1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
|
(*kitknuth_bendix36c.sml*)
(*
kitknuth-bendixnewcopy.sml
This is a revised version of knuth-bendix.sml in which
(a) val has been converted to fun for function values
(b) exceptions that carry values have been avoided
(c) functions have been moved around to pass fewer of them
as parameters
(d) long tail-recursions have been broken into batches of 1,
with user-programmed copying between the batches
*)
local
fun eq_integer (x: int, y: int): bool = x = y
fun eq_string (x: string, y: string): bool = x = y
(*
signature KB =
sig
datatype term = Var of int | Term of string * term list
datatype ordering = Greater | Equal | NotGE
val rpo: (string -> string -> ordering) ->
((term * term -> ordering) -> term * term -> ordering) ->
term * term -> ordering
val lex_ext: (term * term -> ordering) -> term * term -> ordering
val kb_complete:
(term * term -> bool) -> (int * (int * (term * term))) list ->
('a * ('b * (term * term))) list -> unit
include BMARK
end;
*)
(*
structure Main : KB =
struct
*)
fun length l = let
fun j(k, nil) = k
| j(k, a::x) = j(k+1,x)
in
j(0,l)
end
fun op @ (nil, l) = l
| op @ (a::r, l) = a :: (r@l)
fun rev l = let
fun f (nil, h) = h
| f (a::r, h) = f(r, a::h)
in
f(l,nil)
end
fun app f = let
fun app_rec [] = ()
| app_rec (a::L) = (f a; app_rec L)
in
app_rec
end
(*
fun map f = let
fun map_rec [] = []
| map_rec (a::L) = f a :: map_rec L
in
map_rec
end
*)
(******* Quelques definitions du prelude CAML **************)
exception Failure of string
exception FailItList2
exception FailTryFind
exception FailFind
exception FailChange
exception FailReplace
exception FailMatching
exception FailUnify
exception FailPretty
exception Fail
exception FailMrewrite1
exception FailRemEQ
exception FailMultExt
exception FailLexExt
exception FailKbComplettion
fun failwith s = raise(Failure s)
fun fst (x,y) = x
and snd (x,y) = y
(*
fun it_list f =
let fun it_rec a [] = a
| it_rec a (b::L) = it_rec (f a b) L
in it_rec
end
*)
fun it_list f a [] = a
| it_list f a (b::L) = it_list f (f a b) L
fun it_list2 f =
let fun it_rec a [] [] = a
| it_rec a (a1::L1) (a2::L2) = it_rec (f a (a1,a2)) L1 L2
| it_rec _ _ _ = raise FailItList2
in it_rec
end
fun exists p =
let fun exists_rec [] = false
| exists_rec (a::L) = (p a) orelse (exists_rec L)
in exists_rec
end
fun for_all p =
let fun for_all_rec [] = true
| for_all_rec (a::L) = (p a) andalso (for_all_rec L)
in for_all_rec
end
fun rev_append [] L = L
| rev_append (x::L1) L2 = rev_append L1 (x::L2)
fun try_find f =
let fun try_find_rec [] = raise FailTryFind
| try_find_rec (a::L) = (f a) handle _ => try_find_rec L
in try_find_rec
end
fun partition p =
let fun part_rec [] = ([],[])
| part_rec (a::L) =
let val (pos,neg) = part_rec L in
if p a then ((a::pos), neg) else (pos, (a::neg))
end
in part_rec
end
(* 3- Les ensembles et les listes d'association *)
(*
fun mem eq a =
let fun mem_rec [] = false
| mem_rec (b::L) = (eq(a,b)) orelse mem_rec L
in mem_rec
end
*)
fun mem eq a []= false
| mem eq a (b::L) = eq(a,b) orelse mem eq a L
fun union eq L1 L2 =
let fun union_rec [] = L2
| union_rec (a::L) =
if mem eq a L2 then union_rec L else a :: union_rec L
in union_rec L1
end
(*
fun mem_assoc eq a =
let fun mem_rec [] = false
| mem_rec ((b,_)::L) = (eq(a,b)) orelse mem_rec L
in mem_rec
end
*)
fun mem_assoc eq a [] = false
| mem_assoc eq a ((b,_)::L) = eq(a,b) orelse mem_assoc eq a L
fun assoc eq a =
let fun assoc_rec [] = raise FailFind
| assoc_rec ((b,d)::L) = if eq(a,b) then d else assoc_rec L
in assoc_rec
end
(* 4- Les sorties *)
(* val print_string = String.print; *)
(* Lars *)
fun print_string x = print x
(* val print_num = Integer.print; *)
(* Lars *)
local
fun digit n = chr(ord #"0" + n)
fun digits(n,acc) =
if n >=0 andalso n<=9 then digit n:: acc
else digits (n div 10, digit(n mod 10) :: acc)
fun string(n) = implode(digits(n,[]))
in
fun print_num n = print_string(string n)
end
(* fun print_newline () = String.print "\n"; *)
(* Lars *)
fun print_newline () = print "\n"
(* fun message s = (String.print s; String.print "\n"); *)
(* Lars *)
fun message s = (print s; print "\n")
(* 5- Les ensembles *)
fun union eq L1 =
let fun union_rec [] = L1
| union_rec (a::L) = if mem eq a L1 then union_rec L else a :: union_rec L
in union_rec
end
(****************** Term manipulations *****************)
datatype term
= Var of int
| Term of string * term list
(* Lars, from now on: seek on eq_X to see what I have modified *)
fun map' f ([]:term list) : term list = []
| map' f (term::terms) = f term :: map' f terms
fun copy_term (Var n) = Var (n+0)
| copy_term (Term(s, l)) = Term(s, map' copy_term l)
fun eq_term x =
(fn (Var i1, Var i2) =>
eq_integer(i1,i2)
| (Term(s1,ts1),Term(s2,ts2)) =>
eq_string(s1,s2) andalso (eq_term_list(ts1,ts2))
| _ => false) x
and eq_term_list x =
(fn ([],[]) => true
| (t1::ts1,t2::ts2) => eq_term(t1,t2) andalso eq_term_list(ts1,ts2)
| _ => false) x
fun vars (Var n) = [n]
| vars (Term(_,L)) = vars_of_list L
and vars_of_list [] = []
| vars_of_list (t::r) = union eq_integer (vars t) (vars_of_list r)
(*
fun substitute subst =
let fun subst_rec (Term(oper,sons)) = Term(oper, map subst_rec sons)
| subst_rec (t as (Var n)) = (assoc eq_integer n subst) handle _ => t
in subst_rec
end
*)
fun substitute subst (t as Term(oper,[])) = t
| substitute subst (Term(oper,sons)) = Term(oper, map (substitute subst) sons)
| substitute subst (t as (Var n)) = (assoc eq_integer n subst) handle _ => t
fun change f =
let fun change_rec (h::t) n = if eq_integer(n,1) then f h :: t
else h :: change_rec t (n-1)
| change_rec _ _ = raise FailChange
in change_rec
end
(* Term replacement replace M u N => M[u<-N] *)
fun replace M u N =
let fun reprec (_, []) = N
| reprec (Term(oper,sons), (n::u)) =
Term(oper, change (fn P => reprec(P,u)) sons n)
| reprec _ = raise FailReplace
in reprec(M,u)
end
(* matching = - : (term -> term -> subst) *)
fun matching term1 term2 =
let fun match_rec subst (Var v, M) =
if mem_assoc eq_integer v subst then
if eq_term(M,assoc eq_integer v subst) then subst else raise FailMatching
else
(v,M) :: subst
| match_rec subst (Term(op1,sons1), Term(op2,sons2)) =
if eq_string(op1,op2) then it_list2 match_rec subst sons1 sons2
else raise FailMatching
| match_rec _ _ = raise FailMatching
in match_rec [] (term1,term2)
end
(* A naive unification algorithm *)
fun compsubst subst1 subst2 =
(map (fn (v,t) => (v, substitute subst1 t)) subst2) @ subst1
fun occurs n =
let fun occur_rec (Var m) = eq_integer(m,n)
| occur_rec (Term(_,sons)) = exists occur_rec sons
in occur_rec
end
fun unify ((term1 as (Var n1)), term2) =
if eq_term(term1,term2) then []
else if occurs n1 term2 then raise FailUnify
else [(n1,term2)]
| unify (term1, Var n2) =
if occurs n2 term1 then raise FailUnify
else [(n2,term1)]
| unify (Term(op1,sons1), Term(op2,sons2)) =
if eq_string(op1,op2) then
it_list2 (fn s => fn (t1,t2) => compsubst (unify(substitute s t1,
substitute s t2)) s)
[] sons1 sons2
else raise FailUnify
(* We need to print terms with variables independently from input terms
obtained by parsing. We give arbitrary names v1,v2,... to their variables. *)
val INFIXES = ["+","*"]
fun pretty_term (Var n) =
(print_string "v"; print_num n)
| pretty_term (Term (oper,sons)) =
if mem eq_string oper INFIXES then
case sons of
[s1,s2] =>
(pretty_close s1; print_string oper; pretty_close s2)
| _ =>
raise FailPretty (* "pretty_term : infix arity <> 2"*)
else
(print_string oper;
case sons of
[] => ()
| t::lt =>(print_string "(";
pretty_term t;
app (fn t => (print_string ","; pretty_term t)) lt;
print_string ")"))
and pretty_close (M as Term(oper, _)) =
if mem eq_string oper INFIXES then
(print_string "("; pretty_term M; print_string ")")
else pretty_term M
| pretty_close M = pretty_term M
(****************** Equation manipulations *************)
(* standardizes an equation so its variables are 1,2,... *)
fun mk_rule M N =
let val all_vars = union eq_integer (vars M) (vars N)
val (k,subst) =
it_list (fn (i,sigma) => fn v => (i+1,(v,Var(i))::sigma))
(1,[]) all_vars
in (k-1, (substitute subst M, substitute subst N))
end
(* checks that rules are numbered in sequence and returns their number *)
fun check_rules x =
it_list (fn n => fn (k,_) =>
if eq_integer(k,n+1) then k
else raise Fail (*failwith "Rule numbers not in sequence"*)
) 0 x
fun pretty_rule (k,(n,(M,N))) =
(print_num k; print_string " : ";
pretty_term M; print_string " = "; pretty_term N;
print_newline())
fun pretty_rules l = app pretty_rule l
fun copy_rules [] = []
| copy_rules ((k,(n,(M,N)))::rest) = (k+0,(n+0,(copy_term M, copy_term N))):: copy_rules rest
(****************** Rewriting **************************)
(* Top-level rewriting. Let eq:L=R be an equation, M be a term such that L<=M.
With sigma = matching L M, we define the image of M by eq as sigma(R) *)
fun reduce L M =
substitute (matching L M)
(* A more efficient version of can (rewrite1 (L,R)) for R arbitrary *)
fun reducible L =
let fun redrec M =
(matching L M; true)
handle _ =>
case M of Term(_,sons) => exists redrec sons
| _ => false
in redrec
end
(* mreduce : rules -> term -> term *)
fun mreduce rules M =
let fun redex (_,(_,(L,R))) = reduce L M R in try_find redex rules end
(* One step of rewriting in leftmost-outermost strategy, with multiple rules *)
(* fails if no redex is found *)
(* mrewrite1 : rules -> term -> term *)
fun mrewrite1 rules =
let fun rewrec M =
(mreduce rules M) handle _ =>
let fun tryrec [] = raise FailMrewrite1 (*failwith "mrewrite1"*)
| tryrec (son::rest) =
(rewrec son :: rest) handle _ => son :: tryrec rest
in case M of
Term(f, sons) => Term(f, tryrec sons)
| _ => raise FailMrewrite1 (*failwith "mrewrite1"*)
end
in rewrec
end
(* Iterating rewrite1. Returns a normal form. May loop forever *)
(* mrewrite_all : rules -> term -> term *)
fun mrewrite_all rules M =
let fun rew_loop M =
rew_loop(mrewrite1 rules M) handle _ => M
in rew_loop M
end
(*
pretty_term (mrewrite_all Group_rules M where M,_=<<A*(I(B)*B)>>);;
==> A*U
*)
(************************ Recursive Path Ordering ****************************)
datatype ordering = Greater | Equal | NotGE
fun eq_ordering (Greater,Greater) = true (*lars *)
| eq_ordering (Equal,Equal) = true
| eq_ordering (NotGE,NotGE) = true
| eq_ordering _ = false
fun ge_ord order pair = case order pair of NotGE => false | _ => true
and gt_ord order pair = case order pair of Greater => true | _ => false
and eq_ord order pair = case order pair of Equal => true | _ => false
fun rem_eq equiv =
let fun remrec x [] = raise FailRemEQ (*failwith "rem_eq"*)
| remrec x (y::l) = if equiv (x,y) then l else y :: remrec x l
in remrec
end
fun diff_eq equiv (x,y) =
let fun diffrec (p as ([],_)) = p
| diffrec ((h::t), y) =
diffrec (t,rem_eq equiv h y) handle _ =>
let val (x',y') = diffrec (t,y) in (h::x',y') end
in if length x > length y then diffrec(y,x) else diffrec(x,y)
end
(* multiset extension of order *)
fun mult_ext order (Term(_,sons1), Term(_,sons2)) =
(case diff_eq (eq_ord order) (sons1,sons2) of
([],[]) => Equal
| (l1,l2) =>
if for_all (fn N => exists (fn M => eq_ordering(order (M,N),Greater)) l1) l2
then Greater else NotGE)
| mult_ext order (_, _) = raise FailMultExt (*failwith "mult_ext"*)
(* lexicographic extension of order *)
fun lex_ext order ((M as Term(_,sons1)), (N as Term(_,sons2))) =
let fun lexrec ([] , []) = Equal
| lexrec ([] , _ ) = NotGE
| lexrec ( _ , []) = Greater
| lexrec (x1::l1, x2::l2) =
case order (x1,x2) of
Greater => if for_all (fn N' => gt_ord order (M,N')) l2
then Greater else NotGE
| Equal => lexrec (l1,l2)
| NotGE => if exists (fn M' => ge_ord order (M',N)) l1
then Greater else NotGE
in lexrec (sons1, sons2)
end
| lex_ext order _ = raise FailLexExt (*failwith "lex_ext"*)
(* recursive path ordering *)
fun Group_rules() = [
(1, (1, (Term("*", [Term("U",[]), Var 1]), Var 1))),
(2, (1, (Term("*", [Term("I",[Var 1]), Var 1]), Term("U",[])))),
(3, (3, (Term("*", [Term("*", [Var 1, Var 2]), Var 3]),
Term("*", [Var 1, Term("*", [Var 2, Var 3])]))))]
fun Geom_rules() = [
(1,(1,(Term ("*",[(Term ("U",[])), (Var 1)]),(Var 1)))),
(2,(1,(Term ("*",[(Term ("I",[(Var 1)])), (Var 1)]),(Term ("U",[]))))),
(3,(3,(Term ("*",[(Term ("*",[(Var 1), (Var 2)])), (Var 3)]),
(Term ("*",[(Var 1), (Term ("*",[(Var 2), (Var 3)]))]))))),
(4,(0,(Term ("*",[(Term ("A",[])), (Term ("B",[]))]),
(Term ("*",[(Term ("B",[])), (Term ("A",[]))]))))),
(5,(0,(Term ("*",[(Term ("C",[])), (Term ("C",[]))]),(Term ("U",[]))))),
(6,(0,
(Term
("*",
[(Term ("C",[])),
(Term ("*",[(Term ("A",[])), (Term ("I",[(Term ("C",[]))]))]))]),
(Term ("I",[(Term ("A",[]))]))))),
(7,(0,
(Term
("*",
[(Term ("C",[])),
(Term ("*",[(Term ("B",[])), (Term ("I",[(Term ("C",[]))]))]))]),
(Term ("B",[])))))
]
fun Group_rank "U" = 0
| Group_rank "*" = 1
| Group_rank "I" = 2
| Group_rank "B" = 3
| Group_rank "C" = 4
| Group_rank "A" = 5
| Group_rank _ = 100 (*added, to avoid non-exhaustive patter (mads) *)
fun Group_precedence op1 op2 =
let val r1 = Group_rank op1
val r2 = Group_rank op2
in
if eq_integer(r1,r2) then Equal else
if r1 > r2 then Greater else NotGE
end
fun rpo () =
let fun rporec (M,N) =
if eq_term(M,N) then Equal else
case M of
Var m => NotGE
| Term(op1,sons1) =>
case N of
Var n =>
if occurs n M then Greater else NotGE
| Term(op2,sons2) =>
case (Group_precedence op1 op2) of
Greater =>
if for_all (fn N' => gt_ord rporec (M,N')) sons2
then Greater else NotGE
| Equal =>
lex_ext rporec (M,N)
| NotGE =>
if exists (fn M' => ge_ord rporec (M',N)) sons1
then Greater else NotGE
in rporec
end
fun Group_order x = rpo () x
fun greater pair =
case Group_order pair of Greater => true | _ => false
(****************** Critical pairs *********************)
(* All (u,sig) such that N/u (&var) unifies with M,
with principal unifier sig *)
fun super M =
let fun suprec (N as Term(_,sons)) =
let fun collate (pairs,n) son =
(pairs @ map (fn (u,sigma) => (n::u,sigma)) (suprec son), n+1)
val insides : (int list * (int*term)list)list = (*type constraint added (mads)*)
fst (it_list collate ([],1) sons)
in ([], unify(M,N)) :: insides handle _ => insides
end
| suprec _ = []
in suprec
end
(********************
Ex :
let (M,_) = <<F(A,B)>>
and (N,_) = <<H(F(A,x),F(x,y))>> in super M N;;
==> [[1],[2,Term ("B",[])]; x <- B
[2],[2,Term ("A",[]); 1,Term ("B",[])]] x <- A y <- B
*)
(* All (u,sigma), u&[], such that N/u unifies with M *)
(* super_strict : term -> term -> (num list & subst) list *)
fun super_strict M (Term(_,sons)) =
let fun collate (pairs,n) son =
(pairs @ map (fn (u,sigma) => (n::u,sigma)) (super M son), n+1)
in fst (it_list collate ([],1) sons) end
| super_strict _ _ = []
(* Critical pairs of L1=R1 with L2=R2 *)
(* critical_pairs : term_pair -> term_pair -> term_pair list *)
fun critical_pairs (L1,R1) (L2,R2) =
let fun mk_pair (u,sigma) =
(substitute sigma (replace L2 u R1), substitute sigma R2) in
map mk_pair (super L1 L2)
end
(* Strict critical pairs of L1=R1 with L2=R2 *)
(* strict_critical_pairs : term_pair -> term_pair -> term_pair list *)
fun strict_critical_pairs (* r1908 *) (L1,R1) (L2,R2) =
let fun mk_pair (u,sigma) =
(substitute sigma (replace L2 u R1), substitute sigma R2) in (* these applications of substitute put terms attop *)
map mk_pair (super_strict L1 L2)
end
(* All critical pairs of eq1 with eq2 *)
fun mutual_critical_pairs eq1 eq2 =
(strict_critical_pairs eq1 eq2) @ (critical_pairs eq2 eq1)
(* Renaming of variables *)
fun rename n (t1,t2) =
let fun ren_rec (Var k) = Var(k+n)
| ren_rec (Term(oper,sons)) = Term(oper, map ren_rec sons)
in (ren_rec t1, ren_rec t2)
end
(************************ Completion ******************************)
fun deletion_message (k,_) =
(print_string "Rule ";print_num k; message " deleted")
(* Generate failure message *)
fun non_orientable (M,N) =
(pretty_term M; print_string " = "; pretty_term N; print_newline())
fun copy_termpairlist [] = []
| copy_termpairlist ((M,N)::rest) = (copy_term M, copy_term N):: copy_termpairlist rest
fun copy_int_pair(x,y) = (x+0, y+0)
fun copy_int_pair_list l = map copy_int_pair l
fun copy_int (x) = x+0
fun copy_arg(interm:bool, n, rules, failures, p, eps) =
(interm, n, copy_rules rules, copy_termpairlist failures, copy_int_pair p, copy_termpairlist eps)
(* Improved Knuth-Bendix completion procedure *)
(* kb_completion : num -> rules -> term_pair list -> (num & num) -> term_pair list -> rules *)
fun kb_completion (* [r2225] *)(arg as (done,n, rules, list, (k,l), eps)) =
let fun kbrec (* [r2272] *) count n rules =
let fun normal_form x = mrewrite_all rules x
fun get_rule k = assoc eq_integer k rules
fun process failures =
let fun processf (k,l) =
let fun processkl [] =
if k<l then next_criticals (k+1,l) else
if l<n then next_criticals (1,l+1) else
(case failures of
[] => (true, n, rules, [], (k,l), failures) (* successful completion *)
| _ => (message "Non-orientable equations :";
app non_orientable failures;
raise FailKbComplettion (*failwith "kb_completion"*) ))
| processkl ((M,N)::eqs) =
let val M' = normal_form M
val N' = normal_form N
fun enter_rule(left,right) =
let val new_rule = (n+1, mk_rule left right) in
(pretty_rule new_rule;
let fun left_reducible (_,(_,(L,_))) = reducible left L
val (redl,irredl) = partition left_reducible rules
in (app deletion_message redl;
let fun right_reduce (m,(_,(L,R))) =
(m,mk_rule L (mrewrite_all (new_rule::rules) R));
val irreds = map right_reduce irredl
val eqs' = map (fn (_,(_,pair)) => pair) redl
in if count>0
then (kbrec (count-1) ((n+1)) ((new_rule::irreds)) [] ((k,l))
((eqs @ eqs' @ failures))
)
else (false,n+1, new_rule::irreds, [], (k,l), (eqs @ eqs' @ failures))
end)
end)
end
in if eq_term(M',N') then processkl eqs else
if greater(M',N') then enter_rule( M', N')
else
if greater(N',M') then enter_rule( N', M')
else
(process ( ((M', N')::failures)) ( (k,l)) ( eqs))
end
in processkl
end
and next_criticals (k,l) =
(let val (v,el) = get_rule l in
if eq_integer(k,l) then
processf (k,l) (strict_critical_pairs el (rename v el))
else
(let val (_,ek) = get_rule k in
processf (k,l) (mutual_critical_pairs el (rename v ek))
end
handle FailFind (*rule k deleted*) =>
next_criticals (k+1,l))
end
handle FailFind (*rule l deleted*) =>
next_criticals (1,l+1))
in processf
end
in process
end
fun kb_outer (* [r2517] *)(arg as (_, n, rules, failures, (k,l), other_failures)) =
case kbrec 1 n rules failures (k,l) other_failures of
result as (true,_, result_rules,_,_,_) => if false then arg else result
| arg0 as (false, n', rules', failures', (k',l'), eqs') =>
kb_outer(let val arg1 = copy_arg arg0
in (*resetRegions arg0;*)
copy_arg(arg1)
end
)
in (fn (_,_,x,_,_,_) => x)(kb_outer(arg))
end
fun kb_complete complete_rules (* the terms in the complete_rules are global *) rules =
let val n = check_rules complete_rules
val eqs = map (fn (_,(_,pair)) => pair) rules
(* letregion r2656 *)
val completed_rules =
(* the copying in the line below is to avoid that kb_completion is called with attop modes *)
kb_completion(false,n+0, copy_rules complete_rules, [], (n+0,n+0), copy_termpairlist eqs)
in (message "Canonical set found :";
pretty_rules (rev completed_rules);
(* end r2683 *)
())
end
fun doit() = kb_complete [] (* terms in list global *) (Geom_rules())
fun testit _ = ()
in (*local*)
val _ = (doit(); doit(); doit())
end (*local*)
|