1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
|
(*kitsimple.sml*)
exception Overflow
fun digit n = chr(ord #"0" + n)
fun digits(n,acc) =
if n >=0 andalso n<=9 then digit n:: acc
else digits (n div 10, digit(n mod 10) :: acc)
fun int_to_string(n) =
if n<0 then implode(#"~"::digits(~n,[]))
else implode(digits(n,[]))
exception Hd
fun hd [] = raise Hd
| hd (x::xs) = x
(*
structure Array = (* Interface as in SML/NJ *)
struct
*)
infix sub
type 'a array = 'a ref list
exception Size
exception Subscript
fun tabulate' (i,f) =
let fun tab j = if j < i then f j :: tab (j+1) else nil
in if i < 0 then raise Size else (tab 0)
end
fun array (n, x) = tabulate' (n, fn _ => ref x)
fun arrayoflist l = map ref l
fun tabulate (n, f) = tabulate' (n, fn x => ref(f x))
fun sub'(nil,i) = raise Subscript
| sub' (a::r,i) = if i > 0 then sub' (r,i-1)
else if i < 0 then raise Subscript
else a
fun op sub (a, i) = !(sub'(a,i))
fun update (a, i, v) = sub'(a, i) := v
fun length [] = 0
| length (x::xs) = 1 + length xs
(*
end (* Array *)
*)
(*
structure List = (* Interface as in SML/NJ *)
struct
*)
exception Nth and NthTail
fun null [] = true
| null _ = false
(* this lenght overrides the one in Array, but that was also the
case in the original lexgen.sml (see the order in the open declaration below)
*)
fun length [] = 0
| length (x::xs) = 1 + length xs
fun rev l = (* linear-time reversal of lists! *)
let fun loop([], acc) = acc
| loop(x::xs, acc) = loop(xs, x::acc)
in
loop(l, [])
end
fun fold f [] b = b
| fold f (x::xs) b = f(x,fold f xs b)
fun revfold f [] b = b
| revfold f (x::xs) b = revfold f xs (f(x,b))
fun app f [] = ()
| app f (x::xs) = (f x; app f xs)
fun revapp f [] = ()
| revapp f (x::xs) = (revapp f xs; f x; ())
fun nth ([],_) = raise Nth
| nth (x::xs,0) = x
| nth (x::xs,k) = nth(xs,k-1)
fun nthtail ([],_) = raise NthTail
| nthtail (l,0) = l
| nthtail (l::ls,n) = nthtail(ls,n-1)
fun exists p [] = false
| exists p (x::xs) = p x orelse exists p xs
(*
end; (* List *)
*)
(*
structure Control =
struct
*)
val trace = ref true
(*
end;
*)
(*
structure Array2 : sig
type 'a array2
exception Subscript
val array: (int*int) * '1a -> '1a array2
val sub : 'a array2 * (int*int) -> 'a
val update : 'a array2 * (int*int) * 'a -> unit
val length : 'a array2 -> (int*int)
end = struct
*)
type 'a array2 = {size : (int*int), value : 'a array}
exception Subscript = Subscript
fun index22 ((i1:int,i2:int),(s1,s2)) =
if i1>=0 andalso i1<s1 andalso i2>=0 andalso i2<s2 then i1*s2+i2
else raise Subscript
fun array22(bnds as (i1,i2), v) = {size=bnds, value=array(i1*i2, v)}
fun op sub22 ({size,value}, indx) = (op sub) (value, index22(indx,size))
fun update22 ({size=size,value=A},i,v) = update(A,index22(i,size),v)
fun length22{size=size,value=A} = size
(*
end; (* Array2 *)
*)
(* Simple
* error: grid_max < 5
*)
(*
functor Simple(val grid_max: int val step_count: int) (* : BMARK *) =
struct
*)
(* lars: unfolding the simple functor application *)
val grid_max = 30
val step_count = 1
(* open Array List
*)
infix 9 sub
fun min (x:real,y:real) = if x<y then x else y
fun max (x:real,y:real) = if x<y then y else x
exception MaxList
exception MinList
exception SumList
fun max_list [] = raise MaxList | max_list l = fold max l (hd l)
fun min_list [] = raise MinList | min_list l = fold min l (hd l)
fun sum_list [] = raise SumList
| sum_list (l:real list) = fold (op +) l 0.0
fun for {from=start:int,step=delta:int, to=endd:int} body =
if delta>0 andalso endd>=start then
let fun f x = if x > endd then () else (body x; f(x+delta))
in f start
end
else if endd<=start then
let fun f x = if x < endd then () else (body x; f(x+delta))
in f start
end
else ()
fun from(n,m) = if n>m then [] else n::from(n+1,m)
fun flatten [] = []
| flatten (x::xs) = x @ flatten xs
fun pow(x:real,y:int) = if y=0 then 1.0 else x * pow(x,y-1)
fun array2(bounds as ((l1,u1),(l2,u2)),v) =
(array22((u1-l1+1, u2-l2+1),v), bounds)
fun sub2((A,((lb1:int,ub1:int),(lb2:int,ub2:int))),(k,l)) =
sub22(A, (k-lb1, l-lb2))
fun update2((A,((lb1,_),(lb2,_))),(k,l), v) = update22(A,(k-lb1,l-lb2),v)
fun bounds2(_,b) = b
fun printarray2 (A as (M:real array2,((l1,u1),(l2,u2)))) =
for {from=l1,step=1,to=u1} (fn i =>
(print "[";
for {from=l2,step=1,to=u2-1} (fn j =>
print ( (* makestring(sub2(A,(i,j))) ^ *) ", "));
print ( (* makestring (sub2(A,(i,u2))) ^ *) "]\n")))
fun array1((l,u),v) = (array(u-l+1,v),(l,u))
fun sub1((A,(l:int,u:int)),i:int) = (op sub)(A,i-l)
fun update1((A,(l,_)),i,v) = update(A,i-l,v)
fun bounds1(_,b) = b
(*
* Specification of the state variable computation
*)
val grid_size = ((2,grid_max), (2,grid_max))
fun north (k,l) = (k-1,l)
fun south (k,l) = (k+1,l)
fun east (k,l) = (k,l+1)
fun west (k,l) = (k,l-1)
val northeast = north o east
val southeast = south o east
val northwest = north o west
val southwest = south o west
type dir = int * int -> int * int
val farnorth : dir = north o north
val farsouth : dir = south o south
val fareast : dir = east o east
val farwest : dir = west o west
fun zone_A(k,l) = (k,l)
fun zone_B(k,l) = (k+1,l)
fun zone_C(k,l) = (k+1,l+1)
fun zone_D(k,l) = (k,l+1)
val zone_corner_northeast = north
val zone_corner_northwest = northwest
fun zone_corner_southeast zone = zone
val zone_corner_southwest = west
val ((kmin,kmax),(lmin,lmax)) = grid_size
val dimension_all_nodes = ((kmin-1,kmax+1),(lmin-1,lmax+1))
fun for_all_nodes f =
for {from=kmin-1, step=1, to=kmax+1} (fn k =>
for {from=lmin-1, step=1, to=lmax+1} (fn l => f k l))
val dimension_interior_nodes = ((kmin,kmax),(lmin,lmax))
fun for_interior_nodes f =
for {from=kmin, step=1, to=kmax} (fn k =>
for {from=lmin, step=1, to=lmax} (fn l => f k l))
val dimension_all_zones = ((kmin,kmax+1),(lmin,lmax+1))
fun for_all_zones f =
for {from=kmin, step=1, to=kmax+1} (fn k =>
for {from=lmin, step=1, to=lmax+1} (fn l => f (k,l)))
val dimension_interior_zones = ((kmin+1,kmax),(lmin+1,lmax))
fun for_interior_zones f =
for {from=kmin+1, step=1, to=kmax} (fn k =>
for {from=lmin+1, step=1, to=lmax} (fn l => f (k,l)))
fun map_interior_nodes f =
flatten(map (fn k => (map (fn l => f (k,l))
(from(lmin,lmax))))
(from(kmin,kmax)))
fun map_interior_zones f =
flatten(map (fn k => (map (fn l => f (k,l))
(from(lmin+1,lmax))))
(from(kmin+1,kmax)))
fun for_north_ward_interior_zones f =
for {from=kmax, step= ~1, to=kmin+1} (fn k =>
for {from=lmin+1, step=1, to=lmax} (fn l => f (k,l)))
fun for_west_ward_interior_zones f =
for {from=kmin+1, step=1, to=kmax} (fn k =>
for {from=lmax, step= ~1, to=lmin+1} (fn l => f (k,l)))
fun for_north_zones f = for {from=lmin, step=1, to=lmax+1} (fn l => f (kmin,l))
fun for_south_zones f = for {from=lmin+1, step=1, to=lmax} (fn l => f (kmax+1,l))
fun for_east_zones f = for {from=kmin+1, step=1, to=kmax+1}(fn k => f (k,lmax+1))
fun for_west_zones f = for {from=kmin+1, step=1, to=kmax+1}(fn k => f (k,lmin))
type 'a reflect_dir = int * int -> {size: int * int, value: 'a ref list}
* ((int * int) * (int * int)) -> 'a
fun reflect dir node A = sub2(A, dir node)
val reflect_north : real reflect_dir = reflect north
val reflect_south : real reflect_dir = reflect south
val reflect_east : real reflect_dir = reflect east
val reflect_west : real reflect_dir = reflect west
fun for_north_nodes f =
for {from=lmin, step=1, to=lmax-1} (fn l => f (kmin-1,l))
fun for_south_nodes f =
for {from=lmin, step=1, to=lmax-1} (fn l => f (kmax+1,l))
fun for_east_nodes f =
for {from=kmin, step=1, to=kmax-1} (fn k => f (k,lmax+1))
fun for_west_nodes f =
for {from=kmin, step=1, to=kmax-1} (fn k => f (k,lmin-1))
val north_east_corner = (kmin-1,lmax+1)
val north_west_corner = (kmin-1,lmin-1)
val south_east_corner = (kmax+1,lmax+1)
val south_west_corner = (kmax+1,lmin-1)
val west_of_north_east = (kmin-1, lmax)
val west_of_south_east = (kmax+1, lmax)
val north_of_south_east = (kmax, lmax+1)
val north_of_south_west = (kmax, lmin-1)
(*
* Initialization of parameters
*)
val constant_heat_source = 0.0
val deltat_maximum = 0.01
val specific_heat = 0.1
val p_coeffs = let val M = array2(((0,2),(0,2)), 0.0)
in update2(M, (1,1), 0.06698); M
end
val e_coeffs = let val M = array2(((0,2),(0,2)), 0.0)
in update2(M, (0,1), 0.1); M
end
val p_poly = array2(((1,4),(1,5)),p_coeffs)
val e_poly = array2(((1,4),(1,5)), e_coeffs)
val rho_table = let val V = array1((1,3), 0.0)
in update1(V,2,1.0);
update1(V,3,100.0);
V
end
val theta_table = let val V = array1((1,4), 0.0)
in update1(V,2,3.0);
update1(V,3,300.0);
update1(V,4,3000.0);
V
end
val extract_energy_tables_from_constants = (e_poly,2,rho_table,theta_table)
val extract_pressure_tables_from_constants = (p_poly,2,rho_table,theta_table)
val nbc = let val M = array2(dimension_all_zones, 1)
in for {from=lmin+1,step=1,to=lmax} (fn j => update2(M,(kmax+1, j),2));
update2(M,(kmin,lmin),4);
update2(M,(kmin,lmax+1),4);
update2(M,(kmax+1,lmin),4);
update2(M,(kmax+1,lmax+1),4);
M
end
val pbb = let val A = array1((1,4), 0.0)
in update1(A,2,6.0); A
end
val pb = let val A = array1((1,4), 1.0)
in update1(A,2,0.0); update1(A,3,0.0); A
end
val qb = pb
val all_zero_nodes = array2(dimension_all_nodes, 0.0)
val all_zero_zones = array2(dimension_all_zones, 0.0)
(*
* Positional Coordinates. (page 9-10)
*)
fun make_position_matrix interior_function =
let val r' = array2(dimension_all_nodes, 0.0)
val z' = array2(dimension_all_nodes, 0.0)
fun boundary_position (rx,zx,ry,zy,ra,za) =
let val (rax, zax) = (ra - rx, za - zx)
val (ryx, zyx) = (ry - rx, zy - zx)
val omega = 2.0*(rax*ryx + zax*zyx)/(ryx*ryx + zyx*zyx)
val rb = rx - rax + omega*ryx
val zb = zx - zax + omega*zyx
in (rb, zb)
end
fun reflect_node (x_dir, y_dir, a_dir, node) =
let val rx = reflect x_dir node r'
val zx = reflect x_dir node z'
val ry = reflect y_dir node r'
val zy = reflect y_dir node z'
val ra = reflect a_dir node r'
val za = reflect a_dir node z'
in boundary_position (rx, zx, ry, zy, ra, za)
end
fun u2 (rv,zv) n = (update2(r',n,rv); update2(z',n,zv))
in
for_interior_nodes (fn k => fn l => u2 (interior_function (k,l)) (k,l));
for_north_nodes(fn n => u2 (reflect_node(south,southeast,farsouth,n)) n);
for_south_nodes (fn n => u2(reflect_node(north,northeast,farnorth,n)) n);
for_east_nodes (fn n => u2(reflect_node(west, southwest, farwest, n)) n);
for_west_nodes (fn n => u2(reflect_node(east, southeast, fareast, n)) n);
u2 (reflect_node(south, southwest, farsouth, west_of_north_east))
west_of_north_east;
u2 (reflect_node(north, northwest, farnorth, west_of_south_east))
west_of_south_east;
u2 (reflect_node(west, northwest, farwest, north_of_south_east))
north_of_south_east;
u2 (reflect_node(east, northeast, fareast, north_of_south_west))
north_of_south_west;
u2 (reflect_node(southwest, west, farwest, north_east_corner))
north_east_corner;
u2 (reflect_node(northwest, west, farwest, south_east_corner))
south_east_corner;
u2 (reflect_node(southeast, south, farsouth, north_west_corner))
north_west_corner;
u2 (reflect_node(northeast, east, fareast, south_west_corner))
south_west_corner;
(r',z')
end
(*
* Physical Properties of a Zone (page 10)
*)
fun zone_area_vol ((r,z), zone) =
let val (r1,z1)=(sub2(r,zone_corner_southwest zone),
sub2(z,zone_corner_southwest zone))
val (r2,z2)=(sub2(r,zone_corner_southeast zone),
sub2(z,zone_corner_southeast zone))
val (r3,z3)=(sub2(r,zone_corner_northeast zone),
sub2(z,zone_corner_northeast zone))
val (r4,z4)=(sub2(r,zone_corner_northwest zone),
sub2(z,zone_corner_northwest zone))
val area1 = (r2-r1)*(z3-z1) - (r3-r2)*(z3-z2)
val radius1 = 0.3333 *(r1+r2+r3)
val volume1 = area1 * radius1
val area2 = (r3-r1)*(z4-z3) - (r4-r3)*(z3-z1)
val radius2 = 0.3333 *(r1+r3+r4)
val volume2 = area2 * radius2
in (area1+area2, volume1+volume2)
end
(*
* Velocity (page 8)
*)
fun make_velocity((u,w),(r,z),p,q,alpha,rho,delta_t: real) =
let fun line_integral (p,z,node) : real =
sub2(p,zone_A node)*(sub2(z,west node) - sub2(z,north node)) +
sub2(p,zone_B node)*(sub2(z,south node) - sub2(z,west node)) +
sub2(p,zone_C node)*(sub2(z,east node) - sub2(z,south node)) +
sub2(p,zone_D node)*(sub2(z,north node) - sub2(z,east node))
fun regional_mass node =
0.5 * (sub2(rho, zone_A node)*sub2(alpha,zone_A node) +
sub2(rho, zone_B node)*sub2(alpha,zone_B node) +
sub2(rho, zone_C node)*sub2(alpha,zone_C node) +
sub2(rho, zone_D node)*sub2(alpha,zone_D node))
fun velocity node =
let val d = regional_mass node
val n1 = ~(line_integral(p,z,node)) - line_integral(q,z,node)
val n2 = line_integral(p,r,node) + line_integral(q,r,node)
val u_dot = n1/d
val w_dot = n2/d
in (sub2(u,node)+delta_t*u_dot, sub2(w,node)+delta_t*w_dot)
end
val U = array2(dimension_interior_nodes,0.0)
val W = array2(dimension_interior_nodes,0.0)
in for_interior_nodes (fn k => fn l => let val (uv,wv) = velocity (k,l)
in update2(U,(k,l),uv);
update2(W,(k,l),wv)
end);
(U,W)
end
fun make_position ((r,z),delta_t:real,(u',w')) =
let fun interior_position node =
(sub2(r,node) + delta_t*sub2(u',node),
sub2(z,node) + delta_t*sub2(w',node))
in make_position_matrix interior_position
end
fun make_area_density_volume(rho, s, x') =
let val alpha' = array2(dimension_all_zones, 0.0)
val s' = array2(dimension_all_zones, 0.0)
val rho' = array2(dimension_all_zones, 0.0)
fun interior_area zone =
let val (area, vol) = zone_area_vol (x', zone)
val density = sub2(rho,zone)*sub2(s,zone) / vol
in (area,vol,density)
end
fun reflect_area_vol_density reflect_function =
(reflect_function alpha',reflect_function s',reflect_function rho')
fun update_asr (zone,(a,s,r)) = (update2(alpha',zone,a);
update2(s',zone,s);
update2(rho',zone,r))
fun r_area_vol_den (reflect_dir,zone) =
let val asr = reflect_area_vol_density (reflect_dir zone)
in update_asr(zone, asr)
end
in
for_interior_zones (fn zone => update_asr(zone, interior_area zone));
for_south_zones (fn zone => r_area_vol_den(reflect_north, zone));
for_east_zones (fn zone => r_area_vol_den(reflect_west, zone));
for_west_zones (fn zone => r_area_vol_den(reflect_east, zone));
for_north_zones (fn zone => r_area_vol_den(reflect_south, zone));
(alpha', rho', s')
end
(*
* Artifical Viscosity (page 11)
*)
fun make_viscosity(p,(u',w'),(r',z'), alpha',rho') =
let fun interior_viscosity zone =
let fun upper_del f =
0.5 * ((sub2(f,zone_corner_southeast zone) -
sub2(f,zone_corner_northeast zone)) +
(sub2(f,zone_corner_southwest zone) -
sub2(f,zone_corner_northwest zone)))
fun lower_del f =
0.5 * ((sub2(f,zone_corner_southeast zone) -
sub2(f,zone_corner_southwest zone)) +
(sub2(f,zone_corner_northeast zone) -
sub2(f,zone_corner_northwest zone)))
val xi = pow(upper_del r',2) + pow(upper_del z',2)
val eta = pow(lower_del r',2) + pow(lower_del z',2)
val upper_disc = (upper_del r')*(lower_del w') -
(upper_del z')*(lower_del u')
val lower_disc = (upper_del u')*(lower_del z') -
(upper_del w') * (lower_del r')
val upper_ubar = if upper_disc<0.0 then upper_disc/xi else 0.0
val lower_ubar = if lower_disc<0.0 then lower_disc/eta else 0.0
val gamma = 1.6
val speed_of_sound = gamma*sub2(p,zone)/sub2(rho',zone)
val ubar = pow(upper_ubar,2) + pow(lower_ubar,2)
val viscosity =
sub2(rho',zone)*(1.5*ubar + 0.5*speed_of_sound*(Math.sqrt ubar))
val length = Math.sqrt(pow(upper_del r',2) + pow(lower_del r',2))
val courant_delta = 0.5* sub2(alpha',zone)/(speed_of_sound*length)
in (viscosity, courant_delta)
end
val q' = array2(dimension_all_zones, 0.0)
val d = array2(dimension_all_zones, 0.0)
fun reflect_viscosity_cdelta (direction, zone) =
sub2(q',direction zone) * sub1(qb, sub2(nbc,zone))
fun do_zones (dir,zone) =
update2(q',zone,reflect_viscosity_cdelta (dir,zone))
in
for_interior_zones (fn zone => let val (qv,dv) = interior_viscosity zone
in update2(q',zone,qv);
update2(d,zone,dv)
end);
for_south_zones (fn zone => do_zones(north,zone));
for_east_zones (fn zone => do_zones(west,zone));
for_west_zones (fn zone => do_zones(east,zone));
for_north_zones (fn zone => do_zones(south,zone));
(q', d)
end
(*
* Pressure and Energy Polynomial (page 12)
*)
fun polynomial(G,degree,rho_table,theta_table,rho_value,theta_value) =
let fun table_search (table, value : real) =
let val (low, high) = bounds1 table
fun search_down i =
if value > sub1(table,i-1) then i
else search_down (i-1)
in
if value>sub1(table,high) then high+1
else if value <= sub1(table,low) then low
else search_down high
end
val rho_index = table_search(rho_table, rho_value)
val theta_index = table_search(theta_table, theta_value)
val A = sub2(G, (rho_index, theta_index))
fun from(n,m) = if n>m then [] else n::from(n+1,m)
fun f(i,j) = sub2(A,(i,j))*pow(rho_value,i)*pow(theta_value,j)
in
sum_list (map (fn i => sum_list(map (fn j => f (i,j)) (from(0,degree))))
(from (0,degree)))
end
fun zonal_pressure (rho_value:real, theta_value:real) =
let
val (G,degree,rho_table,theta_table) =
extract_pressure_tables_from_constants
in polynomial(G, degree, rho_table, theta_table, rho_value, theta_value)
end
fun zonal_energy (rho_value, theta_value) =
let val (G, degree, rho_table, theta_table) =
extract_energy_tables_from_constants
in polynomial(G, degree, rho_table, theta_table, rho_value, theta_value)
end
val dx = 0.000001
val tiny = 0.000001
fun newton_raphson (f,x) =
let fun iter (x,fx) =
if fx > tiny then
let val fxdx = f(x+dx)
val denom = fxdx - fx
in if denom < tiny then iter(x,tiny)
else iter(x-fx*dx/denom, fxdx)
end
else x
in iter(x, f x)
end
(*
* Temperature (page 13-14)
*)
fun make_temperature(p,epsilon,rho,theta,rho_prime,q_prime) =
let fun interior_temperature zone =
let val qkl = sub2(q_prime,zone)
val rho_kl = sub2(rho,zone)
val rho_prime_kl = sub2(rho_prime,zone)
val tau_kl = (1.0 /rho_prime_kl - 1.0/rho_kl)
fun energy_equation epsilon_kl theta_kl =
epsilon_kl - zonal_energy(rho_kl,theta_kl)
val epsilon_0 = sub2(epsilon,zone)
fun revised_energy pkl = epsilon_0 - (pkl + qkl) * tau_kl
fun revised_temperature epsilon_kl theta_kl =
newton_raphson ((energy_equation epsilon_kl), theta_kl)
fun revised_pressure theta_kl = zonal_pressure(rho_kl, theta_kl)
val p_0 = sub2(p,zone)
val theta_0 = sub2(theta,zone)
val epsilon_1 = revised_energy p_0
val theta_1 = revised_temperature epsilon_1 theta_0
val p_1 = revised_pressure theta_1
val epsilon_2 = revised_energy p_1
val theta_2 = revised_temperature epsilon_2 theta_1
in theta_2
end
val M = array2(dimension_all_zones, constant_heat_source)
in
for_interior_zones
(fn zone => update2(M, zone, interior_temperature zone));
M
end
(*
* Heat conduction
*)
fun make_cc(alpha_prime, theta_hat) =
let fun interior_cc zone =
(0.0001 * pow(sub2(theta_hat,zone),2) *
(Math.sqrt (abs(sub2(theta_hat,zone)))) / sub2(alpha_prime,zone))
handle Sqrt => (print ("<real>" (*Real.makestring (sub2(theta_hat, zone))*));
print ("\nzone =(" (* ^ makestring (#1 zone) *) ^ "," ^
(* makestring (#2 zone) ^ *) ")\n");
printarray2 theta_hat;
raise Sqrt)
val cc = array2(dimension_all_zones, 0.0)
in
for_interior_zones(fn zone => update2(cc,zone, interior_cc zone));
for_south_zones(fn zone => update2(cc,zone, reflect_north zone cc));
for_west_zones(fn zone => update2(cc,zone,reflect_east zone cc));
for_east_zones(fn zone => update2(cc,zone,reflect_west zone cc));
for_north_zones(fn zone => update2(cc,zone, reflect_south zone cc));
cc
end
fun make_sigma(deltat, rho_prime, alpha_prime) =
let fun interior_sigma zone =
sub2(rho_prime,zone)*sub2(alpha_prime,zone)*specific_heat/ deltat
val M = array2(dimension_interior_zones, 0.0)
fun ohandle zone =
(print ( (* makestring (sub2(rho_prime, zone)) ^ *)" ");
print ( (* makestring (sub2(alpha_prime, zone)) ^ *)" ");
print ( (* makestring specific_heat ^ *) " ");
print ( (* makestring deltat ^ *) "\n");
raise Overflow)
in if !trace
then print ("\t\tmake_sigma:deltat = " (* ^ makestring deltat *) ^ "\n")
else ();
(*** for_interior_zones(fn zone => update2(M,zone, interior_sigma zone)) **)
for_interior_zones(fn zone => (update2(M,zone, interior_sigma zone)
handle _ => (*old: Overflow => *)
ohandle zone));
M
end
fun make_gamma ((r_prime,z_prime), cc, succeeding, adjacent) =
let fun interior_gamma zone =
let val r1 = sub2(r_prime, zone_corner_southeast zone)
val z1 = sub2(z_prime, zone_corner_southeast zone)
val r2 = sub2(r_prime, zone_corner_southeast (adjacent zone))
val z2 = sub2(z_prime, zone_corner_southeast (adjacent zone))
val cross_section = 0.5*(r1+r2)*(pow(r1 - r2,2)+pow(z1 - z2,2))
val (c1,c2) = (sub2(cc, zone), sub2(cc, succeeding zone))
val specific_conductivity = 2.0 * c1 * c2 / (c1 + c2)
in cross_section * specific_conductivity
end
val M = array2(dimension_all_zones, 0.0)
in
for_interior_zones(fn zone => update2(M,zone,interior_gamma zone));
M
end
fun make_ab(theta, sigma, Gamma, preceding) =
let val a = array2(dimension_all_zones, 0.0)
val b = array2(dimension_all_zones, 0.0)
fun interior_ab zone =
let val denom = sub2(sigma, zone) + sub2(Gamma, zone) +
sub2(Gamma, preceding zone) *
(1.0 - sub2(a, preceding zone))
val nume1 = sub2(Gamma,zone)
val nume2 = sub2(Gamma,preceding zone)*sub2(b,preceding zone) +
sub2(sigma,zone) * sub2(theta,zone)
in (nume1/denom, nume2 / denom)
end
val f = fn zone => update2(b,zone,sub2(theta,zone))
in
for_north_zones f;
for_south_zones f;
for_west_zones f;
for_east_zones f;
for_interior_zones(fn zone => let val ab = interior_ab zone
in update2(a,zone,#1 ab);
update2(b,zone,#2 ab)
end);
(a,b)
end
fun make_theta (a, b, succeeding, int_zones) =
let val theta = array2(dimension_all_zones, constant_heat_source)
fun interior_theta zone =
sub2(a,zone) * sub2(theta,succeeding zone)+ sub2(b,zone)
in
int_zones (fn (k,l) => update2(theta, (k,l), interior_theta (k,l)));
theta
end
fun compute_heat_conduction(theta_hat, deltat, x', alpha', rho') =
let val sigma = make_sigma(deltat, rho', alpha')
val _ = if !trace then print "\tdone make_sigma\n" else ()
val cc = make_cc(alpha', theta_hat)
val _ = if !trace then print "\tdone make_cc\n" else ()
val Gamma_k = make_gamma( x', cc, north, east)
val _ = if !trace then print "\tdone make_gamma\n" else ()
val (a_k,b_k) = make_ab(theta_hat, sigma, Gamma_k, north)
val _ = if !trace then print "\tdone make_ab\n" else ()
val theta_k = make_theta(a_k,b_k,south,for_north_ward_interior_zones)
val _ = if !trace then print "\tdone make_theta\n" else ()
val Gamma_l = make_gamma(x', cc, west, south)
val _ = if !trace then print "\tdone make_gamma\n" else ()
val (a_l,b_l) = make_ab(theta_k, sigma, Gamma_l, west)
val _ = if !trace then print "\tdone make_ab\n" else ()
val theta_l = make_theta(a_l,b_l,east,for_west_ward_interior_zones)
val _ = if !trace then print "\tdone make_theta\n" else ()
in (theta_l, Gamma_k, Gamma_l)
end
(*
* Final Pressure and Energy calculation
*)
fun make_pressure(rho', theta') =
let val p = array2(dimension_all_zones, 0.0)
fun boundary_p(direction, zone) =
sub1(pbb, sub2(nbc, zone)) +
sub1(pb,sub2(nbc,zone)) * sub2(p, direction zone)
in
for_interior_zones
(fn zone =>
update2(p,zone,zonal_pressure(sub2(rho',zone),
sub2(theta',zone))));
for_south_zones(fn zone => update2(p,zone,boundary_p(north,zone)));
for_east_zones(fn zone => update2(p,zone,boundary_p(west,zone)));
for_west_zones(fn zone => update2(p,zone,boundary_p(east,zone)));
for_north_zones(fn zone => update2(p,zone,boundary_p(south,zone)));
p
end
fun make_energy(rho', theta') =
let val epsilon' = array2(dimension_all_zones, 0.0)
in
for_interior_zones
(fn zone => update2(epsilon', zone, zonal_energy(sub2(rho',zone),
sub2(theta',zone))));
for_south_zones
(fn zone => update2(epsilon',zone, reflect_north zone epsilon'));
for_west_zones
(fn zone => update2(epsilon',zone, reflect_east zone epsilon'));
for_east_zones
(fn zone => update2(epsilon',zone, reflect_west zone epsilon'));
for_north_zones
(fn zone => update2(epsilon',zone, reflect_south zone epsilon'));
epsilon'
end
(*
* Energy Error Calculation (page 20)
*)
fun compute_energy_error ((u',w'),(r',z'),p',q',epsilon',theta',rho',alpha',
Gamma_k,Gamma_l,deltat) =
let fun mass zone = sub2(rho',zone) * sub2(alpha',zone):real
val internal_energy =
sum_list (map_interior_zones (fn z => sub2(epsilon',z)*(mass z)))
fun kinetic node =
let val average_mass = 0.25*((mass (zone_A node)) +
(mass (zone_B node)) +
(mass (zone_C node)) +
(mass (zone_D node)))
val v_square = pow(sub2(u',node),2) + pow(sub2(w',node),2)
in 0.5 * average_mass * v_square
end
val kinetic_energy = sum_list (map_interior_nodes kinetic)
fun work_done (node1, node2) =
let val (r1, r2) = (sub2(r',node1), sub2(r',node2))
val (z1, z2) = (sub2(z',node1), sub2(z',node2))
val (u1, u2) = (sub2(p',node1), sub2(p',node2))
val (w1, w2) = (sub2(z',node1), sub2(z',node2))
val (p1, p2) = (sub2(p',node1), sub2(p',node2))
val (q1, q2) = (sub2(q',node1), sub2(q',node2))
val force = 0.5*(p1+p2+q1+q2)
val radius = 0.5* (r1+r2)
val area = 0.5* ((r1-r2)*(u1-u2) - (z1-z2)*(w1-w2))
in force * radius * area * deltat
end
fun from(n,m) = if n > m then [] else n::from(n+1,m)
val north_line =
map (fn l => (west(kmin,l),(kmin,l))) (from(lmin+1,lmax))
val south_line =
map (fn l => (west(kmax,l),(kmax,l))) (from(lmin+1,lmax))
val east_line =
map (fn k => (south(k,lmax),(k,lmax))) (from(kmin+1,kmax))
val west_line =
map (fn k => (south(k,lmin+1),(k,lmin+1))) (from(kmin+1,kmax))
val w1 = sum_list (map work_done north_line)
val w2 = sum_list (map work_done south_line)
val w3 = sum_list (map work_done east_line)
val w4 = sum_list (map work_done west_line)
val boundary_work = w1 + w2 + w3 + w4
fun heat_flow Gamma (zone1,zone2) =
deltat * sub2(Gamma, zone1) * (sub2(theta',zone1) - sub2(theta',zone2))
val north_flow =
let val k = kmin+1
in map (fn l => (north(k,l),(k,l))) (from(lmin+1,lmax))
end
val south_flow =
let val k = kmax
in map (fn l => (south(k,l),(k,l))) (from(lmin+2,lmax-1))
end
val east_flow =
let val l = lmax
in map (fn k => (east(k,l),(k,l))) (from(kmin+2,kmax))
end
val west_flow =
let val l = lmin+1
in map (fn k => (west(k,l),(k,l))) (from(kmin+2,kmax))
end
val h1 = sum_list (map (heat_flow Gamma_k) north_flow)
val h2 = sum_list (map (heat_flow Gamma_k) south_flow)
val h3 = sum_list (map (heat_flow Gamma_l) east_flow)
val h4 = sum_list (map (heat_flow Gamma_l) west_flow)
val boundary_heat = h1 + h2 + h3 + h4
in
internal_energy + kinetic_energy - boundary_heat - boundary_work
end
fun compute_time_step(d, theta_hat, theta') =
let val deltat_courant =
min_list (map_interior_zones (fn zone => sub2(d,zone)))
val deltat_conduct =
max_list (map_interior_zones
(fn z => (abs(sub2(theta_hat,z) - sub2(theta', z))/
sub2(theta_hat,z))))
val deltat_minimum = min (deltat_courant, deltat_conduct)
in min (deltat_maximum, deltat_minimum)
end
fun compute_initial_state () =
let
val v = (all_zero_nodes, all_zero_nodes)
val x = let fun interior_position (k,l) =
let val pi = 3.1415926535898
val rp = real (lmax - lmin)
val z1 = real(10 + k - kmin)
val zz = (~0.5 + real(l - lmin) / rp) * pi
in (z1 * Math.cos zz, z1 * Math.sin zz)
end
in make_position_matrix interior_position
end
val (alpha,s) =
let val (alpha_prime,s_prime) =
let val A = array2(dimension_all_zones, 0.0)
val S = array2(dimension_all_zones, 0.0)
fun reflect_area_vol f = (f A, f S)
fun u2 (f,z) =
let val (a,s) = reflect_area_vol(f z)
in update2(A,z,a);
update2(S,z,s)
end
in
for_interior_zones
(fn z => let val (a,s) = zone_area_vol(x, z)
in update2(A,z,a);
update2(S,z,s)
end);
for_south_zones (fn z => u2 (reflect_north, z));
for_east_zones (fn z => u2 (reflect_west, z));
for_west_zones (fn z => u2 (reflect_east, z));
for_north_zones (fn z => u2 (reflect_south, z));
(A,S)
end
in (alpha_prime,s_prime)
end
val rho = let val R = array2(dimension_all_zones, 0.0)
in for_all_zones (fn z => update2(R,z,1.4)); R
end
val theta =
let val T = array2(dimension_all_zones, constant_heat_source)
in for_interior_zones(fn z => update2(T,z,0.0001));
T
end
val p = make_pressure(rho, theta)
val q = all_zero_zones
val epsilon = make_energy(rho, theta)
val deltat = 0.01
val c = 0.0
in
(v,x,alpha,s,rho,p,q,epsilon,theta,deltat,c)
end
fun compute_next_state state =
let
val (v,x,alpha,s,rho,p,q,epsilon,theta,deltat,c) = state
val v' = make_velocity (v, x, p, q, alpha, rho, deltat)
val _ = if !trace then print "done make_velocity\n" else ()
val x' = make_position(x,deltat,v')
handle _ => ( (* old: handle Overflow => *)
printarray2 (#1 v');
printarray2 (#2 v');
raise Overflow)
val _ = if !trace then print "done make_position\n" else ()
val (alpha',rho',s') = make_area_density_volume (rho, s , x')
val _ = if !trace then print "done make_area_density_volume\n"
else ()
val (q',d) = make_viscosity (p, v', x', alpha', rho')
val _ = if !trace then print "done make_viscosity\n" else ()
val theta_hat = make_temperature (p, epsilon, rho, theta, rho', q')
val _ = if !trace then print "done make_temperature\n" else ()
val (theta',Gamma_k,Gamma_l) =
compute_heat_conduction (theta_hat, deltat, x', alpha', rho')
val _ = if !trace then print "done compute_heat_conduction\n"
else ()
val p' = make_pressure(rho', theta')
val _ = if !trace then print "done make_pressure\n" else ()
val epsilon' = make_energy (rho', theta')
val _ = if !trace then print "done make_energy\n" else ()
val c' = compute_energy_error (v', x', p', q', epsilon', theta', rho',
alpha', Gamma_k, Gamma_l, deltat)
val _ = if !trace then print "done compute_energy_error\n"
else ()
val deltat' = compute_time_step (d, theta_hat, theta')
val _ = if !trace then print "done compute_time_step\n\n" else ()
in
(v',x',alpha',s',rho',p',q', epsilon',theta',deltat',c')
end
fun runit () =
let fun iter (i,state) = if i = 0 then state
else (print ".";
iter(i-1, compute_next_state state))
in iter(step_count, compute_initial_state())
end
fun print_state ((v1,v2),(r,z),alpha,s,rho,p,q,epsilon,theta,deltat,c) = (
print "Velocity matrices = \n";
printarray2 v1; print "\n\n";
printarray2 v2;
print "\n\nPosition matrices = \n";
printarray2 r; print "\n\n";
printarray2 z;
print "\n\nalpha = \n";
printarray2 alpha;
print "\n\ns = \n";
printarray2 s;
print "\n\nrho = \n";
printarray2 rho;
print "\n\nPressure = \n";
printarray2 p;
print "\n\nq = \n";
printarray2 q;
print "\n\nepsilon = \n";
printarray2 epsilon;
print "\n\ntheta = \n";
printarray2 theta;
print ("delatat = " (* ^ Real.makestring deltat *) ^ "\n");
print ("c = " (* ^ Real.makestring c *) ^ "\n"))
fun testit outstrm = print_state (runit())
fun doit () = let
val (_, _, _, _, _, _, _, _, _, delta', c') = runit()
val delta : int = floor (* truncate *) delta'
val c : int = floor (* truncate *) (c' * 10000.0)
val _ = print(int_to_string(c))
val _ = print("\n")
val _ = print(int_to_string(delta))
val _ = print("\n")
in
if (c = 3072 andalso delta = ~61403) (* for grid_max = 30 *)
(* (c = 6787 andalso delta = ~33093) *)
then ()
else print("*** ERROR ***\n")
(*old : IO.output (IO.std_err, "*** ERROR ***\n") *)
end
(*
end; (* functor Simple *)
structure Main = Simple(val grid_max=100 val step_count=1);
*)
val _ = doit();
|