbinOp, src:operand, dst:operand}
	asm: (emit_fbinaryOp(binOp,src,dst))

    | FIBINARY of {binOp:fibinOp, src:operand}
	asm: ``<binOp>\t<src>'' (* the implied destination is %ST(0) *)

    | FUNARY of funOp
	``<funOp>''

    | FUCOM of operand
	``fucom\t<operand>''

    | FUCOMP of operand
	``fucomp\t<operand>''

    | FUCOMPP
	``fucompp''

    | FCOMPP
	``fcompp''

    | FCOMI of operand
	``fcomi\t<operand>, %st''

    | FCOMIP of operand
	``fcomip\t<operand>, %st''

    | FUCOMI of operand
	``fucomi\t<operand>, %st''

    | FUCOMIP of operand
	``fucomip\t<operand>, %st''

    | FXCH of {opnd: $FP}
	``fxch\t<opnd>''

    | FSTPL of operand
	asm: (case operand of
               I.ST _ => ``fstp\t<operand>''
             | _ => ``fstpl\t<operand>''
             )

    | FSTPS of operand
	``fstps\t<operand>''

    | FSTPT of operand
	``fstps\t<operand>''

    | FSTL of operand
	asm: (case operand of
                I.ST _ => ``fst\t<operand>''
              | _      => ``fstl\t<operand>''
             )

    | FSTS of operand
	``fsts\t<operand>''

    | FLD1
	``fld1''

    | FLDL2E
	``fldl2e''

    | FLDL2T
	``fldl2t''

    | FLDLG2
	``fldlg2''

    | FLDLN2
	``fldln2''

    | FLDPI
	``fldpi''

    | FLDZ
	``fldz''

    | FLDL of operand
	asm: (case operand of
               I.ST _ => ``fld\t<operand>''
             | _ => ``fldl\t<operand>''
             )

    | FLDS of operand
	``flds\t<operand>''

    | FLDT of operand
	``fldt\t<operand>''

    | FILD of operand
	``fild\t<operand>''

    | FILDL of operand
	``fildl\t<operand>''

    | FILDLL of operand
	``fildll\t<operand>''

    | FNSTSW
	``fnstsw''

    | FENV of {fenvOp:fenvOp, opnd:operand} (* load/store environment *)
	``<fenvOp>\t<opnd>''

      (* pseudo floating ops *)
    | FMOVE of {fsize:fsize, src:operand, dst:operand}
	``fmove<fsize>\t<src>, <dst>''

    | FILOAD of {isize:isize, ea:operand, dst:operand}
	``fiload<isize>\t<ea>, <dst>''

    | FBINOP of {fsize:fsize,
                 binOp:fbinOp, lsrc:operand, rsrc:operand, dst:operand}
	``<binOp><fsize>\t<lsrc>, <rsrc>, <dst>''
        (* rtl: ``<binOp><fsize>'' *)

    | FIBINOP of {isize:isize,
                  binOp:fibinOp, lsrc:operand, rsrc:operand, dst:operand}
	``<binOp><isize>\t<lsrc>, <rsrc>, <dst>''
        (* rtl: ``<binOp><isize>'' *)

    | FUNOP of {fsize:fsize, unOp:funOp, src:operand, dst:operand}
	``<unOp><fsize>\t<src>, <dst>''
        (* rtl: [[unOp fsize]] *)

    | FCMP of {i:bool,fsize:fsize, lsrc:operand, rsrc:operand}
	asm: (if i then ``fcmpi'' else ``fcmp''; ``<fsize>\t<lsrc>, <rsrc>'')
        (* rtl: [["FCMP" fsize]] *)

   (* misc *)
    | SAHF        (* %flags -> %ah *)
	``sahf''

  (*** concurrency operations ****)

      (* performs a serializing operation on all load-to-memory operations issued prior to
       * the lfence instruction.
       *)
    | LFENCE
        asm: ``lfence''
        rtl:  ``LFENCE''

      (* performs a serializing operation on all load-from-memory and store-to-memory
       * operations issued prior to the mfence instruction.
       *)
    | MFENCE
        asm: ``mfence''
        rtl: ``MFENCE''

      (* performs a serializing operation on all store-to-memory operations issued prior to
       * the sfence instruction.
       *)
    | SFENCE
        asm: ``sfence''
        rtl:  ``SFENCE''

      (* improves performance of spin-wait loops *)
    | PAUSE
        asm: ``pause''
        rtl: ``PAUSE''

    | LAHF	  (* %ah -> %flags *)
	``lahf''

    | SOURCE of {}
        asm: ``source''
        mc:  ()

    | SINK of {}
        asm: ``sink''
        mc:  ()

    | PHI of {}
        asm: ``phi''
        mc:  ()

  (*------------------------------------------------------------------------
   * Some helper routines for the SSA optimizer.
   * These should go away soon.
   *------------------------------------------------------------------------*)
    structure SSA =
    struct
       fun operand(ty, I.Immed i) = T.LI(T.I.fromInt32(32,i))
         (*| operand(ty, I.ImmedLabel le) = T.LABEL le*)
         | operand(ty, I.Direct r) = T.REG(ty, r)
         | operand _ = error "operand"
    end
  (*------------------------------------------------------------------------
   * Some helper routines for the rewriting module.
   * These should go away soon.
   *------------------------------------------------------------------------*)
    structure Rewrite =
    struct
        fun rewriteOperandUse (rs,rt,opnd) =
        (case opnd
         of I.Direct r => if C.sameColor(r,rs) then I.Direct rt else opnd
          | I.Displace{base, disp, mem} =>
              if C.sameColor(base,rs)
              then I.Displace{base=rt, disp=disp, mem=mem}
              else opnd
          | I.Indexed{base as SOME b, index, scale, disp, mem} => let
              val base'= if C.sameColor(b,rs) then SOME rt else base
              val index'=if C.sameColor(index,rs) then rt else index
            in I.Indexed{base=base', index=index', scale=scale,
                         disp=disp, mem=mem}
            end
          | I.Indexed{base, index, scale, disp, mem=mem}  =>
            if C.sameColor(index,rs) then
              I.Indexed{base=base, index=rt, scale=scale, disp=disp, mem=mem}
            else opnd
          | _ => opnd
        (*esac*))

        fun rewriteOperandDef (rs,rt,opnd as I.Direct r) =
             if C.sameColor(r,rs) then I.Direct rt else opnd

        fun frewriteOperandDef(fs,ft,opnd as I.FDirect f) =
               if C.sameColor(f,fs) then I.FDirect ft else opnd
          | frewriteOperandDef(fs,ft,opnd as I.FPR f) =
               if C.sameColor(f,fs) then I.FPR ft else opnd
          | frewriteOperandDef opnd = opnd

        fun frewriteOperandUse(fs,ft,opnd as I.FDirect r) =
             if C.sameColor(r,fs) then I.FDirect ft else opnd
          | frewriteOperandUse(fs,ft,opnd as I.FPR r) =
             if C.sameColor(r,fs) then I.FPR ft else opnd
          | frewriteOperandUse(fs,ft, opnd) = opnd
    end

end