File: factor.c

package info (click to toggle)
mlucas 17.1-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 23,624 kB
  • sloc: ansic: 344,825; sh: 4,418; python: 190; perl: 115; makefile: 11
file content (4259 lines) | stat: -rw-r--r-- 182,265 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
/*******************************************************************************
*                                                                              *
*   (C) 1997-2016 by Ernst W. Mayer.                                           *
*                                                                              *
*  This program is free software; you can redistribute it and/or modify it     *
*  under the terms of the GNU General Public License as published by the       *
*  Free Software Foundation; either version 2 of the License, or (at your      *
*  option) any later version.                                                  *
*                                                                              *
*  This program is distributed in the hope that it will be useful, but WITHOUT *
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or       *
*  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for   *
*  more details.                                                               *
*                                                                              *
*  You should have received a copy of the GNU General Public License along     *
*  with this program; see the file GPL.txt.  If not, you may view one at       *
*  http://www.fsf.org/licenses/licenses.html, or obtain one by writing to the  *
*  Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA     *
*  02111-1307, USA.                                                            *
*                                                                              *
*******************************************************************************/

/* NOTE: Default should simply include this sourcefile as part of an Mlucas build.
To build the sieve factoring code in standalone mode, see the compile instructions below!
*/
#ifndef FACTOR_STANDALONE

	#include "factor.h"
	#include "align.h"

#else

	#include "Mlucas.h"

	/* Define FFT-related globals (declared in Mdata.h) */
	uint32 N2,NRT,NRT_BITS,NRTM1;
	int NRADICES, RADIX_VEC[10];	/* RADIX_VEC[] stores sequence of complex FFT radices used.	*/
  #ifdef MULTITHREAD
	uint64 CORE_SET[MAX_CORES>>6];	// Bitmap for user-controlled affinity setting, as specified via the -cpu flag
  #endif

  #ifdef USE_AVX	// AVX and AVX2 both use 256-bit registers
	const uint32 mask02 = 0xfffffff8,
		br8[8]    = {0,4,1,5,2,6,3,7},	// length-8 index-scramble array for mapping from scalar-complex to AVX (re,re,re,re,im,im,im,im)
		brinv8[8] = {0,2,4,6,1,3,5,7};	// length-8 index-unscramble array: br[brinv[i]] = brinv[br[i]] = i .
  #endif
  #ifdef USE_SSE2
	const uint32 mask01 = 0xfffffffc,
		br4[4]    = {0,2,1,3};	// length-4 index-scramble array for mapping from scalar-complex (re,im,re,im) to SSE2 (re,re,im,im)
								// For length-4 this is its own inverse.
  #endif

	FILE *fp, *fq;
	const char OFILE     [] = "results.txt";

	/* These should all be set to a valid (nonzero) value at the time the appropriate test is begun */
	uint32 TEST_TYPE		= 0;
	uint32 MODULUS_TYPE		= 0;
	uint32 TRANSFORM_TYPE	= 0;

	int INTERACT;

#endif

// Oct 2015: Play with Smarandache numbers ():
void testSmarandache(const uint32 imin, const uint32 imax, const uint8 pdiff[], const uint32 nprime)
{
	const double ilog10 = 1/log(10);
	uint32 i,imod30,j,m,len,curr_p, ndd = 0, ntest = 0;
	uint64 pow10 = 1;
	static uint64 *x = 0x0, *y = 0x0, first_entry = TRUE;
	if(first_entry) {
		first_entry = FALSE;
		x = (uint64 *)calloc(1000000, sizeof(uint64));
		y = (uint64 *)calloc(1000000, sizeof(uint64));
	}
	x[0] = 1; len = 1;
	i = 2;
	while(i <= imax) {
		if(i%1000 == 0) printf("At S[%u]...\n",i);
		if(ceil(log(i+0.5)*ilog10) > ndd) {	/* Need + 0.5 so e.g. ndd(100) comes out = 3 rather than 2 */
			ndd++;
			pow10 *= 10;
		}
		// S_(i+1) = pow10^2 * S_(i-1) + pow10*i + (i+1):
		x[len] = mi64_mul_scalar(x,pow10*pow10    ,x,len);	len += (x[len] != 0ull);
		x[len] = mi64_add_scalar(x,pow10*i + (i+1),x,len);	len += (x[len] != 0ull);
		if(i >= imin) {
			// Trial-div by the first nprime odd primes:
			m = 0; curr_p = 3;
		#if 1	// This 4-way asm-optimized 64-bit faster than generic-C 4-way 32-bit version below
			for(m = 0; m < nprime; m++)
			{
				if(mi64_is_div_by_scalar64_u4(x,curr_p,(len+3)&0xfffffffc)) {
				//	printf("S[%u] has a small factor: %u\n",i+1,curr_p);
					break;
				}
				curr_p += (pdiff[m] << 1);
			}
		#else
			uint32 p[4];
			for(m = 0; m < nprime; m+=4)
			{
				curr_p += (pdiff[m  ] << 1); p[0] = curr_p;
				curr_p += (pdiff[m+1] << 1); p[1] = curr_p;
				curr_p += (pdiff[m+2] << 1); p[2] = curr_p;
				curr_p += (pdiff[m+3] << 1); p[3] = curr_p;
				j = mi64_is_div_by_scalar32_x4((uint32*)x, p[0], p[1], p[2], p[3], len);
				if(j != 0) {
				//	printf("S[%u] has a small factor: %u\n",i+1,p[trailz32(j)]);
					break;
				}
			}
		#endif
			// If no small factor found, do base-2 PRP test:
			if(m == nprime) {
				// Only terms with index (i+1) == 1,7,13,19 (mod 30) can possibly be prime:
				imod30 = (i+1)%30;
				ASSERT(HERE, imod30 == 1 || imod30 == 7 || imod30 == 13 || imod30 == 19, "Only terms with index (i+1) == 1,7,13,19 (mod 30) can possibly be prime!");
				ntest++;
				mi64_sub_scalar(x ,1ull,y ,len);	// y = x-1
				printf("PRP-testing S[%u] (len = %u)...\n",i+1,len);
			/*
				j = mi64_twopmodq(y, len, 0, x, len, 0x0);
				if(j == 1)
					printf("S[%u] (len = %u) is a base-2 PRP!\n",i+1,len);
				else
					printf("S[%u] (len = %u) is composite\n"    ,i+1,len);
			*/
			}
		}
		i += 2;
	}
	printf("Small-prime (first %u odd primes) sieve eliminated all but %u of %u series terms",nprime,ntest,(i-imin-2)>>1);
	return;
}

// Use x86_64 inline-asm?
#undef YES_ASM
#if(defined(CPU_IS_X86_64) && defined(COMPILER_TYPE_GCC) && (OS_BITS == 64))
	#define YES_ASM
#endif

#ifdef MULTITHREAD

  #ifndef USE_PTHREAD
	#error Only Pthreads supported!
  #endif

	#include "threadpool.h"

	struct fac_thread_data_t{
		uint64*count;	// Put function-return value for unthreaded here
		int tid;	// Thread ID
		uint32 pass;
		uint64 interval_lo;
		uint64 interval_hi;
		double fbits_in_2p;
		uint32 nclear;
		uint32 sieve_len;
		uint32 p_last_small;	//largest odd prime appearing in the product; that is; the (nclear)th odd prime.
		uint32 nprime;			// #sieving primes (counting from 3)
		uint32 MAX_SIEVING_PRIME;
	#ifdef USE_AVX512
		uint32 *psmall;
	#endif
		uint8 *pdiff;
		uint32*startval;
		uint64*k_to_try;
		uint64*factor_k;		// List of found factors for each p gets updated (we hope) within
		uint32*nfactor;			// Here the '*' is to denote a writeable scalar
		uint32 findex;
		uint64*p;
		uint64*two_p;
		uint64*q;
		uint64*q2;
		uint64*u64_arr;
		uint32 lenP;
		uint32 lenQ;
		uint32*kdeep;
		uint32*ndeep;
		uint64 countmask;
		uint32 CMASKBITS;
		uint32 incr;
		uint64 kstart;
		uint64*bit_map;
		uint64*bit_map2;
		double *tdiff;
		int    MODULUS_TYPE;
		const char  *VERSION;
		const char  *OFILE;
	};
#endif

// GPU and legacy-CPU version uses [p,k] (mod 60) classes, leading to 16 passes;
// in a manycore setting we will want to compile-time -DTF_CLASSES=4620 to keep all the threads busy:
#if defined(USE_GPU) || !defined(TF_CLASSES) || (TF_CLASSES != 4620)
	#define TF_CLASSES	60
	#define TF_PASSES	16
	#define TF_CLSHIFT	6
#else	// 4620 = 60*7*11 classes, leading to 960 passes: for CPU-builds targeting manycore architectures
	#define TF_CLASSES	4620
	#define TF_PASSES	960
	#define TF_CLSHIFT	12
#endif

#undef	USE_FMADD	// Need to add 100-bit modpow routines before enabling this for build of this file

#define SPOT_CHECK	0	// Enable periodic Spot-check (PRP or composite) of factor candidates

#define FAC_DEBUG	0
#if FAC_DEBUG
	#warning Setting FAC_DEBUG in factor.h
	#define DBG_SIEVE	1
#endif

// Oct 2015: GCD-associated self-tests provides a fair bit of added coverage of the mi64 library, so always include:
#ifdef INCLUDE_PM1
	#include "gcd_lehmer.h"
#endif

// Tables of Fermat-base-2 pseudoprimes needed by the small-primes-diff/2 computation:
#include "f2psp_3_5.h"

/* Factoring-only globals: */
int restart;

#ifdef FACTOR_STANDALONE
	/* In standalone, need to locally define some Mdata.h/Mlucas.h-declared globals
	which would normally be defined in Mlucas.c. */

	char ESTRING[STR_MAX_LEN];	/* Exponent in string form */
	char PSTRING[STR_MAX_LEN];	/* [exponent | index] of [Mersenne | Fermat ] Number being tested in string form, typically
								 estring concatenated with other descriptors, e.g. strcat("M",estring) for Mersenne case
								*/
	uint32 PMIN;	/* minimum #bits allowed for FFT-based mul */
	uint32 PMAX;	/* maximum #bits allowed depends on max. FFT length allowed
					  and will be determined at runtime, via call to given_N_get_maxP(). */
	char cbuf[STR_MAX_LEN];
	char in_line[STR_MAX_LEN];
	/* Declare a blank STATFILE string to ease program logic: */
	char STATFILE[] = "";
	// Prefixes corr. to #defines in Mdata.h
	const char*NUM_PREFIX[MODULUS_TYPE_MAX+1] = {"Unknown modulus type!","M","MM","F"};
	// These externs declared in platform.h:
	int MAX_THREADS = 0;		// Max. allowable No. of threads.
	int NTHREADS = 1;			// Actual No. of threads. If multithreading disabled, set = 1. Thus init = 1 and set

#endif

/* Adjust the # of sieving primes to reflect that modmul cost
goes up very quickly with increasing # of 64-bit words in q.

Note that the total allocated memory for the sieve is roughly (17 bytes * NUM_SIEVING_PRIME).

There are 203280220 odd primes < 2^32, thus to use all 32-bit primes needs 3.2-3.3 GB of memory, hence
such a maximal-depth sieve run should just fit into the working memory of a machine having 4GB RAM.
A FAC_DEBUG-enabled build needs 4 more bytes per sieving prime, which together with other needed memory
allocated will likely need slightly more than 4GB of working memory with such a maximal-depth sieve.
*/
#ifndef NUM_SIEVING_PRIME
	#ifdef NWORD	/* N-word P, N presumed to be > 1: */
		#if FAC_DEBUG
			#define NUM_SIEVING_PRIME	10000
		#else
			#define NUM_SIEVING_PRIME	2000000
		#endif
	#elif(defined(P4WORD))	/* 4-word P: */
		#if FAC_DEBUG
			#define NUM_SIEVING_PRIME	10000
		#else
			#define NUM_SIEVING_PRIME	1000000
		#endif
	#elif(defined(P3WORD))	/* 3-word P: */
		#if FAC_DEBUG
			#define NUM_SIEVING_PRIME	10000
		#else
			#define NUM_SIEVING_PRIME	500000
		#endif
	#elif(defined(P2WORD))	/* 2-word P: */
		#if FAC_DEBUG
			#define NUM_SIEVING_PRIME	10000
		#else
			#define NUM_SIEVING_PRIME	200000
		#endif
	#else	/* 1-word P limit is set by #of bits p can have so 120^2*p < 2^64: */
		#if FAC_DEBUG || defined(USE_GPU)
			#define NUM_SIEVING_PRIME	10000
		#else
			#define NUM_SIEVING_PRIME	100000
		#endif
	#endif
#endif

#if NUM_SIEVING_PRIME > 203280220
	#error NUM_SIEVING_PRIME exceeds 32-bit-primes-set limit of 203280220!
#endif

/*...Known Mersenne prime exponents. This array must be null-terminated.	*/
const uint32 knowns[] = {2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253,4423,9689,9941
	,11213,19937,21701,23209,44497,86243,110503,132049,216091,756839,859433,1257787,1398269,2976221,3021377,6972593
	,13466917,20996011,24036583,25964951,30402457,32582657,37156667,42643801,43112609,57885161,0x0};

/*** Code to small candidate factors q=2*k*p+1 of Mersenne numbers M(p) = 2^p - 1.

	Uses the Left-to-Right binary method of exponentiation
	to quickly test whether [M(p)+1] mod q = 1, which is equivalent to
	testing whether M(p) mod q = 0, i.e. whether q divides M(p).

	We want the sieving code to be cache-friendly, which means minimizing
	the size of the sieve-related bit arrays in working memory. One way to
	achieve this is to break a single sequential sieving loop that tests
	all candidate factors of form q = 2*k*p + 1 satisfying some smoothness
	property (i.e. q not divsible by small primes below some predetermined
	threshold - note that it is easily seen that direct nonfactorial compositeness
	testing of each q is *not* cost-effective, since checking whether e.g.
	2^(q-1) == 1 mod q is as or more expensive than checking whether q divides
	2^p-1, i.e. whether 2^p == 1 mod q) into a number of smaller sieving
	steps, each of which checks only q's having k == 1 modulo some product
	of small primes. By eliminating k's which lie in residue classes such
	that the resulting q cannot possibly be prime we increase the density of
	candidate q's in our smaller "sievelets", and at the same time require
	smaller bit arrays to be held in working memory.

	Here, we use (p,k) mod 60 correlations to reduce the number of possible k's
	by roughly three-fourths. Since p prime it immediately follows that p must == 1 or
	(odd prime > 5) (mod 60), yielding 16 residue classes:
		p == 1,7,11,13,17,19,23,29,31,37,41,43,47,53,59 (mod 60).
	For each of these, there is an analogous residue classes on k: Specifically,
	a factor candidate q=2*k*p+1 can only be prime if the value of (k mod 60)
	appears in the appropriate (p mod 60) row of the following table:

	p%60	Acceptable values of k%60:
	--	-----------------------------------------------
	 1	00,03,08,11,15,20,23,24,35,36,39,44,48,51,56,59
	 7	00,05,08,09,12,17,20,24,29,32,33,44,45,48,53,57
	11	00,01,04,09,13,16,21,24,25,28,33,36,40,45,48,49
	13	00,03,08,11,12,15,20,23,27,32,35,36,47,48,51,56
	17	00,03,04,07,12,15,19,24,27,28,39,40,43,48,52,55
	19	00,05,09,12,17,20,21,24,29,32,36,41,44,45,56,57
	23	00,01,12,13,16,21,25,28,33,36,37,40,45,48,52,57
	29	00,04,07,12,15,16,19,24,27,31,36,39,40,51,52,55
	31	00,05,08,09,20,21,24,29,33,36,41,44,45,48,53,56
	37	00,03,08,12,15,20,23,24,27,32,35,39,44,47,48,59
	41	00,03,04,15,16,19,24,28,31,36,39,40,43,48,51,55
	43	00,05,08,12,17,20,21,32,33,36,41,45,48,53,56,57
	47	00,04,09,12,13,24,25,28,33,37,40,45,48,49,52,57
	49	00,11,12,15,20,24,27,32,35,36,39,44,47,51,56,59
	53	00,03,07,12,15,16,27,28,31,36,40,43,48,51,52,55
	59	00,01,04,09,12,16,21,24,25,36,37,40,45,49,52,57

Where did these come from?
Let pm := p%60, and km := k%60. For p prime > 5, we know p cannot be divisible by 2, 3 or 5.
Working modulo the product of small primes 2^2.3.5 = 60, we require GCD(p%60, 60) = 1, which allows
pm = 1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59. Now, since we also know that prime-exponent
Mersenne factor candidates must have form

q = 2*k*p + 1 = 2*(i*60 + km)*(j*60 + pm) + 1 == 2*km*pm + 1 (modulo 120) .

For any value of pm, the only possible value of km are those for which
GCD(2*km*pm + 1, 120) = 1, i.e. (2*km*pm + 1) is not divisible by 3 or 5.

Let's try pm = 1 as an example:

pm := p%60 = 1:

km := k%60 :            0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
2*km*pm+1  :            1  3  5  7  9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99.01.03.05.07.09.11.13.15.17.19
GCD(2*km*pm+1, 120)   : 1  3  5  1  3  1  1 15  1  1  3  1  5  3  1  1  3  5  1  3  1  1  5  1  1  3  1  5  3  1  1  3  5  1  3  1  1  5  1  1  3  1  5  3  1  1  3  5  1  3  1  1 15  1  1  3  1  5  3  1
Acceptable? (* = yes) : *        *     *  *     *  *     *        *  *        *     *  *     *  *     *        *  *        *     *  *     *  *     *        *  *        *     *  *     *  *     *        *

Thus, 32 k-residue classes survive the GCD criterion.
We further use quadratic residues: From the form of N = 2^p - 1, we have that
2^p == 1 (mod N). Multiplying by 2, we see that 2^(p+1) == 2 (mod N). Since p is odd
(primality of p is not crucial here, just oddness), the LHS is an even power of 2,
hence a perfect square, which implies that 2 is a QR mod N, and thus also a QR mod
any factor q of N. That immediately implies that q == +-1 (mod 8), i.e. that any
factor q must be of the form 8*n +- 1. Thus our set of acceptable km's is cut in half:

km := k%60 :            0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
2*km*pm+1 % 8         :+1 +3 -3 -1 +1 +3 -3 -1 +1 +3 -3 -1 +1 +3 -3 -1 +1 +3 -3 -1 +1 +3 -3 -1 +1 +3 -3 -1 +1 +3 -3 -1 +1 +3 -3 -1 +1 +3 -3 -1 +1 +3 -3 -1 +1 +3 -3 -1 +1 +3 -3 -1 +1 +3 -3 -1 +1 +3 -3 -1
Acceptable? (* = yes) : *        *              *        *           *              *        *  *                                *  *        *              *           *        *              *        *

Thus, the divisibility-by 3,5 test leaves 32 acceptable residue classes,
precisely half of which are eliminated by the QR criterion.
An analogous 32/16 pattern occurs for the other 15 possible values of p%60.

NOTE that since the smallest possible k value = 1, this corresponds to the zero bit of
our sieve, i.e. k%60 = 0 is aliased to k%60 = 60 - that's why the k%60 == 0 pass is
done last among the 16 k%60 passes.

Mar 2015: Added extension of above scheme to (mod 4620), i.e. 60*7*11, thus adding primes 7,11 to the earlier pair 3,5.
There are now 16*77*(1 - 1/7)*(1 - 1/11) = 16*60 = 960 possible residue classes for the p's, and analogously for the k's.
Unlike for (mod 60), use simple utility functions to manage these, rather than a precomputed giant 960 x 960 table.

                        *     *     *     *     *

   REVISION CONTROL:

   01/04/2003:	First C version. Limit = 2^65. ASM mul macros only for Alpha.

   06/--/2003:	Nonportable (Alpha and Itanium only) C version. Limit = 2^ 96.

   12/31/2003:	Nonportable (Alpha and Itanium only) C version.
				Limit = 2^128, p up to 2^114 via -DP2WORD compile-time #define.

   06/01/2005:	Nonportable (Alpha and Itanium only) C version.
				Limit = 2^192, p up to 2^128 via -DP3WORD compile-time #define.
				Can also handle case where p (actually, p*120) << 2^128 but q > 2^128
				via combination of -DP2WORD and -DQ3WORD compile-time #defines.
				This invokes a fast version of the 8-operand modular powering routine
				which assumes that only the lower 128 bits of each octet of q's differ.

	05/15/2006:	***First Public Release***
   				Portable C version with ASM integer-multiply macros for a decent variety of 64-bit
 				architectures (Alpha, Itanium, AMD64, PowerPC, IBM Power64).
 				Factor limits of 2^128/192/256 via PxWORD compile-time #define with x = 2,3,4.

	01/15/2006:	Arbitrary-length integer arithmetic (but optimal for "small" integer lengths,
                say on the order of ten 64-bit words) via enhancements to the mi64 library.
                Invoke by defining NWORD, e.g. via -DNWORD.

	2009-2011	Added support for x86 SSE2 floating-double SIMD hardware; improved inline ASM for x86 uint64 mode.

	2013		Added support for AVX to float-based (78-bit modmul) routines.

	2015		Added support for 4620 ( = 60*7*11) p-mod classes, yielding 960 passes. This saves ~25%
				(precisely: 17/60*100%) effort versus legacy mod-60, and lends itself to manycore/manythread
				CPU (not GPU - there we use a different threading model) implemeentation.

				Added support for nVidia CUDA, geared toward 32-bit-int and floating-double (esp. FMA-arithmetic)
				capability of Fermi+ families of GPUs. Also added AVX2-based modmul routines based on capability
				of FMA-double math to exactly compute 106-bit product of 53-bit signed inputs via the sequence

					[input doubles x,y]
					double hi = x*y;
					double lo = FMA(x,y, -hi);

				This still needs normalization to properly split the resultant significant bits across lo,hi,
				e.g. in a base-2^52 signed-int multiword context:

					hh  = DNINT(hi*TWO52FLINV);		// This part remains in hi...
					cy  = FMA(hh ,-TWO52FLOAT,hi);	// hi - hh*2^52 is 'backward carry' from hi into lo, needed for proper base-normalization
					lo += cy;
					hi  = hh;

				Thus the cost of each 100+ - bit product is 1 ADD, 2 MUL, 2 FMA, 1 DNINT. (We assume/hope the negations are free).

                        *     *     *     *     *

	COMPILING THE PROGRAM IN STANDALONE MODE: Below are the best compile options for various
	platforms on which the code has been run successfully. If your particular hardware/software
	is not represented, please let me know what kinds of results you get with your compiler.

	The compile sequences assume that the sourcefile is called factor.c
	and produce an executable named "factor".

  *** Alpha: ***

	NOTES: Alpha 21264 (ev6) and above should give by far the best per-cycle performance
	of all the Alphas, because it fully pipelines the MULL64 and MULH64 hardware integer
	multiply instructions, i.e. needs effectively just 2 cycles to get a full-length
	128-bit product of unsigned 64-bit integers.
	The 21164 (ev5) only partially pipelines these - it can start a new integer mul instruction
	every 8 cycles, so needs effectively 16 cycles for a 128-bit product.
	The 21064 (ev4) doesn't pipeline integer muls at all, so will need 30-40 cycles for such
	a product. Although integer muls are the rate-limiting operation on the slower machines,
	they are not on the 21264, so in practice the 21264 gives ~4-5x better per-cycle factoring
	performance than the 21164 and ~12-15x better than the 21064.

  * (1A) Digital/Compaq/HP C compiler (cc) for TruUnix V5.0+: if you're not sure what type of Alpha
	CPU you have, substitute 'host' for the architecture-specific (ev4/generic/ev6) flag below.

	21064/ev4/ev45:			cc -o factor -DFACTOR_STANDALONE -O5 -fast -arch ev4     -tune ev4     factor.c -lm
	21164/ev5/ev56/generic:	cc -o factor -DFACTOR_STANDALONE -O5 -fast -arch generic -tune generic factor.c -lm
	21164/ev6/ev67/ev68:	cc -o factor -DFACTOR_STANDALONE -O5 -fast -arch ev6     -tune ev6     factor.c -lm

  * (1B) Digital/Compaq/HP C compiler (ccc) for Linux: same as for Unix, but replace 'cc' with 'ccc'.

  * (1C) Digital/Compaq/HP C compiler (cc) for VMS (Since this is integer-dominated code I'm not sure
	if all these are necessary, but some of the floating-point ones apparently are, and the others certainly won't hurt):

	*** NEED TO FIGURE OUT HOW TO INCLUDE FACTOR_STANDALONE #DEFINE UNDER VMS! ***
	cc/decc/lis/mach/nodebug/float=ieee_float/ieee_mode=fast/arch=host/assume=accuracy_sensitive/opt=(inline=speed,level=5,tune=host,pipeline,unroll=1) factor.c

  * (1D) Gnu C for Alpha/Linux: I'm not sure what the best compile options are. Based on past
	experience, I strongly suggest using either the native Digital/Compaq/HP C compiler,
	or a prebuilt binary based on it, as gcc generally gives suboptimal performance on most platforms.


  *** IA64 ***

  * (1A) Intel C (icc) for IA64: please make sure to use v8.0 or later!

	icc -o factor -static -DFACTOR_STANDALONE -O3 factor.c


  * (2B) HP C for IA64/HPUX:

	cc -o factor -DFACTOR_STANDALONE +O3 factor.c -lm

	(Note that you'll see a bazillion ignorable warnings of the form
	 Warning 1001: "factor.c", line 6574 # Conversion from 'int' to
	 '__fpreg' performed using intermediate conversion to __float80. )


  *** Athlon-64 (a.k.a. Opteron) ***

	gcc -o factor -DFACTOR_STANDALONE -m64 -O3 factor.c
*/

/* Various compile-time #defines: (define via -D[option], unless noted otherwise) -
	Subordinate #defines are indicated via indentation (e.g. PIPELINE_MUL192 is only
	meaningful if P3WORD is in effect) :

	FACTOR_STANDALONE - build as a standalone program, rather than a callable
						factor() subroutine.

	FAC_DEBUG - define = 1 in factor.h to enable debugging diagnostic prints
				and assertions of the form ASSERT.

	DBG_SIEVE - define = 1 to debug the sieve without actually spending time
				doing trial divides. NOTE: Requires FAC_DEBUG = 1.

	NOBRANCH - define to invoke branchless versions of key code segments.

	QUIT_WHEN_FACTOR_FOUND - Default is to finish all 16 passes to the specified depth,
	i.e. to find *all* factors below the factoring limit. To instead stop immediately
	if a factor is found, define this one.

***	USE_FLOAT - Only relevant if no PxWORD with x > 1 is defined,
	i.e. when dealing with 1-word p's (more specifically, p such that 120*p < 2^64.)
	Define this flag to use specialized floating-double-based code (cf. twopmodq80.c)
	to do the bulk of each modular powering. This limits factor candidates to < 2^78.
	If this flag is invoked, the user may not invoke the USE_65BIT or USE_95BIT flags.

	USE_FLOATING_MULH64 - currently unsupported

	USE_65BIT - Only relevant if no PxWORD with x > 1 is defined,
	i.e. when dealing with 1-word p's (more spedifically, p such that 120*p < 2^64.)
	Default is to use generic 96-bit factor routines for all q's > 64 bits.
	Define this flag to use specialized 65-bit code to handle q's in [2^64, 2^65).

***CURRENTLY UNSUPPORTED***	USE_95BIT - Only relevant if no PxWORD with x > 1 is defined,
	i.e. when dealing with 1-word p's (more specifically, p such that 120*p < 2^64.)
	Default is to use generic 96-bit factor routines for all q's > 64 bits.
	Define this flag to use specialized 95-bit code to handle q's in [2^65, 2^95).

	USE_128x96 - Only relevant if no PxWORD with x > 2 is defined, and only for q's in [2^64, 2^96].
	Invoke to replace calls to the full 128-bit modmul routines with ones to
	special 96-bit or 128/96-bit-hybrid hyroutines when the operands allow, specifically q < 2^96.
	There are 3 currently supported values:

		0 (or undef'd) - use  fully 128-bit routines for q's in [2^64, 2^96]

		1 - use strictly   96-bit routines for q's in [2^64, 2^96]

		2 - use hybrid 128_96-bit routines for q's in [2^64, 2^96]

	P1WORD - p small enough such that p*120 < 2^64, factor limit q < 2^96

	P2WORD - factor limit q < 2^128, i.e. q needs 2 full 64-bit words of storage.
	Also needed if p*120 is sufficiently close to 2^64 that the assumption of the
	96-bit modmul routines that the high 32 bits of q_j = 2*(k%60 + 60*j)*p + 1
	change only rarely with increasing j is no longer tenable.

	P3WORD - factor limit q < 2^192, i.e. q needs 3 full 64-bit words of storage.

		PIPELINE_MUL192 - when defined, uses pipelined versions of 192-bit MUL macros.

	P4WORD - factor limit q < 2^256, i.e. q needs 4 full 64-bit words of storage.

		PIPELINE_MUL256 - when defined, uses pipelined versions of 256-bit MUL macros.

	NWORD - Arbitrary-length p and q, only restriction is that (as for all other size ranges) kmax < 2^64 .
*/

/*********************************************************************************************************************************/

/* NOTE: Exponents > 64 bits *require* standalone-mode build: */

#ifdef FACTOR_STANDALONE

int main(int argc, char *argv[])
{

#else

  #if FAC_DEBUG
	#error FAC_DEBUG only permitted in standalone mode!
  #endif

int factor(char *pstring, double bmin, double bmax)
{

#endif

	static int first_entry = TRUE;

#ifdef FACTOR_STANDALONE

	/*...file pointer	*/
	FILE *fp, *fq;

	char stFlag[STR_MAX_LEN];

	/* Allocate storage for any needed Globals declared in Mdata.h
	(in non-standalone mode these are instead defined in Mlucas.c): */
	int MODULUS_TYPE   = 0;
	char pstring[STR_MAX_LEN] = "";

	/*...program version with patch suffix... */
	const char VERSION[] = "3.0x";			/* <--- a suffix of x, y, or z indicates a beta code. */

	const char OFILE  [] = "results.txt";	/* ASCII logfile containing factors found and/or
											final factoring-run result ONLY for each assignment */
	/* Restart file name:
	This is set at runtime, based on either command-line -file flag argument
	or (if -file {} not used) the exponent being processed. */
	char RESTARTFILE[STR_MAX_LEN] = "";

	double bmin = 0.0, bmax = 0.0;	/* store log2 of (min|max) factoring bound */
#endif

#ifdef MULTITHREAD

	static struct fac_thread_data_t *tdat = 0x0;
	int thr_id;
	// For Threadpool-based dispatch:
	static int main_work_units = 0, pool_work_units = 0;
	static struct threadpool *tpool = 0x0;
	static int task_is_blocking = TRUE;
	static thread_control_t thread_control = {0,0,0};
	// First 3 subfields same for all threads, 4th provides thread-specifc data, will be inited at thread dispatch:
	static task_control_t   task_control = {NULL, (void*)PerPass_tfSieve, NULL, 0x0};

#endif

	/* Make these large enough to hold the max. p,q supported by the software (currently,
	256 bits) then use as many of the subfields as needed, depending on the values of P,QWORDS.
	*/
	uint32	findex = 0, nbits_in_p = 0, nbits_in_q = 0, lenP = 0, lenQ = 0, bits_in_pq2 = 0;
	double fbits_in_2p = 0;
	uint64	*factor_ptmp = 0x0, *factor_k = 0x0;	/* Use this array to store the factor k's (assumed < 2^64) of any factors found. */
	uint64	*p = 0x0, *two_p = 0x0, *p2NC = 0x0, *q = 0x0, *q2 = 0x0, *k_to_try = 0x0;

#ifndef TRYQ
	#define TRYQ	1
#elif TRYQ < 1
	#undef TRYQ
	#define TRYQ	1
#endif

#ifdef USE_AVX512
	#ifndef USE_FLOAT
		#warning USE_AVX512 only meaningful USE_FLOAT also defined at compile time - setting this #define.
		#define USE_FLOAT
	#endif
	#define MAX_TRYQ	64
#elif defined(USE_AVX)
	#define MAX_TRYQ	16
#elif defined(USE_SSE2) && defined(X64_ASM)
	#define MAX_TRYQ	 8
#else
	#define MAX_TRYQ	 4
#endif

#if (TRYQ > MAX_TRYQ) && !defined(USE_ARM_V8_SIMD)	// Ignore on ARMv8, since no TF support there anyway
	#error TRYQ exceeds MAX_TRYQ for this build mode!
#endif

	int   nargs,itmp;
	/* pdsum stores the sums needed for the base (%30 == 0) candidate of each length-30 interval;
	pdiff stores the diffs/2 of these absolute offsets, circularly shifted to the right one place,
	since to update we need diff[j] = curr_p(current) - curr_p(previous) = (pdsum[j] - pdsum[j-1])/2,
	i.e. pdiff_8[i] = (pdsum_8[i]-pdsum_8[i-1])/2, i computed using mod-8 arithmetic and pdsum_8[] using mod-30 arithmetic:
	*/
	uint32 itmp32, pdiff_8[8] = {2,1,2,1,2,3,1,3}, pdsum_8[8] = { 0, 2, 6, 8,12,18,20,26};
	uint64 itmp64;
	uint32 pmodNC,kmodNC,incr[TF_PASSES];
	uint64 two64modp;
	uint32 bit,curr_p,i,ihi,m,ncopies,qmod8,regs_todo;
	uint32 l,i64,nfactor,word;
	uint32 nprime = NUM_SIEVING_PRIME;	/* Don't make this const, in case we need to reduce it to satisfy MAX_SIEVING_PRIME < (q_min = 2*p+1) */
	uint32 f2psp_idx = 0;	/* Index to next-expected Fermat base-2 pseudoprime in the precomputed table */

	/* LEN is the number of 64-bit words in our sieving bitmap. Successive
	bits of the sieve bitmap correpond to successive factor k-values, with bit 0
	corresponding to the smallest possible factor, k = 1 (note the unit-offset!)
	In practice, this full-sized sieve is split into 16 smaller (i.e. hopefully
	cache-sized) "sievelets", each of which contains bits corresponding to
	successive k's from one of the 16 allowable (k mod TF_CLASSES) families for the given
	exponent p (more specifically, the given (p mod TF_CLASSES) value.) Both full-length
	sieve and 1/16-th length sievelets share the property that each time we run
	through the bits of onesuch we run through 64*LEN worth of k's.
	*/
	const uint32 nclear=6, len = 3*5*7*11*13*17;	// LEN = product of first NCLEAR odd primes [= 255255],
	const uint32 p_last_small = 17;					// p_last_small = largest prime appearing in the product [= 17].
	uint32 prime[] = {3,5,7,11,13,17};	// Also need the first [nclear] odd primes - since 'const' is treated as a read-only flag
								// on *variables*, use [] instead of [nclear] to avoid compiler 'variable-length array init' errors.
#if TF_CLASSES == 60
	const uint32 bit_len = (len << TF_CLSHIFT)/TF_CLASSES; 	// 255255*64  /  60 = 272272: Number of bits in each of the  16 mod-  60 sievelets
#else	// 4620 classes:
	const uint32 bit_len = (len << TF_CLSHIFT)/TF_CLASSES;	// 255255*64^2/4620 = 226304: Number of bits in each of the 960 mod-4620 sievelets
#endif
	//   bits cleared of multiples of 3,5,7,11,13, 17 and q mod 8 = +-1 are here:
	uint64 *temp_late = 0x0;		/* Even though we know how large to make this, it's only needed
									for data inits, so we calloc it at runtime and free it later. */
	uint32 on_bits = 0;
	uint64 *bit_map, *bit_map2, *bit_atlas = 0x0;
	uint32 pass = 0xffffffff, passmin = 0, passnow = 0, passmax = TF_PASSES-1;
	uint64 count = 0,countmask,j,k,kmin = 0,kmax = 0,know = 0,kplus = 0;
	uint32 CMASKBITS;	// This is set at runtime based on the operand sizes, but treat as read-only subsequently.

	/* If restart file found, use these to store bmin/max, kmin/max, passmin/max
	data contained therein (e.g. for comparison with command-line args and determination
	of run status). We don't init them here since if a valid restart file is found,
	all these values should be read from it - that way if we get an "uninitialized"
	warning from the compiler, we know we've done something wrong in the code logic.
	*/
	int incomplete_run = FALSE;
	int curr_line;
	double bmin_file, bmax_file;
	uint64 kmin_file, know_file = 0, kmax_file = 0;
	uint32 passmin_file = 0, passnow_file = 0, passmax_file = 0;

	uint64 interval_lo,interval_now,interval_hi,ninterval;

// This stuff is for the small-primes sieve:
	uint32 max_diff;
#ifdef USE_AVX512	// Use vector-int math and gather-load/scatter-store to accelerate the bit-clearing
	uint32 *psmall;
#endif
	uint8 *pdiff;	/* Compact table storing the (difference/2) between adjacent odd primes.
							http://mathworld.wolfram.com/PrimeGaps.html shows the first >256-gap at ~387 million
							and the first >512-gap at ~300 billion, so using the half-of-even-gap trick makes
							the difference between an algo which is safe for all 32-bit primes and one with a
							limit of < 2^30. */
	uint32 *startval, *pinv, *kdeep = 0x0, ndeep = 0;
	uint32 MAX_SIEVING_PRIME = 0;
	uint64 *u64_arr = 0x0;	/* generic array allowing us to hook into the mi64 routines */

#ifdef P1WORD
	double twop_float = 0,fqlo,fqhi;
	uint128 p128,q128,t128;	// Despite the naming, these are needed for nominal 1-word runs with moduli exceeding 64 bits
#endif
#ifdef P3WORD
	uint192 p192,q192,t192;
  #ifdef USE_FLOAT
	uint256 x256;	// Needed to hold result of twopmodq200_8WORD_DOUBLE
  #endif
#endif
#ifdef P4WORD
	uint256 p256,q256,t256;
#endif
#if FAC_DEBUG
	/* Set k_targ to some known-factor k to debug a specific missed-factor case: */
	uint64 k_targ = 56474845800ull;
	uint32 pass_targ = 0xffffffff;	/* Init to a known-invalid value; if user specifies
	 								a known test factor via k_targ, pass_targ will
	 								be set to the associated (legitimate) value between 0 and TF_PASSES-1;
	 								(pass_targ < TF_PASSES) can subsequently be used as a quick
	 								test for whether a known test factor has been set. */
#endif

#if DBG_SIEVE
	uint32 *startval_incr;
	uint32 i64_targ, bit_targ;
#endif

	/*...time-related stuff	*/
	clock_t clock1, clock2;
	double td, tdiff;
#if TEST_TRIALDIV
	double citer;
#endif
	/* printf character buffers - when using to print args in a single printf,
	need a separate buffer for each arg: */
	char char_buf0[STR_MAX_LEN], char_buf1[STR_MAX_LEN], char_buf2[STR_MAX_LEN];
	char *char_addr;

/* Set == 1 to test the trial-div stuff: */
#define	TEST_TRIALDIV	0
#if TEST_TRIALDIV
	#define MAX_ARRAY_DIM 10000
	uint32	vec_len = MAX_ARRAY_DIM;
	uint64*	xvec = (uint64 *)calloc(MAX_ARRAY_DIM, sizeof(uint64));
	uint32 tryq[8];
#endif

#ifdef USE_GPU
	cudaError_t cudaError = cudaGetLastError();	// Call this to reset error flag to 0
	if(cudaError != cudaSuccess)
	{
		printf("ERROR: cudaGetLastError() returned %d: %s\n", cudaError, cudaGetErrorString(cudaError));
		ASSERT(HERE, 0, "factor.c : GPU-side error detected!");
	}
#endif

#ifdef macintosh
	argc = ccommand(&argv);	/* Macintosh CW */
#endif

/* Allocate factor_k array and align on 16-byte boundary: */
	factor_ptmp = ALLOC_UINT64(factor_ptmp, 24);
	factor_k = ALIGN_UINT64(factor_ptmp);	factor_ptmp = 0x0;
	ASSERT(HERE, ((uint64)factor_k & 0x3f) == 0, "factor_k not 64-byte aligned!");

/*...initialize logicals and factoring parameters...	*/
	restart = FALSE;

#ifdef FACTOR_STANDALONE
	host_init();
#endif

/***********************************************************************/
/******* In standalone mode, process any command-line arguments: *******/
/***********************************************************************/
/*
********** Mfactor command line options: **********

REQUIRED:
		* One (and ONLY one) of -m|mm|f, followed by a valid numerical exponent;
		* One (and ONLY one) of -bmax|kmax, unless it's a restart, i.e. a valid checkpoint file
			for the number in question exists. Iff -bmax|kmax specified, an optional lower-bound
			argument -bmin|kmin may also be specified, which must not exceed the upper bound.
		* If neither -bmax|kmax specified, it is assumed that a valid checkpoint file
			for the number in question exists. The data in this file will indicate either
			an as-yet-uncompleted factoring run for the number in question (in which case
			the run is resumed at the point at which it left off), or a completed run. In
			the latter instance, if a -kplus argument was specified on the command line,
			the k-bounds of the previous completed run are incremented and a new run with
			k-bounds [kmax_previous, kmax_previous + kplus] is begun. If -kplus is specified
			but the restart-file data indicate an as-yet-uncompleted run, a warning is issued,
			the -kplus argument ignored, and the incomplete run is resumed.

Others are optional and in some cases mutually exclusive:

	-h          Prints this help menu and exits

	-m [int]    Trial-factor the Mersenne number M(int) = 2^int - 1, with int < 2^MAX_BITS_P.

	-mm [int]   Trial-factor the double-Mersenne number M(M(int)) = 2^(2^int) - 1, with M(int) < 2^MAX_BITS_P.

	-f [int]    Trial-factor the Fermat number F(int) = 2^(2^int) + 1, with int <= %u.\n",MAX_BITS_P.
			NOTE:
				* Fermat number Trial-factoring not currently supported (future release.)

	-bmin [float] Log2(min factor to try), in floating form (>= 0, default = 0).
	-bmax [float] Log2(max factor to try), in floating form ( < 64*NWORDS).
			NOTES:
				* If -bmin/bmax used to set lower/upper bounds for factoring, -kmin/kmax disallowed.
				* bmin/bmax form of bounds-setting only allowed for single-word-p case, since
				  multiword p may cause float approximations to p, 2*p etc to overflow.

	-kmin  [int] Lowest  factor K value to be tried in each pass ( > 0, default = 1).
	-kmax  [int] Highest factor K value to be tried in each pass ( < 2^64).
			NOTE:
				* If -kmin/kmax used to set lower/upper bounds for factoring, -bmin/bmax disallowed.

	-kplus [int] Added   factor K value to be tried in each pass ( < 2^64), for an exponent
				for which one or more previous shallower factoring runs have already been done
				(specifically, a checkpoint file for a previous run exists.)
			NOTES:
				* If -bmin/bmax or -kmin/kmax used to set bounds for factoring, -kplus disallowed (and v.v.)
				* If -kmin|kmax from a previous run of the number in question found
				 in a checkpoint file, that old kmax serves as kmin for the new run
				 and (old kmax) + (kplus) serves as kmax for the new run.

	-passmin [int]  Maximum factoring pass for the run (0-TF_PASSES-1, default =  0).
	-passmax [int]  Maximum factoring pass for the run (0-TF_PASSES-1, default = 15).
			NOTE:
				* If passmin|max from a previous run of the number in question found
				 in a checkpoint file and those pass bounds conflict with the ones
				 given via the command line, an error message is printed and the
				 run aborted. This is done as a precaution against inadvertently
				 skipping a range of trial-factoring bounds in a multipart series
				 of partial factoring runs. In this event the user shhould carefully
				 compare the checkpoint file(s) for the number in question they have
				 saved from previous runs with their current command line and modify
				 one or the other so as to remove any pass-range conflicts.

	-q [int]    A known factor for the number (only used if FAC_DEBUG = 1).
*/
#ifdef FACTOR_STANDALONE

	nargs = 1;
	if(!argv[nargs])
		goto MFACTOR_HELP;
	while(argv[nargs])
	{
		strncpy(stFlag, argv[nargs++], STR_MAX_LEN);

		if(stFlag[0] != '-')
		{
			fprintf(stderr,"*** ERROR: Illegal command-line option %s\n", stFlag);
			fprintf(stderr,"*** All command-line options must be of form -{flag} [argument]\n\n");
			goto MFACTOR_HELP;
		}

		if(STREQ(stFlag, "-h"))
		{
			goto MFACTOR_HELP;
		}
		/* Type of number to be trial-factored: */
		else if(STREQ(stFlag, "-m"))	/* Mersenne */
		{
			strncpy(pstring, argv[nargs++], STR_MAX_LEN);
			MODULUS_TYPE = MODULUS_TYPE_MERSENNE;
		}
		else if(STREQ(stFlag, "-mm"))	/* Double-Mersenne */
		{
			strncpy(pstring, argv[nargs++], STR_MAX_LEN);
			MODULUS_TYPE = MODULUS_TYPE_MERSMERS;
		}
		else if(STREQ(stFlag, "-f"))	/* Fermat */
		{
			strncpy(pstring, argv[nargs++], STR_MAX_LEN);
			MODULUS_TYPE = MODULUS_TYPE_FERMAT;
		}

		/* Factor bounds, in log2(qmin/qmax) (floating double) form: */
		else if(STREQ(stFlag, "-bmin"))
		{
			if(kmin || kmax || kplus)
			{
				fprintf(stderr,"*** ERROR: If -kmin/kmax or -kplus used to set bounds for factoring, -bmin [and -bmax] disallowed.\n");
				goto MFACTOR_HELP;
			}
			strncpy(stFlag, argv[nargs++], STR_MAX_LEN);
			bmin = convert_base10_char_double(stFlag);
		  #if FAC_DEBUG
			printf("bmin = %lf\n", bmin);
		  #endif
		}
		else if(STREQ(stFlag, "-bmax"))
		{
			if(kmin || kmax || kplus)
			{
				fprintf(stderr,"*** ERROR: If -kmin/kmax or -kplus used to set bounds for factoring, -bmax [and -bmin] disallowed.\n");
				goto MFACTOR_HELP;
			}
			strncpy(stFlag, argv[nargs++], STR_MAX_LEN);
			bmax = convert_base10_char_double(stFlag);
		  #if FAC_DEBUG
			printf("bmax = %lf\n", bmax);
		  #endif
		}

		/* Factor bounds, in kmin/kmax (uint64) form: */
		else if(STREQ(stFlag, "-kmin"))
		{
			if(bmin || bmax || kplus)
			{
				fprintf(stderr,"*** ERROR: If -bmin/bmax or -kplus used to set bounds for factoring, -kmin/kmax disallowed.\n");
				goto MFACTOR_HELP;
			}
			strncpy(stFlag, argv[nargs++], STR_MAX_LEN);
			kmin = convert_base10_char_uint64(stFlag);
		}
		else if(STREQ(stFlag, "-kmax"))
		{
			if(bmin || bmax || kplus)
			{
				fprintf(stderr,"*** ERROR: If -bmin/bmax or -kplus used to set bounds for factoring, -kmin/kmax disallowed.\n");
				goto MFACTOR_HELP;
			}
			strncpy(stFlag, argv[nargs++], STR_MAX_LEN);
			kmax = convert_base10_char_uint64(stFlag);
		}

		else if(STREQ(stFlag, "-kplus"))
		{
			if(bmin || bmax || kmin || kmax)
			{
				fprintf(stderr,"*** ERROR: If -bmin/bmax or -kmin/kmax used to set bounds for factoring, -kplus disallowed.\n");
				goto MFACTOR_HELP;
			}
			strncpy(stFlag, argv[nargs++], STR_MAX_LEN);
			kplus = convert_base10_char_uint64(stFlag);
		}

		/* Pass bounds: */
		else if(STREQ(stFlag, "-passmin"))
		{
			strncpy(stFlag, argv[nargs++], STR_MAX_LEN);
			passmin = (uint32)convert_base10_char_uint64(stFlag);
			ASSERT(HERE, passmin < TF_PASSES,"factor.c: passmin < TF_PASSES");
		}
		else if(STREQ(stFlag, "-passmax"))
		{
			strncpy(stFlag, argv[nargs++], STR_MAX_LEN);
			passmax = (uint32)convert_base10_char_uint64(stFlag);
			ASSERT(HERE, passmax < TF_PASSES,"factor.c: passmax < TF_PASSES");
			ASSERT(HERE, passmax >= passmin       ,"factor.c: passmax >= passmin");
		}

		// Number of threads to use?
		else if(STREQ(stFlag, "-nthread"))
		{
			strncpy(stFlag, argv[nargs++], STR_MAX_LEN);
		#ifndef MULTITHREAD
			fprintf(stderr,"Multithreading not enabled; ignoring -nthread argument.\n");
			NTHREADS = 1;
		#else
			itmp = (uint32)convert_base10_char_uint64(stFlag);
			if(itmp > TF_PASSES) {
				fprintf(stderr, "factor.c: Specifed #nthreads [%u] > TF_PASSES [%u] ... using just %u threads.\n",itmp,TF_PASSES,TF_PASSES);
				NTHREADS = TF_PASSES;
			} else if(itmp < 1) {
				fprintf(stderr, "factor.c: Specifed #nthreads [%u] < minimum of 1 ... running 1-threaded.\n",itmp);
				NTHREADS = 1;
			} else {
				NTHREADS = itmp;
			}
		  #ifdef NWORD
			ASSERT(HERE, NTHREADS == 1, "Arbitrary-precision build currently only supports single-threaded runs!");
		  #endif
			// Use the same affinity-setting code here as for the -cpu option, but simply for cores [0:NTHREADS-1]:
			sprintf(cbuf,"0:%d",NTHREADS-1);
			parseAffinityString(cbuf);
		#endif
		}
		else	// Come again?
		{
			fprintf(stderr,"*** ERROR: Unrecognized command-line option %s\n", stFlag);
			fprintf(stderr,"*** All command-line options must be of form -{flag} [argument]\n\n");
			goto MFACTOR_HELP;
		}
	}

#else

	/* If non-standalone mode, make sure statfile name is non-empty: */
	ASSERT(HERE, STRNEQ(STATFILE, ""), "STATFILE string empty");
	fp = mlucas_fopen(STATFILE, "a");
	if(!fp) {
		fprintf(stderr,"ERROR: Unable to open statfile %s for writing.\n",STATFILE);
		ASSERT(HERE, 0,"0");
	} else {
		fclose(fp); fp = 0x0;
	}

#endif	/* #ifdef FACTOR_STANDALONE */

	// One-time allocs and inits:
	if(first_entry)
	{
		first_entry = FALSE;
	#ifndef MULTITHREAD
		#warning Building factor.c in unthreaded (i.e. single-main-thread) mode.
		ASSERT(HERE, NTHREADS == 1, "NTHREADS must == 1 in single-threaded mode!");
		k_to_try = (uint64 *)calloc(TRYQ * NTHREADS, sizeof(uint64));
	#else
		MAX_THREADS = get_num_cores();
		ASSERT(HERE, MAX_THREADS > 0, "Illegal #Cores value stored in MAX_THREADS");

		if(!NTHREADS)	/* User may have already set via -nthread argument, in which case we skip this stuff: */
		{
			NTHREADS = MAX_THREADS;
			fprintf(stderr,"Using NTHREADS = #CPUs = %d.\n", NTHREADS);
		} else {	// In timing-test mode, allow #threads > #cores
			if(NTHREADS > MAX_THREADS)
				fprintf(stderr,"WARN: NTHREADS = %d exceeds number of cores = %d\n", NTHREADS, MAX_THREADS);
			fprintf(stderr,"NTHREADS = %d\n", NTHREADS);
		}
		k_to_try = (uint64 *)calloc(TRYQ * NTHREADS, sizeof(uint64));

		// Up to TF_PASSES work units (perhaps fewer if a restart) get done by a pool of NTHREADS threads.  Yypically have
		// NTHREADS <= TF_PASSES, i.e. pool threads get reassigned a fresh work unit as they complete their current one.
		// We do the || work in discrete (endpoint-sync'ed) 'waves' of NTHREADS each, thus need only that many thread-data allocs:
		if(tdat) {
			free((void *)tdat); tdat = 0x0;	// Not sure if we might ever have occasion to realloc here, but easy enough to set up for it
		}
		tdat = (struct fac_thread_data_t *)calloc(NTHREADS, sizeof(struct fac_thread_data_t));

		// Alloc threadpool of NTHREADS threads, which will concurrently/asynchronally
		// do TF_PASSES 'work units' (factoring passes for various (k mod TF_CLASSES) k-classes:
		main_work_units = 0;
		pool_work_units = NTHREADS;
		ASSERT(HERE, 0x0 != (tpool = threadpool_init(NTHREADS, MAX_THREADS, pool_work_units, &thread_control)), "threadpool_init failed!");
		printf("Factor.c: Init threadpool of %d threads\n", NTHREADS);

		// Apr 2015: Init-calls to any inline-asm-using modpow functions:
		int thr_id = -1;
		twopmodq96_q4(0ull, 0ull, 0ull, 0ull, 0ull, NTHREADS, thr_id);
		twopmodq78_3WORD_DOUBLE_q2 (0ull, 0ull,0ull, NTHREADS, thr_id);
		twopmodq78_3WORD_DOUBLE_q4 (0ull, 0ull,0ull,0ull,0ull, NTHREADS, thr_id);
	  #ifdef USE_SSE2
		twopmodq78_3WORD_DOUBLE_q8 (0ull, k_to_try, NTHREADS, thr_id);
	  #endif
	  #ifdef USE_AVX
		twopmodq78_3WORD_DOUBLE_q16(0ull, k_to_try, NTHREADS, thr_id);
	  #endif
	  #ifdef USE_AVX512
		twopmodq78_3WORD_DOUBLE_q32(0ull, k_to_try, NTHREADS, thr_id);
		twopmodq78_3WORD_DOUBLE_q64(0ull, k_to_try, NTHREADS, thr_id);
	  #endif
	#endif
	}	// End (inits)

/* Do a quick series of self-tests: */
#if 1//FAC_DEBUG
	test_fac();
#endif

// Oct 2015: GCD-associated self-tests provides a fair bit of added coverage of the mi64 library, so always include:
#ifdef INCLUDE_PM1
	/* Simple self-tester for GCD routines in gcd_lehmer.c: */
	ASSERT(HERE, test_gcd() == 0, "Factor_init : GCD test failed.\n");
exit(0);
#endif

	/* Make sure a valid exponent string has been given - if this is the only
	command-line parameter, will attempt to read the other needed run parameters
	from the corresponding checkpoint file:
	*/
	ASSERT(HERE, STRNEQ(pstring,""),"factor.c : pstring empty!");

	/* -bmin/bmax used to set bounds for factoring: */
	if(bmin || bmax)
	{
		ASSERT(HERE, (kmin==0 && kmax==0 && kplus==0),"(kmin==0 && kmax==0 && kplus==0)");

		if(bmin < 0) {
			fprintf(stderr,"ERROR: log2(min factor) must be >= 0. Offending entry = %lf.\n", bmin);		ASSERT(HERE, 0,"0");
		} else if(bmin >= MAX_BITS_Q) {
			fprintf(stderr,"ERROR: log2(min factor) exceeds allowable limit of %u. Offending entry = %lf.\n", MAX_BITS_Q, bmin);	ASSERT(HERE, 0,"0");
		}

		if(bmax <= 0) {
			fprintf(stderr,"ERROR: log2(max factor) must be > 0. Offending entry = %lf.\n", bmax);		ASSERT(HERE, 0,"0");
		} else if(bmax > MAX_BITS_Q) {
			fprintf(stderr,"ERROR: log2(max factor) exceeds allowable limit of %u. Offending entry = %lf.\n", MAX_BITS_Q, bmax);	ASSERT(HERE, 0,"0");
		}

		if(bmax < bmin) {
			fprintf(stderr,"ERROR: (bmax = %lf) < (bmin = %lf)!\n", bmax, bmin);	ASSERT(HERE, 0,"0");
		}
	}

	/* -kmin/kmax used to set bounds for factoring: */
	if(kmin || kmax)
	{
		ASSERT(HERE, kmax != 0 ,"factor.c: kmax not set!");
		ASSERT(HERE, (int64)kmax > 0, "kmax must be 63 bits or less!");
		ASSERT(HERE, (bmin==0 && bmax==0 && kplus==0),"(bmin==0 && bmax==0 && kplus==0)");

		if(kmax < kmin) {
			fprintf(stderr,"ERROR: (kmax = %s) < (kmin = %s)!\n", &char_buf0[convert_uint64_base10_char(char_buf0, kmax)], &char_buf1[convert_uint64_base10_char(char_buf1, kmin)]);
			ASSERT(HERE, 0,"0");
		}
	}

	ASSERT(HERE, bmax > 0.0 || kmax != 0 ,"factor.c: One of bmax or kmax must be set!");

	ASSERT(HERE, (MODULUS_TYPE == MODULUS_TYPE_MERSENNE)
			  || (MODULUS_TYPE == MODULUS_TYPE_MERSMERS)
			  || (MODULUS_TYPE ==   MODULUS_TYPE_FERMAT)
				, "Unsupported modulus type!");

	// Convert power-of-2 exponent to unsigned int form and allocate the exponent-storage vector.
	// We use MAX_BITS_P (defined in Mdata.h) to set the allocated storage here, but use the user-set
	// exponent to set the number of words of that allocate storage which are actually used:
	if(MODULUS_TYPE == MODULUS_TYPE_FERMAT)
	{
		findex = convert_base10_char_uint64(pstring);
		nbits_in_p = findex+1;
		lenP = (nbits_in_p + 63)>>6;
		p     = (uint64 *)calloc( ((uint32)MAX_BITS_P + 63)>>6, sizeof(uint64));
		p[0] = 1;	mi64_shl(p,p,findex,lenP);	// p = (uint64)1 << findex;
	}
	else if(MODULUS_TYPE == MODULUS_TYPE_MERSMERS)
	{
		findex = convert_base10_char_uint64(pstring);	// This var was really named as abbreviation of "Fermat index", but re-use for MMp
		nbits_in_p = findex;
		if(findex > 1000) {	// Large MMp need deeper sieving on each k passing the default sieve
			kdeep = (uint32 *)calloc( 1024, sizeof(uint32));
			ASSERT(HERE, kdeep != 0x0, "Calloc of kdeep[] failed!");
		}
		lenP = (nbits_in_p + 63)>>6;
		p     = (uint64 *)calloc( ((uint32)MAX_BITS_P + 63)>>6, sizeof(uint64));
		p[0] = 1;	mi64_shl(p,p,findex,lenP);
		mi64_sub_scalar(p,1,p,lenP);	// p = 2^findex - 1;
	#if FAC_DEBUG
		printf("%s(%s) = M(p) with p = %s\n", NUM_PREFIX[MODULUS_TYPE], pstring, &char_buf0[convert_mi64_base10_char(char_buf0, p, lenP, 0)]);
	#endif
	} else {
		/* Convert stringified exponent to mi64 form and check the length of p and of the max. factor: */
		p = convert_base10_char_mi64(pstring, &lenP);	// This does the mem-alloc for us in this case
		ASSERT(HERE, lenP > 0, "factor.c: Error converting pstring!");
		nbits_in_p = (lenP<<6) - mi64_leadz(p, lenP);
	}

	// Allocate the other modulus-dependent vectors:
	lenQ = ((uint32)MAX_BITS_Q + 63)>>6;	// This sets upper bound on #words needed to store max. factor candidate

	two_p   = (uint64 *)calloc(lenQ, sizeof(uint64));
	p2NC    = (uint64 *)calloc(lenQ, sizeof(uint64));
	q       = (uint64 *)calloc(lenQ * NTHREADS, sizeof(uint64));
	q2      = (uint64 *)calloc(lenQ * NTHREADS, sizeof(uint64));
	u64_arr = (uint64 *)calloc(lenQ * NTHREADS, sizeof(uint64));

	// Now use the just-allocated vector storage to compute how many words are really needed for qmax.
	// Since the sieving always proceeds in full passes through the bit-cleared sieve, the actual kmax used
	// may be up to (len*64)-1 larger than the user-specified kmax:
	if(kmax) {
		interval_hi = (uint64)ceil( (double)kmax / ((uint64)len << TF_CLSHIFT) );	// Copied from restart-file code below
		// Actual kmax used at runtime = interval_hi*(len << TF_CLSHIFT);
		u64_arr[lenP] = mi64_mul_scalar( p, 2*interval_hi*(len << TF_CLSHIFT), u64_arr, lenP);
		lenQ = lenP + (u64_arr[lenP] != 0);
	} else {
		lenQ = ( (uint32)(ceil(bmax)) + 63 ) >> 6;
	}

	// Mersenne numbers must have odd (check primality further on) exponents:
	if((MODULUS_TYPE != MODULUS_TYPE_FERMAT) && (p[0] & 1) == 0)
    {
		fprintf(stderr,"p must be odd! Offending p = %s\n", pstring); ASSERT(HERE, 0,"0");
	}

	/* For purposes of the bits-in-p limit, treat Fermat numbers as having 2^findex rather than 2^findex + 1 bits: */
	if((nbits_in_p - (MODULUS_TYPE == MODULUS_TYPE_FERMAT)) > MAX_BITS_P)
	{
		fprintf(stderr,"p too large - limit is %u bits. Offending p = %s\n", MAX_BITS_P, pstring);
		ASSERT(HERE, 0,"0");
	}
	// To track lg(q) = lg(2.k.p+1), use approximation q ~= 2.k.p, thus lg(q) ~= lg(2.p) + lg(k).
	fbits_in_2p = (double)mi64_extract_lead64(p, lenP, &itmp64) - 64;
//printf("fbits_in_2p = mi64_extract_lead64[= %10u] - 64 = %10.4f\n",mi64_extract_lead64(p, lenP, &itmp64),fbits_in_2p);
	fbits_in_2p += log((double)itmp64)*ILG2 + 1;	// Add 1 to lg(p) to get lg(2p)
//printf("fbits_in_2p += log((double)itmp64)*ILG2 [= %10.4f] = %10.4f\n",log((double)itmp64)*ILG2,fbits_in_2p);
#if 0	// 11/2013: No clue what I was thinking here...
	// If 2p < 2^64 we left-justify the leading bits to make result lie in [2^63, 2^64), so result here must always be > 2^63:
	ASSERT(HERE, fbits_in_2p >= 63, "fbits_in_2p out of range!");
	fbits_in_2p += nbits_in_p - 64.0;	// lg(2.p) ... Cast 64 to double to avoid signed-int subtract of RHS terms.
#endif
	// Do some quick sanity tests of exponent for the various kinds of moduli:
	if(MODULUS_TYPE == MODULUS_TYPE_FERMAT)
	{
		ASSERT(HERE, findex == mi64_trailz(p, lenP), "Internal Fermat-exponent bad power of 2!");
		mi64_shrl(p, q, findex, lenP);
		mi64_sub_scalar(q, 1ull, q, lenP);
		ASSERT(HERE, mi64_iszero(q, lenP), "Internal Fermat-exponent not a power of 2!");
	}
	else
	{
		// For M(M(p)), make sure the M(p) is actually prime:
		if(MODULUS_TYPE == MODULUS_TYPE_MERSMERS)
		{
			for(i=0; knowns[i] != 0; i++)
			{
				if(findex == knowns[i]) { break; }
			}
			ASSERT(HERE, (knowns[i] != 0), "Double-Mersenne exponent not a known Mersenne prime!");

			// And now proceed to all-binary-ones test of vector-form M(p):
			mi64_add_scalar(p, 1ull, q, lenP);
			ASSERT(HERE, findex == mi64_trailz(q, lenP), "Internal M(M(p))-exponent bad power of 2!");
			mi64_shrl(q, q, findex, lenP);
			mi64_sub_scalar(q, 1ull, q, lenP);
			ASSERT(HERE, mi64_iszero(q, lenP), "Internal M(M(p))-exponent fails all-binary-ones check!");
		}
		// We can use a lookup table vs known M(p) for all cases, but if Mersenne or M(M(p)) with suitably small p,
		// add a base-2 Fermat PRP test, more as a self-test of the various modpow routines than anything else:
		if(lenP < 1000) {
			mi64_sub_scalar(p, 1ull, q, lenP);	/* q = p-1 */
			if(!mi64_twopmodq(q, lenP, 0, p, lenP, 0x0))
			{
				fprintf(stderr,"p is not prime! Offending p = %s\n", pstring);
				ASSERT(HERE, 0,"0");
			}
		}
	}

	/* 2*p: Don't need to worry about overflow here since we've allocated two*p, p2NC, q, etc to be of lenQ, not lenP: */
	two_p[lenP] = mi64_add(p, p, two_p, lenP);	// Need to account for fact that 2p may have 1 more word than p
												// (I.e. use lenQ rather than lenP for multiword ops on two_p).
	/* 2*p*[number of classes]: */
	p2NC[lenP] = mi64_mul_scalar(p, (uint64)2*TF_CLASSES, p2NC, lenP);

  #if FAC_DEBUG
	printf("two_p        = %s\n", &char_buf0[convert_mi64_base10_char(char_buf0, two_p, lenQ, 0)]);
	printf("2*p*#TF_CLASSES = %s\n", &char_buf0[convert_mi64_base10_char(char_buf0, p2NC , lenP, 0)]);
  #endif

	// p mod TF_CLASSES:
	if(MODULUS_TYPE == MODULUS_TYPE_MERSMERS)
	{
		pmodNC = twopmmodq64(findex, (uint64)TF_CLASSES) - 1;		// For double-Mersenne factoring need M(p) mod #TF_CLASSES
		/*
		The above routine computes 2^p (mod 60) via Montgomery-mul-based powering. That requires an odd modulus,
		so the actual powering step computes 2^(p-2) (mod 15), multiplies the result by 4 to get 2^p (mod 60),
		and subtracts 1 to get M(p) (mod 60).

		Note that there is a shortcut to obtaining 2^(p-2) (mod 15), namely summing the hex digits of 2^(p-2)
		(mod 15). Since the hexadecimal base 16 == 1 (mod 15), this sum gives the desired result (mod 15).
		Since 2^(p-2) i binary is just a 1 followed by (p-2) binary zeros, in base-16 it is just a leading hex
		digit d = 2^((p-2)%4) followed by a string of (p-2)/4 hexadecimal zeros, the latter of which contribute
		0 to the hex-digit sum (mod 15). Thus

			2^(p-2) == 2^((p-2)%4) (mod 15), whence

			M(p) == 4*2^((p-2)%4) - 1 (mod 60).

		For example, for p = 521 we have 2^(p-2) == 2^3 == 8 (mod 15), whence M(p) == 31 (mod 60).

		For p = 607 we 2^(p-2) == 2^1 == 2 (mod 15), whence M(p) == 7 (mod 60).

		In fact for any odd-exponent M(p) there are only the two possibilities p == 1 or 3 (mod 4), for
		which 2^(p-2) == 2^3 or 2^1 (mod 15) and M(p) == 31 or 7 (mod 60), respectively.

		For these two M(p) (mod 60) values the respective sets of 16 eligible k (mod 60) values of possible factors
		q = 2.k.M(p) + 1 are

			p == 1 (mod 4), M(p) == 31 (mod 60) : k (mod 60) = (any of) 0, 5, 8, 9,20,21,24,29,33,36,41,44,45,48,53,56

			p == 3 (mod 4), M(p) ==  7 (mod 60) : k (mod 60) = (any of) 0, 5, 8, 9,12,17,20,24,29,32,33,44,45,48,53,57 .

		M(p) == 31 or 7 (mod 60) also implies that the following check is not needed, but include it for formal completeness,
		and in case someone else modifies this code for a purpose where the above call might in fact return 0 (mod 60):
		*/
		printf("p mod %u = %d\n", TF_CLASSES, pmodNC);
		if(pmodNC != mi64_div_y32(p, TF_CLASSES, 0x0, lenP)) {
			printf("p mod %u v2 = %d\n", TF_CLASSES, mi64_div_y32(p, TF_CLASSES, 0x0, lenP));
			ASSERT(HERE, 0, "Powering and direct-long-dive give differing p % TF_CLASSES) values!");
		}
	} else {
		pmodNC = mi64_div_y32(p, TF_CLASSES, 0x0, lenP);
	}

	// If user-set kmax, test factoring range vs internal limits
	if(kmax) {
		interval_hi = (uint64)ceil((double)kmax/((uint64)len << TF_CLSHIFT));	// Copied from restart-file code below
		u64_arr[lenP] = mi64_mul_scalar( p, 2*interval_hi*(len << TF_CLSHIFT), u64_arr, lenP);
		ASSERT(HERE, lenQ == lenP+(u64_arr[lenP] != 0), "");

		nbits_in_q = (lenQ<<6) - mi64_leadz(u64_arr, lenQ);

		if(nbits_in_q > MAX_BITS_Q)
		{
			fprintf(stderr,"qmax too large - limit is %u bits. Offending p, kmax = %s, %s\n", MAX_BITS_Q, pstring, &char_buf0[convert_uint64_base10_char(char_buf0, kmax)]);
			ASSERT(HERE, 0,"0");
		}
	}

	/* log2[nearest power of 2 to (nbits_in_p)*lenQ^2)] */
	bits_in_pq2 = nbits_in_p*lenQ*lenQ;
	bits_in_pq2 = 32 - leadz32(bits_in_pq2);
	CMASKBITS = (30 - (bits_in_pq2>>1));
	countmask = (1ull << CMASKBITS) - 1;

/*****************************************************/
/****************** RESTART STUFF: *******************/
/*****************************************************/

	/* Restart file for a given exponent is named 't{exponent}'.
	Since Fermat-number exponents are so much smaller than Mersenne-number ones,
	we assume there is no overlap, i.e. if pstring <= MAX_BITS_P, it's a
	Fermat-number factoring run, pstring > MAX_BITS_P is a Mersenne-number run.
	*/
	RESTARTFILE[0] = 't'; RESTARTFILE[1] = '\0'; strcat(RESTARTFILE, pstring);
	fprintf(stderr,"INFO: Will write savefile %s every 2^%u = %llu factor candidates tried.\n",RESTARTFILE,CMASKBITS,countmask+1);
	/* TF restart files are in HRF, not binary: */
	fp = mlucas_fopen(RESTARTFILE, "r");
	if(!fp) {
									fprintf(stderr,"INFO: No factoring savefile %s found ... starting from scratch.\n",RESTARTFILE);
	#ifndef FACTOR_STANDALONE
		fq = mlucas_fopen(STATFILE,"a");	fprintf(	fq,"INFO: No factoring savefile %s found ... starting from scratch.\n",RESTARTFILE);	fclose(fq); fq = 0x0;
	#endif
	} else {
									fprintf(stderr,"Factoring savefile %s found ... reading ...\n",RESTARTFILE);
	#ifndef FACTOR_STANDALONE
		fq = mlucas_fopen(STATFILE,"a");	fprintf(	fq,"Factoring savefile %s found ... reading ...\n",RESTARTFILE);	fclose(fq); fq = 0x0;
	#endif
		/* The factoring checkpoint file is assumed to have the format:
			Line 1:		{string containing the current exponent stored in pstring}

			Line 2:		{Log2(minimum factor to try), in floating double form}
						If > 10^9 its whole-number part is taken as the KMin value instead.
			Line 3:		{Log2(maximum factor to try), in floating double form}
						If > 10^9 its whole-number part is taken as the KMax value instead.

			Line 4:		KMin = {smallest factor K value to be tried in each pass}
			Line 5:		KNow = { largest factor K value tried so far during current pass}
			Line 6:		KMax = { largest factor K value to be tried in each pass}

			Line 7:		PassMin = {maximum pass for the run (typically TF_PASSES-1, but perhaps not, e.g. for a factoring assignment split over multiple CPUs.}
			Line 8:		PassNow = {current factoring pass}
			Line 9:		PassMax = {maximum pass for the run (typically TF_PASSES-1, but perhaps not, e.g. for a factoring assignment split over multiple CPUs.}

			Line 10:	Number of q's tried so far during the run

			Line 11+:	Any diagnostic info not needed for restarting from interrupt
						(mainly, in standalone mode can use this in place of STATFILE.)
		*/
		curr_line = 0;

		/* pstring*/
		++curr_line;
		if(!fgets(in_line, STR_MAX_LEN, fp)) {
			fprintf(stderr,"ERROR: unable to read Line %d (current exponent) of factoring restart file %s!\n", curr_line, RESTARTFILE);		ASSERT(HERE, 0,"0");
		}
		/* Strip the expected newline char from in_line: */
		char_addr = strstr(in_line, "\n");
		if(char_addr)
			*char_addr = '\0';
		/* Make sure restart-file and current-run pstring match: */
		if(STRNEQ(in_line, pstring)) {
			fprintf(stderr,"ERROR: current exponent %s != Line %d of factoring restart file %s!\n",pstring, curr_line, RESTARTFILE);		ASSERT(HERE, 0,"0");
		}

		/* bmin */
		++curr_line;
		fgets(cbuf, STR_MAX_LEN, fp);
		itmp = sscanf(cbuf, "%lf", &bmin_file);
		if(itmp != 1) {
			fprintf(stderr,"ERROR: unable to parse Line %d (bmin) of factoring restart file %s. Offending input = %s\n", curr_line, RESTARTFILE, cbuf);		ASSERT(HERE, 0,"0");
		}

		/* bmax */
		++curr_line;
		fgets(cbuf, STR_MAX_LEN, fp);
		itmp = sscanf(cbuf, "%lf", &bmax_file);
		if(itmp != 1) {
			fprintf(stderr,"ERROR: unable to parse Line %d (bmin) of factoring restart file %s. Offending input = %s\n", curr_line, RESTARTFILE, cbuf);		ASSERT(HERE, 0,"0");
		}

	/************************************
	LINE PAIRS 5/6 AND 7/8 ARE USED TO DETERMINE WHETHER A PREVIOUS
	FACTORING RUN OF THE SAME EXPONENT COMPLETED OR NOT: If know >= kmax
	and passnow = passmax then the previous run completed, in which case
	we allow a new run to a deeper bound, i.e. reset passnow = passmin
	and run passes passmin through passmax from bounds kmin to kmax.
	*************************************/
		/* KMin */
		++curr_line;
GET_LINE4:
	/**** redo this ****/
		if(!fgets(in_line, STR_MAX_LEN, fp)) {
			fprintf(stderr,"ERROR: 'KMin' not found in Line %d of factoring restart file %s!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
		}
		char_addr = strstr(in_line, "KMin");
		/* Since the preceding fscanf call may leave us at the end of curr_line-1
		(rather than the beginning of curr_line), allow for a possible 2nd needed
		fgets call here: */
		if(!char_addr) {
			goto GET_LINE4;
		} else {
			char_addr = strstr(in_line, "=");
			if(!char_addr) {
				fprintf(stderr,"ERROR: Line %d of factoring restart file %s lacks the required = sign!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
			}
			char_addr++;
			kmin_file = convert_base10_char_uint64(char_addr);
		}

		/* KNow */
		++curr_line;
		if(!fgets(in_line, STR_MAX_LEN, fp)) {
			fprintf(stderr,"ERROR: unable to read Line %d (KNow) of factoring restart file %s!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
		}
		char_addr = strstr(in_line, "KNow");
		if(!char_addr) {
			fprintf(stderr,"ERROR: 'KNow' not found in Line %d of factoring restart file %s!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
		} else {
			char_addr = strstr(in_line, "=");
			if(!char_addr) {
				fprintf(stderr,"ERROR: Line %d of factoring restart file %s lacks the required = sign!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
			}
			char_addr++;
			know_file = convert_base10_char_uint64(char_addr);
		}

		/* KMax */
		++curr_line;
		if(!fgets(in_line, STR_MAX_LEN, fp)) {
			fprintf(stderr,"ERROR: unable to read Line %d (KMax) of factoring restart file %s!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
		}
		char_addr = strstr(in_line, "KMax");
		if(!char_addr) {
			fprintf(stderr,"ERROR: 'KMax' not found in Line %d of factoring restart file %s!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
		} else {
			char_addr = strstr(in_line, "=");
			if(!char_addr) {
				fprintf(stderr,"ERROR: Line %d of factoring restart file %s lacks the required = sign!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
			}
			char_addr++;
			kmax_file = convert_base10_char_uint64(char_addr);
		}

		/* PassMin */
		++curr_line;
		if(!fgets(in_line, STR_MAX_LEN, fp)) {
			fprintf(stderr,"ERROR: unable to read Line %d (PassMin) of factoring restart file %s!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
		}
		char_addr = strstr(in_line, "PassMin");
		if(!char_addr) {
			fprintf(stderr,"ERROR: 'PassMin' not found in Line %d of factoring restart file %s!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
		} else {
			char_addr = strstr(in_line, "=");
			if(!char_addr) {
				fprintf(stderr,"ERROR: Line %d of factoring restart file %s lacks the required = sign!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
			}
			char_addr++;
			passmin_file = (uint32)convert_base10_char_uint64(char_addr);
			ASSERT(HERE, passmin_file < TF_PASSES,"factor.c: passmin < TF_PASSES");
		}

		/* PassNow */
		++curr_line;
		if(!fgets(in_line, STR_MAX_LEN, fp)) {
			fprintf(stderr,"ERROR: unable to read Line %d (PassNow) of factoring restart file %s!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
		}
		char_addr = strstr(in_line, "PassNow");
		if(!char_addr) {
			fprintf(stderr,"ERROR: 'PassNow' not found in Line %d of factoring restart file %s!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
		} else {
			char_addr = strstr(in_line, "=");
			if(!char_addr) {
				fprintf(stderr,"ERROR: Line %d of factoring restart file %s lacks the required = sign!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
			}
			char_addr++;
			passnow_file = (uint32)convert_base10_char_uint64(char_addr);
			ASSERT(HERE, passnow_file < TF_PASSES,"factor.c: passnow < TF_PASSES");
			ASSERT(HERE, passnow_file >= passmin_file  ,"factor.c: passnow_file >= passmin_file");
		}

		/* PassMax */
		++curr_line;
		if(!fgets(in_line, STR_MAX_LEN, fp)) {
			fprintf(stderr,"ERROR: unable to read Line %d (PassMax) of factoring restart file %s!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
		}
		char_addr = strstr(in_line, "PassMax");
		if(!char_addr) {
			fprintf(stderr,"ERROR: 'PassMax' not found in Line %d of factoring restart file %s!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
		} else {
			char_addr = strstr(in_line, "=");
			if(!char_addr) {
				fprintf(stderr,"ERROR: Line %d of factoring restart file %s lacks the required = sign!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
			}
			char_addr++;
			passmax_file = (uint32)convert_base10_char_uint64(char_addr);
			ASSERT(HERE, passmax_file < TF_PASSES,"factor.c: passmax_file < TF_PASSES");
			ASSERT(HERE, passmax_file >= passnow_file  ,"factor.c: passmax_file >= passnow_file");
		}

		/* Number of q's tried: */
		++curr_line;
		if(!fgets(in_line, STR_MAX_LEN, fp)) {
			fprintf(stderr,"ERROR: unable to read Line %d (#Q tried) of factoring restart file %s!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
		}
		char_addr = strstr(in_line, "#Q tried");
		if(!char_addr) {
			fprintf(stderr,"ERROR: '#Q tried' not found in Line %d of factoring restart file %s!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
		} else {
			char_addr = strstr(in_line, "=");
			if(!char_addr) {
				fprintf(stderr,"ERROR: Line %d of factoring restart file %s lacks the required = sign!\n", curr_line, RESTARTFILE);	ASSERT(HERE, 0,"0");
			}
			char_addr++;
			count = convert_base10_char_uint64(char_addr);	// Need to reset == 0 prior to sieving so kvector-fill code works properly
		}

		fclose(fp); fp = 0x0;

		/**** process restart-file and any command-line params: ****/

		/* If previous run is not yet complete, ignore any increased factor-bound-related
		command-line parameters and instead proceed to complete the previous run first:
		*/
		if((know_file < kmax_file) || (passnow_file < passmax_file))
		{
			incomplete_run = TRUE;

			fprintf(stderr,"INFO: Previous run to kmax = %s not yet complete.\n"  , &char_buf0[convert_uint64_base10_char(char_buf0, kmax_file)]);
			fprintf(stderr,"Ignoring any increased factor-bound-related command-line parameters and proceeding to complete previous run.\n");

			bmin = bmin_file;
			bmax = bmax_file;

			passmin = passmin_file;
			passnow = passnow_file;
			passmax = passmax_file;

			kmin = kmin_file;
			know = know_file;
			kmax = kmax_file;
			kplus = 0;
		}
		else
		{
			/**** Previous run was completed - check that current params satisfy one (and only one)
			of the following sets of conditions:

				1) -bmin/bmax used to set bounds for factoring:
					In this case we expect any command-line bmin will be >= that in the restart file
					(in fact we expect bmin >= bmax_file, i.e. that the runs are nonoverlapping -
					if not we warn and set bmin = bmax_file), and that bmax > bmax_file.
			****/
			if(bmin || bmax)
			{
			#if(!defined(P1WORD))
			//	ASSERT(HERE, 0,"bmin/bmax form of bounds-setting only allowed for single-word-p case!");
			#endif
				ASSERT(HERE, (kmin==0 && kmax==0 && kplus==0),"(kmin==0 && kmax==0 && kplus==0) - please delete any restart files for this p and retry debug run.");

				if(bmin) {
					ASSERT(HERE, bmin >= bmin_file - 0.0000000001,"bmin >= bmin_file");
					if(bmin < bmax_file)
						fprintf(stderr,"WARNING: Specified bmin (%lf) smaller than previous-run bmax = %lf. Setting equal to avoid overlapping runs.\n", bmin, bmax_file);
				}
				bmin = bmax_file;

				/* We expect any command-line bmax will be > that in the restart file: */
				if(bmax)
					ASSERT(HERE, bmax > bmax_file - 0.0000000001,"bmax >= bmax_file");
			}

			/****
				2) -kmin/kmax used to set bounds for factoring:
					In this case we expect any command-line kmin will be >= that in the restart file
					(in fact we expect kmin >= kmax_file, i.e. that the runs are nonoverlapping -
					if not we warn and set kmin = kmax_file), and that kmax > kmax_file.
			****/
			if(kmin || kmax)
			{
				ASSERT(HERE, (bmin==0 && bmax==0 && kplus==0),"(bmin==0 && bmax==0 && kplus==0)");

				if(kmin) {
					ASSERT(HERE, kmin >= kmin_file,"kmin >= kmin_file");
					if(kmin < kmax_file)
						fprintf(stderr,"WARNING: Specified kmin (%s) smaller than previous-run kmax = %s. Setting equal to avoid overlapping runs.\n", &char_buf0[convert_uint64_base10_char(char_buf0, kmax)], &char_buf1[convert_uint64_base10_char(char_buf1, kmax_file)]);
				}
				kmin = kmax_file;

				/* We expect any command-line kmax will be > that in the restart file: */
				if(kmax)
					ASSERT(HERE, kmax > kmax_file,"kmax >= kmax_file");
			}

			/****
				3) -kplus used to increment an upper bound from a previous factoring run:
			****/
			if(kplus)
			{
				ASSERT(HERE, (bmin==0 && bmax==0 && kmin==0 && kmax==0),"(bmin==0 && bmax==0 && kmin==0 && kmax==0)");

				kmin = kmax_file;
				/* Ensure incremented value kmax fits into a 64-bit unsigned int: */
				ASSERT(HERE, (kmin + kplus) > kplus, "kmax_file + kplus exceeds 2^64!");
				kmax = kmin + kplus;
				kplus = 0;	/* If kplus != 0 detected further on, that indicates that no valid restart
							file was found for factoring-bounds incrementing. */
			}
		}
		/* Successfully processed restart file: */
		restart = TRUE;
	}

/************************ END(RESTART STUFF) *******************/

	/* If it's not a restart of an as-yet-uncompleted run, synchronize the factoring-bound params: */
	if(!incomplete_run)
	{
		/* Double-check factoring pass bounds: */
		if(passmin > (TF_PASSES-1) )
		{
			fprintf(stderr,"ERROR: passmin must be <= %u. Offending entry = %u.\n", TF_PASSES-1, passmin);
			ASSERT(HERE, 0,"0");
		}

		if(passmax < passmin)
		{
			fprintf(stderr,"ERROR: (passmax = %u) < (passmin = %u)!\n", passmax, passmin);
			ASSERT(HERE, 0,"0");
		}
		if(passmax > (TF_PASSES-1) )
		{
			fprintf(stderr,"ERROR: passmax must be <= %u. Offending entry = %u.\n", TF_PASSES-1, passmax);
			ASSERT(HERE, 0,"0");
		}

		/**** Process factor candidate bounds: ****/

		/* If any of bmin|kmin, bmax|kmax nonzero, calculate its counterpart: */
	#ifdef P1WORD
		/* Find FP approximation to 2*p - can't use this for multiword case, because double approximation tp 2*p may overflow: */
		twop_float = (double)two_p[0];
	#endif
		/* Compute kmax if not already set: */
		if(!kmax)
			kmax = given_b_get_k(bmax, two_p, lenQ);
		if(kmin || bmin) {
			if(kmin == 0ull) {	/* Lower Bound given in log2rithmic form */
				ASSERT(HERE, bmin <= bmax, "bmin >= bmax!");
				kmin = given_b_get_k(bmin, two_p, lenQ);
			} else {
				ASSERT(HERE, kmin <= kmax, "kmin >= kmax!");
			#ifdef P1WORD
				fqlo = kmin*twop_float + 1.0;
				bmin = log(fqlo)*ILG2;
			#endif
			}
		} else {
		#ifdef P1WORD
			fqlo = 1.0;
		#else
		#endif
		}

		if(kmax || bmax) {
			if(kmax == 0ull) {	/* Upper Bound given in log2rithmic form */
				kmax = given_b_get_k(bmax, two_p, lenQ);
 			} else {
			#ifdef P1WORD
				fqhi = kmax*twop_float + 1.0;
				bmax = log(fqhi)*ILG2;
			#endif
			}
		} else
			ASSERT(HERE, 0 ,"factor.c : One of bmax, kmax must be nonzero!");

		/**** At this point the paired elements bmin|kmin, bmax|kmax are in synchrony. ****/

		/* If kplus given on command line, a valid restart file should have been found
		and kmax incremented at this point, i.e. kplus should have been reset to zero:
		*/
		ASSERT(HERE, kplus == 0, "kplus must be zero here!");

		know = kmin;
		passnow = passmin;

	}	/* endif(!incomplete_run) */

/*****************************************************/
/****************** SIEVE STUFF: *********************/
/*****************************************************/

	ASSERT(HERE, NUM_SIEVING_PRIME > 0, "factor.c : NUM_SIEVING_PRIME > 0");

/*   allocate the arrays and initialize the array of sieving primes	*/
	temp_late = (uint64 *)calloc(len, sizeof(uint64));

#if TF_CLASSES == 60
	i = len/TF_CLASSES + 1;	// len not divisible by TF_CLASSES, so add a pad-word
#else
	i = (len*64)/TF_CLASSES + 1;	// 64*len divisible by TF_CLASSES, no need for padding
		//**** Oct 2016: AVX-512 vector-bit-clear needs a padding element, so add one. ****
#endif
	bit_map = (uint64 *)calloc(i * NTHREADS, sizeof(uint64));
	bit_map2= (uint64 *)calloc(i * NTHREADS, sizeof(uint64));	// 2nd alloc to give each thread 1 bit-clearable copy of master bit_map
	if (bit_map == NULL) {
		fprintf(stderr,"Memory allocation failure for BITMAP array");
		ASSERT(HERE, 0,"0");
	}
	bit_atlas = (uint64 *)calloc(i * TF_PASSES, sizeof(uint64));
	if (bit_atlas == NULL) {
		fprintf(stderr,"Memory allocation failure for TEMPLATE array");
		ASSERT(HERE, 0,"0");
	}
printf("Allocated %u words in master template, %u in per-pass bit_map [%u x that in bit_atlas]\n",len,i,TF_PASSES);

#ifdef USE_AVX512	// Use vector-int math and gather-load/scatter-store to accelerate the bit-clearing
	psmall = (uint32 *)calloc(NUM_SIEVING_PRIME * NTHREADS, sizeof(uint32));
	if (psmall == NULL) {
		fprintf(stderr,"Memory allocation failure for PSMALL array");
		ASSERT(HERE, 0,"0");
	}
#endif

	pdiff = (uint8 *)calloc(NUM_SIEVING_PRIME * NTHREADS, sizeof(uint8));
	if (pdiff == NULL) {
		fprintf(stderr,"Memory allocation failure for pdiff array");
		ASSERT(HERE, 0,"0");
	}

	startval = (uint32 *)calloc(NUM_SIEVING_PRIME * NTHREADS, sizeof(uint32));
	if (startval == NULL) {
		fprintf(stderr,"Memory allocation failure for STARTVAL array");
		ASSERT(HERE, 0,"0");
	}

	pinv = (uint32 *)calloc(NUM_SIEVING_PRIME, sizeof(uint32));
	if (pinv == NULL) {
		fprintf(stderr,"Memory allocation failure for PINV array");
		ASSERT(HERE, 0,"0");
	}

#if DBG_SIEVE
	startval_incr = (uint32 *)calloc(NUM_SIEVING_PRIME, sizeof(uint32));
	if (startval_incr == NULL) {
		fprintf(stderr,"Memory allocation failure for STARTVAL_INCR array");
		ASSERT(HERE, 0,"0");
	}
#endif

		/* Check integrity (at least in the sense of monotonicity) for the precomputed pseudoprime table: */
		for(i = 1; i < 9366; ++i) {
			ASSERT(HERE, f2psp[i] > f2psp[i-1],"Misplaced pseudoprime!");
		}

		/* Test some near-2^32 known-prime cases: */
		curr_p = (uint32)-5;
		itmp32 = twopmodq32(curr_p-1, curr_p);
		ASSERT(HERE, itmp32 == 1,"twopmodq32: 2^32 - 5 test fails!");
		curr_p = (uint32)-17;
		itmp32 = twopmodq32(curr_p-1, curr_p);
		ASSERT(HERE, itmp32 == 1,"twopmodq32: 2^32 -17 test fails!");
		curr_p = (uint32)-35;	/* Start of the last length-30 curr_p%30 == 11 interval < 2^32; the 6th candidate in that interval, 2^32-17, is prime */
		itmp32 = twopmodq32_x8(curr_p, curr_p+ 2, curr_p+ 6, curr_p+ 8, curr_p+12, curr_p+18, curr_p+20, curr_p+26);
		ASSERT(HERE, itmp32 ==32,"twopmodq32_x8: 2^32 -35 test fails!");

		fprintf(stderr,"Generating difference table of first %u small primes\n", nprime);
		curr_p = 3;	/* Current prime stored in l. */
		max_diff = 0;

		f2psp_idx = 0;	/* Index to next-expected Fermat base-2 pseudoprime in the precomputed table */

		/* Init first few diffs between 3/5, 5/7, 7/11, so can start loop with curr_p = 11 == 1 (mod 10), as required by twopmodq32_x8(): */
		pdiff[0] = 0;	pdiff[1] = pdiff[2] = 1;
		ihi = curr_p = 11;
	#ifdef USE_AVX512	// Use vector-int math and gather-load/scatter-store to accelerate the bit-clearing
		psmall[0] = 3; psmall[1] = 5; psmall[2] = 7;
	#endif
		/* Process chunks of length 30, starting with curr_p == 11 (mod 30). Applying the obvious divide-by-3,5 mini-sieve,
		we have 8 candidates in each interval: curr_p + [ 0, 2, 6, 8,12,18,20,26].
		For example: curr_p = 11 gives the 8 candidates: 11,13,17,19,23,29,31,37.
		*/
		for(i = 3; i < nprime; curr_p += 30)
		{
			/* Make sure (curr_p + 29) < 2^32: */
			if(curr_p > 0xffffffe3) {
				fprintf(stderr,"curr_p overflows 32 bits!");
				nprime = i;
				break;
			}

			/* Max sieving prime must be < smallest candidate factor of M(p) */
		#ifdef P1WORD
			if((curr_p+29) > two_p[0]) {
				nprime = i;
				break;
			}
		#endif

			/* Do a quick Fermat base-2 compositeness test before invoking the more expensive mod operations: */
			itmp32 = twopmodq32_x8(curr_p, curr_p+ 2, curr_p+ 6, curr_p+ 8, curr_p+12, curr_p+18, curr_p+20, curr_p+26);
			for(j = 0; j < 8; ++j)
			{
				if((itmp32 >> j)&0x1)	// It's a PRP, so check against the table of known pseudoprimes and
				{						// (if it's not a PSP) init for the next gap
					ASSERT(HERE, curr_p <= f2psp[f2psp_idx],"Error in pseudoprime sieve");
					if((curr_p + pdsum_8[j]) == f2psp[f2psp_idx])	/* It's a base-2 pseudoprime */
					{
						++f2psp_idx;
						pdiff[i] += pdiff_8[j];
						continue;
					}
					else	/* It's prime - add final increment to current pdiff[i] and then increment i: */
					{
						ihi = (curr_p + pdsum_8[j]);
					#ifdef USE_AVX512	// Use vector-int math and gather-load/scatter-store to accelerate the bit-clearing
						psmall[i] = ihi;
					#endif
						pdiff[i] += pdiff_8[j];
						if(pdiff[i] > max_diff)
						{
							max_diff = pdiff[i];
						#if DBG_SIEVE
							printf("pdiff = %d at curr_p = %u\n", 2*max_diff,ihi);
						#endif
						}
						if(++i == nprime)
						{
							break;
						}
					}
				}
				else
				{
					pdiff[i] += pdiff_8[j];
				}
			}
		}
		MAX_SIEVING_PRIME = ihi;
	#ifdef MULTITHREAD
		uint8 *byteptr = pdiff;	// Each thread gets its own copy of the pdiff data:
		for(thr_id = 1; thr_id < NTHREADS; thr_id++) {
			byteptr += NUM_SIEVING_PRIME;
			memcpy(byteptr, pdiff, NUM_SIEVING_PRIME);
		}
	#endif

	#if 1//FAC_DEBUG
		printf("Using first %u odd primes; max gap = %u\n",nprime,2*max_diff);
		printf("max sieving prime = %u\n",MAX_SIEVING_PRIME);
	#endif

#if 0
	// Oct 2015: Play with Smarandache numbers ():
	i = 2000000;	ASSERT(HERE, i <= nprime, "prime limit exceded in testSmarandache!");
	testSmarandache(100001,101000, pdiff, i);
	exit(0);
#endif
/* Time the vector trialdiv stuff: */
#if TEST_TRIALDIV
	for(i = 0; i < vec_len; i++)
	{
		xvec[i]  = rng_isaac_rand();
	}

	clock1 = clock();
	curr_p = 3;
	for(m = 0; m < nprime; m++)
	{
		curr_p += (pdiff[m] << 1);
		if(mi64_is_div_by_scalar32(xvec, curr_p, vec_len) == TRUE)
			printf("mi64_is_div_by_scalar32 test: %10u is a divisor\n", curr_p);
	}

	clock2 = clock();	/* Assume sieve setup time < 2^32 cycles - even if that is violated it's no big deal at this point. */
	tdiff = (double)(clock2 - clock1);
	citer = tdiff*2000000000.0/CLOCKS_PER_SEC;
	citer /= (double)vec_len*nprime;
	printf	("Elapsed Time =%s; cycles/iter = %10.2f\n",get_time_str(tdiff),citer);

	clock1 = clock();
	curr_p = 3;
	for(m = 0; m < nprime; m+=4)
	{
		curr_p += (pdiff[m  ] << 1); tryq[0] = curr_p;
		curr_p += (pdiff[m+1] << 1); tryq[1] = curr_p;
		curr_p += (pdiff[m+2] << 1); tryq[2] = curr_p;
		curr_p += (pdiff[m+3] << 1); tryq[3] = curr_p;
		j = mi64_is_div_by_scalar32_x4(xvec, tryq[0], tryq[1], tryq[2], tryq[3], vec_len);
		if(j != 0)
		{
			for(i = 0; i < 4; ++i)
			{
				if((j >> i)&1)
					printf("mi64_is_div_by_scalar32_x4 test: %10u is a divisor\n", tryq[i]);
			}
		}
	}

	clock2 = clock();	/* Assume sieve setup time < 2^32 cycles - even if that is violated it's no big deal at this point. */
	tdiff = (double)(clock2 - clock1);
	citer = tdiff*2000000000.0/CLOCKS_PER_SEC;
	citer /= (double)vec_len*nprime;
	printf	("Elapsed Time =%s; cycles/iter = %10.2f\n",get_time_str(tdiff),citer);

	clock1 = clock();
	curr_p = 3;
	for(m = 0; m < nprime; m += 8)
	{
		curr_p += (pdiff[m  ] << 1); tryq[0] = curr_p;
		curr_p += (pdiff[m+1] << 1); tryq[1] = curr_p;
		curr_p += (pdiff[m+2] << 1); tryq[2] = curr_p;
		curr_p += (pdiff[m+3] << 1); tryq[3] = curr_p;
		curr_p += (pdiff[m+4] << 1); tryq[4] = curr_p;
		curr_p += (pdiff[m+5] << 1); tryq[5] = curr_p;
		curr_p += (pdiff[m+6] << 1); tryq[6] = curr_p;
		curr_p += (pdiff[m+7] << 1); tryq[7] = curr_p;
		j = mi64_is_div_by_scalar32_x8(xvec, tryq[0], tryq[1], tryq[2], tryq[3], tryq[4], tryq[5], tryq[6], tryq[7], vec_len);
		if(j != 0)
		{
			for(i = 0; i < 8; ++i)
			{
				if((j >> i)&1)
					printf("mi64_is_div_by_scalar32_x8 test: %10u is a divisor\n", tryq[i]);
			}
		}
	}

	clock2 = clock();	/* Assume sieve setup time < 2^32 cycles - even if that is violated it's no big deal at this point. */
	tdiff = (double)(clock2 - clock1);
	citer = tdiff*2000000000.0/CLOCKS_PER_SEC;
	citer /= (double)vec_len*nprime;
	printf	("Elapsed Time =%s; cycles/iter = %10.2f\n",get_time_str(tdiff),citer);

	clock1 = clock();
	curr_p = 3;
	for(m = 0; m < nprime; m++)
	{
		curr_p += (pdiff[m] << 1);
		if(mi64_is_div_by_scalar64(xvec, (uint64)curr_p, vec_len) == TRUE)
			printf("mi64_is_div_by_scalar64 test: %10u is a divisor\n", curr_p);
	}
	clock2 = clock();	/* Assume sieve setup time < 2^32 cycles - even if that is violated it's no big deal at this point. */
	tdiff = (double)(clock2 - clock1);
	citer = tdiff*2000000000.0/CLOCKS_PER_SEC;
	citer /= (double)vec_len*nprime;
	printf	("Elapsed Time =%s; cycles/iter = %10.2f\n",get_time_str(tdiff),citer);

	free((void*)xvec);
#endif

/*   for p < max prime in precomputed table, need to truncate the range of primes...	*/
	/*********** WHY WAS THIS HERE? *************
	curr_p = MAX_SIEVING_PRIME;
	for(;;)
	{
		if(p > curr_p) break;
		curr_p -= (pdiff[nprime--] << 1);
	#if FAC_DEBUG
		ASSERT(HERE, curr_p == prime[nprime], "factor.c : curr_p == prime[nprime]");
	#endif
	}
	MAX_SIEVING_PRIME = curr_p;
	***********/

	/****************** KNOWN-TEST-FACTOR STUFF: *******************/
#if FAC_DEBUG

	if(k_targ)
	{
		// Could add check of whether associated q is prime, but assume user knows what he's soing,
		// and furthermore may be usefull to allow for composite products-of-smaller-prime-factors:
		kmodNC = k_targ%TF_CLASSES;

		printf("p mod %u = %d\n",TF_CLASSES, pmodNC);
		printf("k mod %u = %d\n",TF_CLASSES, kmodNC);

		/* ...and get the pass number on which the factor should be found.
		(Remember that the pass number returned by CHECK_PKMOD[60|4620] is unit-offset).
		If a known factor given, only process the given k/log2 range for that pass:
		*/
		ASSERT(HERE, lenP == 1, "lenP must == 1 in call to CHECK_PKMOD4620!");
	#if TF_CLASSES == 60
		pass_targ = CHECK_PKMOD60  (p[0], k_targ, 0x0) - 1;
	#else	// 4620 classes:
		pass_targ = CHECK_PKMOD4620(p[0], k_targ, 0x0) - 1;
	#endif
		printf("Target pass for debug-factor = %u\n",pass_targ);
	}
exit(0);
#endif	/* end #if(FAC_DEBUG) (q_targ processing) */

	itmp64 = (uint64)mi64_div_y32(p,TF_CLASSES,0x0,lenP);
//	printf("p %% 60 = %llu\n",itmp64);

#if TF_CLASSES == 60
/*
	const int pmod_vec[] = { 1, 7,11,13,17,19,23,29,31,37,41,43,47,49,53,59, 2,4,8,16,32, 0x0};
	for(i = 0; pmod_vec[i] != 0; i++) {
		ASSERT(HERE, CHECK_PKMOD60(pmod_vec[i], k, incr) == 16, "CHECK_PKMOD60 returns something other than the expected #TF_PASSES = 16!\n");
	}
	exit(0);
Mersenne Mp: Acceptable km-values for the 16 possible pm (= p%60) values:
	pm =  1: 0, 3, 8,11,15,20,23,24,35,36,39,44,48,51,56,59
	pm =  7: 0, 5, 8, 9,12,17,20,24,29,32,33,44,45,48,53,57
	pm = 11: 0, 1, 4, 9,13,16,21,24,25,28,33,36,40,45,48,49
	pm = 13: 0, 3, 8,11,12,15,20,23,27,32,35,36,47,48,51,56
	pm = 17: 0, 3, 4, 7,12,15,19,24,27,28,39,40,43,48,52,55
	pm = 19: 0, 5, 9,12,17,20,21,24,29,32,36,41,44,45,56,57
	pm = 23: 0, 1,12,13,16,21,25,28,33,36,37,40,45,48,52,57
	pm = 29: 0, 4, 7,12,15,16,19,24,27,31,36,39,40,51,52,55
	pm = 31: 0, 5, 8, 9,20,21,24,29,33,36,41,44,45,48,53,56
	pm = 37: 0, 3, 8,12,15,20,23,24,27,32,35,39,44,47,48,59
	pm = 41: 0, 3, 4,15,16,19,24,28,31,36,39,40,43,48,51,55
	pm = 43: 0, 5, 8,12,17,20,21,32,33,36,41,45,48,53,56,57
	pm = 47: 0, 4, 9,12,13,24,25,28,33,37,40,45,48,49,52,57
	pm = 49: 0,11,12,15,20,24,27,32,35,36,39,44,47,51,56,59
	pm = 53: 0, 3, 7,12,15,16,27,28,31,36,40,43,48,51,52,55
	pm = 59: 0, 1, 4, 9,12,16,21,24,25,36,37,40,45,49,52,57
Fermat Fn (n > 0): 0,Acceptable km-values for the ? possible pm (= p%60) values:
	pm =  2: 0, 4,10,12,18,22,24,28,30,34,40,42,48,52,54,58
	pm =  4: 0, 2, 6,12,14,20,24,26,30,32,36,42,44,50,54,56
	pm =  8: 0, 6,10,12,16,18,22,28,30,36,40,42,46,48,52,58
	pm = 16: 0, 6, 8,14,18,20,24,26,30,36,38,44,48,50,54,56	<*** F36 factor has k = 20 ... why do I miss? ***
	pm = 32: 0, 4,10,12,18,22,24,28,30,34,40,42,48,52,54,58
*/
	i = CHECK_PKMOD60  (itmp64, k, incr);
/*
	printf("k mod 60 = [");
	for(i = 0, j = 0; i < 16; i++) {
		j += incr[i];
		printf("%3u",(uint32)j);
	}
	printf("]\n");
	exit(0);
*/
#else	// 4620 classes:
	i = CHECK_PKMOD4620(itmp64, k, incr);
#endif
	ASSERT(HERE, i == TF_PASSES, "CHECK_PKMOD4620 returns something other than the expected #TF_PASSES!\n");

	/* If it's a restart, interval_lo for the initial pass will be based
	on (know), rather than (kmin) - handle that just inside the pass-loop: */
	/* Using TF_CLASSES = 60 by way of example:
	sievelets have bit_len = (len<<6)/60 ... each bit represents a k-incr of +60, so each pass (a.k.a. 'interval')
	rep. a k-incr of len<<6. Thus to get interval corr. to given kmax, use kmax = interval*(len<<6); yielding
		interval = kmax/(len<< 6) = (kmax>> 6)/len .
	For TF_CLASSES = 4620, we have bit_len = (len<<12)/4620, thus kmax = interval*(len<<12), thus
		interval = kmax/(len<<12) = (kmax>>12)/len .
	*/
	interval_lo = kmin/((uint64)len << TF_CLSHIFT);
	interval_now= know/((uint64)len << TF_CLSHIFT);
	interval_hi = (uint64)ceil((double)kmax/((uint64)len << TF_CLSHIFT));

	/* Make sure we always do at least one full pass through the sieve
	(e.g. if kmin = kmax = 1, ceil(kmax << TF_CLSHIFT) gives 0, same as (kmin << TF_CLSHIFT): */
	if(interval_hi == interval_lo)
		interval_hi += 1;

	ninterval = interval_hi - interval_lo;

	/* The actual kmin/kmax values used in the run are exact multiples
	of len*64 - we always do at least one full pass through the sieve,
	i.e. we run through at least (len*64) worth of k's */
	kmin = interval_lo *(len << TF_CLSHIFT);
	know = interval_now*(len << TF_CLSHIFT);
	kmax = interval_hi *(len << TF_CLSHIFT);

	/* And now that we have the actual kmin/kmax, recalculate these: */
  #ifdef P1WORD
	fqlo = kmin*twop_float + 1.0;
	fqhi = kmax*twop_float + 1.0;
  #endif

	/* 11/14/05: Since we don't actually use bmin/bmax for anything other
	than setting sieving bounds (which then get modified via the above
	k-is-exact-multiple-of-sieve-length anyway), preserve any user-set
	values, since these are typically whole numbers, and look nicer
	in diagnostic and savefile printing:
	*/
	/*	bmin = log(fqlo)/log(2.0);*/
	/*	bmax = log(fqhi)/log(2.0);*/

#if FAC_DEBUG
	/* Make sure the range of k's for the run contains any target factor: */
	if(k_targ)
		ASSERT(HERE, (kmin <= k_targ) && (kmax >= k_targ),"k_targ not in [kmin, kmax]");
#endif

	ASSERT(HERE, fp == 0x0,"0");
#ifdef FACTOR_STANDALONE
	fp = stderr;
#else
	fp = mlucas_fopen(STATFILE,"a");
#endif
	fq = mlucas_fopen(OFILE,"a");

#ifdef P1WORD
	sprintf(char_buf0, "Searching in the interval k=[%s, %s], i.e. q=[%e, %e]\n", &char_buf1[convert_uint64_base10_char(char_buf1, kmin )], &char_buf2[convert_uint64_base10_char(char_buf2, kmax )],fqlo,fqhi);
#else
	sprintf(char_buf0, "Searching in the interval k=[%s, %s]\n", &char_buf1[convert_uint64_base10_char(char_buf1, kmin )], &char_buf2[convert_uint64_base10_char(char_buf2, kmax )]);
#endif
	fprintf(fp, "%s", char_buf0);	fprintf(fq, "%s", char_buf0);

	sprintf(char_buf0, "Each of %3u (p mod %u) passes will consist of %s intervals of length %u\n", passmax-passmin+1, TF_CLASSES, &char_buf1[convert_uint64_base10_char(char_buf1, ninterval)], bit_len);
	fprintf(fp, "%s", char_buf0);	fprintf(fq, "%s", char_buf0);

	if(passnow != passmin || know != kmin)
	{
		sprintf(char_buf0, "Resuming execution with pass %u and k = %s\n", passnow, &char_buf1[convert_uint64_base10_char(char_buf1, know )]);
		fprintf(fp, "%s", char_buf0);	fprintf(fq, "%s", char_buf0);
		sprintf(char_buf0, "#Q tried = %s\n", &char_buf1[convert_uint64_base10_char (char_buf1, count)] );
		fprintf(fp, "%s", char_buf0);	fprintf(fq, "%s", char_buf0);
	count = 0;	// Reset == 0 prior to sieving so kvector-fill code works properly
	}

#ifndef FACTOR_STANDALONE
	fclose(fp);
#endif
	fp = 0x0;
	fclose(fq); fq = 0x0;

/*...init clocks, etc....*/
	clock1 = clock();
	tdiff = 0.0;

	// quick way to set all the bits = 1:
	for(i = 0; i < len; i++) {
		temp_late[i] = ~(uint64)0;
	}

	// Now generate q = 2kp+1 for as many k as desired; trial divide only if q passes
    // a small-primes sieve and if q mod 8 = +1 or -1 [Mersenne] or k even [Fermat; this is because we retrofit
    // the known form of Fn factors q = j.2^(n+2)+1 into our q = 2.k.p+1 scheme, replacing p with 2^n]:

	if(MODULUS_TYPE ==  MODULUS_TYPE_FERMAT) {
		/* No-odd-k sieve is simplest, so do it first.
		Remember that k = 1 is in the zeroth bit here, i.e. we cycle through
		bits 0-3 which correspond to q = 2kp+1, 4kp+1, 6kp+1, 8kp+1, respectively;
		thus we keep only bits 1 (k = 2) and 3 (k = 4), by masking with 16 x 0b1010 = 16 x 0xA:
		*/
		temp_late[0] &= 0xAAAAAAAAAAAAAAAAull;
	}
	else
	{
		/* q mod 8 = +-1 sieve is simplest, so do it first. Note q mod 8 = +-1 is guaranteed
		for (p mod TF_CLASSES) sieve via choice of acceptable values of increment (incr), but doing
		q%8 = +-1 here is trivial and speeds search for multiples of small primes below.
		*/
		qmod8 = 1;
		for(i = 0; i < 4; i++) {
			/* Remember that k = 1 is in the zeroth bit here, i.e. we cycle through
			bits 0-3 which correspond to q = 2kp+1, 4kp+1, 6kp+1, 8kp+1, respectively.

			We don't need to worry about overflow-on-add of (two_p + qmod8),
			since an overflow won't affect the result, modulo 8.
			*/
			qmod8=(two_p[0] + qmod8) & 7;
			if(qmod8==3 || qmod8==5) {
				for(l = i; l < 64; l += 4) {
					temp_late[0] &= ~((uint64)1 << l); /* clear every fourth such bit from the first quadword...	*/
				}
			}
		}
	}

	// Small-primes sieve needs only three (q mod 8 = +-1)-sieved registers to begin with, make 2 copies of the result:
	temp_late[1]=temp_late[0];
	temp_late[2]=temp_late[0];

/*...next, find multiples of small primes.	*/

	regs_todo=1;

	curr_p = 3;
	for(m = 0; m < nclear; m++)
	{
		curr_p += (pdiff[m] << 1);

		two64modp = 0x8000000000000000ull%curr_p;
		two64modp = (two64modp + two64modp)%curr_p;

		regs_todo=regs_todo*curr_p;

		mi64_set_eq_scalar(q, 1ull, lenQ);

		for(k = 0; k < regs_todo; k++)	/* number of registers to run through while seaching for first multiple of (m)th prime...	*/
		{
			for(i = 0; i < 64; i++)			/* ...and run through the 64 bits of each register. */
			{
				mi64_add(q,two_p,q,lenQ);
				if(!mi64_div_y32(q,curr_p,0x0,lenQ)) 	// To-Do: Replace all these slow mi64_div calls with mi64_is_div_by_scalar32,
				{										// then consider vectorizing this step, and using SSE2 vector version! */
				#if DBG_SIEVE
				//	if(curr_p < 100) printf("0: Found a multiple of %u in bit %u of register %u\n", curr_p, i, (uint32)k);
				#endif
					for(l = (uint32)(k<<6)+i; l < (regs_todo<<6); l += curr_p)
					{
						i64=(l>>6);	/* l/64	*/
						bit=l&63;	/* l%64	*/
						temp_late[i64] &= ~((uint64)1 << bit);
					}
					goto KLOOP;
				}
			}
		}
		/* Should never reach this regular-loop-exit point: */
		fprintf(stderr,"ERROR: failed to find a multiple of prime %u\n", curr_p);
		ASSERT(HERE, 0,"0");

	KLOOP:
		/* Propagate copies of length (regs_todo) bit-cleared portion of sieve to remaining parts of sieve.
		Here is the output of the commented-out diagnostic print:

			Propagating 5 copies of first 3 template-array words.
			Propagating 7 copies of first 15 template-array words.
			Propagating 11 copies of first 105 template-array words.
			Propagating 13 copies of first 1155 template-array words.
			Propagating 17 copies of first 15015 template-array words.

		Thus we really only need a template length = [product of first (nclear-1) off primes], since
		that simply repeats n = [(nclear)th odd prime] times. We simply need to make sure our loop below
		which copies the needed bits from the template to the bit_atlas also makes use of this repetition.
		*/
		if(m < (nclear-1)) {
			ncopies = prime[m+1];
			l = regs_todo;
		//	printf("Propagating %u copies of first %u template-array words.\n", ncopies,l);
			for(i = 2; i <= ncopies; i++, l += regs_todo) {
				for(j = 0; j < regs_todo; j++) {
					temp_late[l+j] = temp_late[j];
				}
			}
		}
	}	/* endfor(m = 0; m < nclear; m++) */

	for(m = 0; m < len; m++) {
		on_bits += popcount64(temp_late[m]);
	}
	printf("%u ones bits of %u in master sieve template.\n", on_bits, len<<6);

#ifdef FACTOR_STANDALONE
	 printf(   "TRYQ = %u, max sieving prime = %u\n",TRYQ,MAX_SIEVING_PRIME);
#else
	ASSERT(HERE, fp == 0x0,"0");
	fp = mlucas_fopen(STATFILE,"a");
	fprintf(fp,"TRYQ = %u, max sieving prime = %u\n",TRYQ,MAX_SIEVING_PRIME);
	fclose(fp); fp = 0x0;
#endif

	/* Init bitmap in atlas for each of the [TF_PASSES] k mod TF_CLASSES cases:
	We advance the current-bit-to-copy index [i] in increments based on the length-TF_PASSES incr[] array.
	Copy each such bit into the current-bit ([bit]th) bit of the current ([word*TF_PASSES + l]th) bit_atlas word,
	then increment l (which determines which of the TF_PASSES sievelets we are in).

	Here are the resulting stats based on the number of classes:

	TF_CLASSES = 60:
	Copy 16 of every 60 bits - every [3.75]th bit on average - from the master template to the compact bit_atlas.
	Since template has 64 x 255255 = 16336320 bits, and 16336320/60 = 272272 bits for each of 16 sievelets concatenated
	into our bit_atlas, which thus has ceil(272272/64) = 4255 words, with high word [4254] using just its low 16 bits.

	TF_CLASSES = 4620:
	Copy 960 of every 60*77 bits - every [4.8125]th bit on average - from the master template to the compact bit_atlas.
	Since template has 64^2 x 255255 = 1045524480 bits (= 130690560 bytes [~130MB]), and 1045524480/4620 = 226304 bits
	for each of 960 sievelets concatenated into our bit_atlas, which thus has 226304/64 = 3536 words, with high word
	[3535] using all its bits, as 226304 is divisible by 64.

	Now, we prefer not to have to allocate the full-length template array unless absolutely necessary, but for
	the 4620 case we can simply re-use the 60-class version 64 times.
	*/
	i = incr[0] - 1;
	j = k = 0;
	bit = word = 0;	// To shut up may-be-uninit warnings
	ncopies = 0;
	for(;;) /* K loops over 64-bit registers...	*/
	{
		l = 0;
L3:
	#if TF_CLASSES == 60
		if(k == 0 && ncopies == 1) break;
	#else	// 4620 classes:
		if(k == 0 && ncopies == 64) break;
	#endif
		for(;;) /* I loops over bits...	*/
		{
			word = (uint32)(j>>6);
			bit  = (uint32)(j&63);
			if((temp_late[k]>>i) & 1) {
		//	if(k<10)printf("Copying set bit at k = %u in word %u of temp_late to word %u*%u + %u, bit %u of bit_atlas\n",i+1,(uint32)k, word,TF_PASSES,l,bit);
				*(bit_atlas + (word * TF_PASSES) + l) |= ((uint64)1 << bit);
			}
			if(++l == TF_PASSES) {
				l = 0;
				j++;
			}
			i += incr[l];
			// I will not generally land on 64 here, so need a more general mod-needed check:
			if(i >= 64) {
				i &= 63;
				k++;
				if(k == len) {
					k = 0;
					ncopies++;
				}
				goto L3;
			}
		} /* end of I loop	*/
	}	/* end of K loop	*/
//printf("L3: template word %u [used %u copies] bit_atlas chart %u, word %u, bit %u\n",(uint32)k,ncopies,l,word,bit);	exit(0);
	// For 60|4620 classes expect to end at bit 15|63 of the last word of each of the TF_PASSES = 16|960 sievelets (a.k.a. charts in our atlas):
	ASSERT(HERE, (k == 0) && (l == 0), "bit_atlas init: Exit check 1 failed!");
#if TF_CLASSES == 60
	ASSERT(HERE, (word == 4254) && (bit == 15), "bit_atlas init: Exit check 2 failed!");
#else	// 4620 classes:
	ASSERT(HERE, (word == 3535) && (bit == 63), "bit_atlas init: Exit check 2 failed!");
#endif

#if FAC_DEBUG
  #if TF_CLASSES == 60
	i = len/TF_CLASSES + 1;	// len not divisible by TF_CLASSES, so add a pad-word
	j = i*64 - 48;	// #bits
  #else
	i = (len*64)/TF_CLASSES;	// 64*len divisible by TF_CLASSES, no need for padding
	j = i*64;	// #bits
  #endif
	l = 0;	// accum popc
	for(m = 0; m < i; m++) {
		l += popcount64(bit_atlas[m]);
	}
//	printf("%u ones bits of %u [%6.2f%%] in bit_atlas set.\n",l,(uint32)j,100.*(float)l/j);	exit(0);
//	  60:	184349 ones bits of 272272 [ 67.71%] in bit_atlas set.
//	4620:	196610 ones bits of 226304 [ 86.88%] in bit_atlas set.
#endif

/*...deallocate full-sized bit_atlas.	*/
	free((void *)temp_late); temp_late = 0x0;

/*...At this point, replace the relative with the absolute increments:	*/
	for(i = 1; i < TF_PASSES; i++) {	// Skip pass 0 here
		incr[i] = incr[i-1] + incr[i];
	}
#if TF_CLASSES == 60
	i = 0;
	switch(pmodNC)
	{
		/*   p mod 12 = 1:	*/
		case  1:ASSERT(HERE, incr[i++]== 3&&incr[i++]== 8&&incr[i++]==11&&incr[i++]==15&&incr[i++]==20&&incr[i++]==23&&incr[i++]==24&&incr[i++]==35&&incr[i++]==36&&incr[i++]==39&&incr[i++]==44&&incr[i++]==48&&incr[i++]==51&&incr[i++]==56&&incr[i++]==59&&incr[i++]==60, "factor.c : case  1"); break;	/* k mod 5 .ne. 2	*/
		case 37:ASSERT(HERE, incr[i++]== 3&&incr[i++]== 8&&incr[i++]==12&&incr[i++]==15&&incr[i++]==20&&incr[i++]==23&&incr[i++]==24&&incr[i++]==27&&incr[i++]==32&&incr[i++]==35&&incr[i++]==39&&incr[i++]==44&&incr[i++]==47&&incr[i++]==48&&incr[i++]==59&&incr[i++]==60, "factor.c : case 37"); break;	/* k mod 5 .ne. 1	*/
		case 13:ASSERT(HERE, incr[i++]== 3&&incr[i++]== 8&&incr[i++]==11&&incr[i++]==12&&incr[i++]==15&&incr[i++]==20&&incr[i++]==23&&incr[i++]==27&&incr[i++]==32&&incr[i++]==35&&incr[i++]==36&&incr[i++]==47&&incr[i++]==48&&incr[i++]==51&&incr[i++]==56&&incr[i++]==60, "factor.c : case 13"); break;	/* k mod 5 .ne. 4	*/
		case 49:ASSERT(HERE, incr[i++]==11&&incr[i++]==12&&incr[i++]==15&&incr[i++]==20&&incr[i++]==24&&incr[i++]==27&&incr[i++]==32&&incr[i++]==35&&incr[i++]==36&&incr[i++]==39&&incr[i++]==44&&incr[i++]==47&&incr[i++]==51&&incr[i++]==56&&incr[i++]==59&&incr[i++]==60, "factor.c : case 49"); break;	/* k mod 5 .ne. 3	*/
		/*   p mod 12 == 7:	*/
		case 31:ASSERT(HERE, incr[i++]== 5&&incr[i++]== 8&&incr[i++]== 9&&incr[i++]==20&&incr[i++]==21&&incr[i++]==24&&incr[i++]==29&&incr[i++]==33&&incr[i++]==36&&incr[i++]==41&&incr[i++]==44&&incr[i++]==45&&incr[i++]==48&&incr[i++]==53&&incr[i++]==56&&incr[i++]==60, "factor.c : case 31"); break;	/* k mod 5 .ne. 2	*/
		case  7:ASSERT(HERE, incr[i++]== 5&&incr[i++]== 8&&incr[i++]== 9&&incr[i++]==12&&incr[i++]==17&&incr[i++]==20&&incr[i++]==24&&incr[i++]==29&&incr[i++]==32&&incr[i++]==33&&incr[i++]==44&&incr[i++]==45&&incr[i++]==48&&incr[i++]==53&&incr[i++]==57&&incr[i++]==60, "factor.c : case  7"); break;	/* k mod 5 .ne. 1	*/
		case 43:ASSERT(HERE, incr[i++]== 5&&incr[i++]== 8&&incr[i++]==12&&incr[i++]==17&&incr[i++]==20&&incr[i++]==21&&incr[i++]==32&&incr[i++]==33&&incr[i++]==36&&incr[i++]==41&&incr[i++]==45&&incr[i++]==48&&incr[i++]==53&&incr[i++]==56&&incr[i++]==57&&incr[i++]==60, "factor.c : case 43"); break;	/* k mod 5 .ne. 4	*/
		case 19:ASSERT(HERE, incr[i++]== 5&&incr[i++]== 9&&incr[i++]==12&&incr[i++]==17&&incr[i++]==20&&incr[i++]==21&&incr[i++]==24&&incr[i++]==29&&incr[i++]==32&&incr[i++]==36&&incr[i++]==41&&incr[i++]==44&&incr[i++]==45&&incr[i++]==56&&incr[i++]==57&&incr[i++]==60, "factor.c : case 19"); break;	/* k mod 5 .ne. 3	*/
		/*   p mod 12 == 5:	*/
		case 41:ASSERT(HERE, incr[i++]== 3&&incr[i++]== 4&&incr[i++]==15&&incr[i++]==16&&incr[i++]==19&&incr[i++]==24&&incr[i++]==28&&incr[i++]==31&&incr[i++]==36&&incr[i++]==39&&incr[i++]==40&&incr[i++]==43&&incr[i++]==48&&incr[i++]==51&&incr[i++]==55&&incr[i++]==60, "factor.c : case 41"); break;	/* k mod 5 .ne. 2	*/
		case 17:ASSERT(HERE, incr[i++]== 3&&incr[i++]== 4&&incr[i++]== 7&&incr[i++]==12&&incr[i++]==15&&incr[i++]==19&&incr[i++]==24&&incr[i++]==27&&incr[i++]==28&&incr[i++]==39&&incr[i++]==40&&incr[i++]==43&&incr[i++]==48&&incr[i++]==52&&incr[i++]==55&&incr[i++]==60, "factor.c : case 17"); break;	/* k mod 5 .ne. 1	*/
		case 53:ASSERT(HERE, incr[i++]== 3&&incr[i++]== 7&&incr[i++]==12&&incr[i++]==15&&incr[i++]==16&&incr[i++]==27&&incr[i++]==28&&incr[i++]==31&&incr[i++]==36&&incr[i++]==40&&incr[i++]==43&&incr[i++]==48&&incr[i++]==51&&incr[i++]==52&&incr[i++]==55&&incr[i++]==60, "factor.c : case 53"); break;	/* k mod 5 .ne. 4	*/
		case 29:ASSERT(HERE, incr[i++]== 4&&incr[i++]== 7&&incr[i++]==12&&incr[i++]==15&&incr[i++]==16&&incr[i++]==19&&incr[i++]==24&&incr[i++]==27&&incr[i++]==31&&incr[i++]==36&&incr[i++]==39&&incr[i++]==40&&incr[i++]==51&&incr[i++]==52&&incr[i++]==55&&incr[i++]==60, "factor.c : case 29"); break;	/* k mod 5 .ne. 3	*/
		/*   p mod 12 == 11:	*/
		case 11:ASSERT(HERE, incr[i++]== 1&&incr[i++]== 4&&incr[i++]== 9&&incr[i++]==13&&incr[i++]==16&&incr[i++]==21&&incr[i++]==24&&incr[i++]==25&&incr[i++]==28&&incr[i++]==33&&incr[i++]==36&&incr[i++]==40&&incr[i++]==45&&incr[i++]==48&&incr[i++]==49&&incr[i++]==60, "factor.c : case 11"); break;	/* k mod 5 .ne. 2	*/
		case 47:ASSERT(HERE, incr[i++]== 4&&incr[i++]== 9&&incr[i++]==12&&incr[i++]==13&&incr[i++]==24&&incr[i++]==25&&incr[i++]==28&&incr[i++]==33&&incr[i++]==37&&incr[i++]==40&&incr[i++]==45&&incr[i++]==48&&incr[i++]==49&&incr[i++]==52&&incr[i++]==57&&incr[i++]==60, "factor.c : case 47"); break;	/* k mod 5 .ne. 1	*/
		case 23:ASSERT(HERE, incr[i++]== 1&&incr[i++]==12&&incr[i++]==13&&incr[i++]==16&&incr[i++]==21&&incr[i++]==25&&incr[i++]==28&&incr[i++]==33&&incr[i++]==36&&incr[i++]==37&&incr[i++]==40&&incr[i++]==45&&incr[i++]==48&&incr[i++]==52&&incr[i++]==57&&incr[i++]==60, "factor.c : case 23"); break;	/* k mod 5 .ne. 4	*/
		case 59:ASSERT(HERE, incr[i++]== 1&&incr[i++]== 4&&incr[i++]== 9&&incr[i++]==12&&incr[i++]==16&&incr[i++]==21&&incr[i++]==24&&incr[i++]==25&&incr[i++]==36&&incr[i++]==37&&incr[i++]==40&&incr[i++]==45&&incr[i++]==49&&incr[i++]==52&&incr[i++]==57&&incr[i++]==60, "factor.c : case 59"); break;	/* k mod 5 .ne. 3	*/
		default:
			ASSERT(HERE, MODULUS_TYPE == MODULUS_TYPE_FERMAT,"Only Mersenne and fermat-number factoring supported!");
	}
#endif

	clock2 = clock();	/* Assume sieve setup time < 2^32 cycles - even if that
							that is violated it's no big deal at this point. */
	/* Use td here, as tdiff is reserved for the total runtime from factoring start: */
	td = (double)(clock2 - clock1);
	clock1 = clock2;

#ifdef FACTOR_STANDALONE
	if(!restart)
		printf("Time to set up sieve =%s\n",get_time_str(td));
#endif

/* Run through each of the 16 "sievelets" as many times as necessary, each time copying
the appropriate q mod 8 and small-prime bit-cleared bit_atlas into memory, clearing bits
corresponding to multiples of the larger tabulated primes, and trial-factoring any
candidate factors that survive sieving.	*/

	nfactor = 0;

#if FAC_DEBUG
	/* If a known factor given, only process the given k/log2 range for that pass: */
	if(pass_targ < TF_PASSES)
		passmin = passnow = passmax = pass_targ;
#endif

#if 0//def USE_GPU *** Doing this here gives 'cudaGetLastError() returned 36: cannot set while device is active in this process' -
			// This is because of the start-of-run GPU-self-tests in util.c; thus moved upstream to immediately precede those. ***
	#error Wrong place for this!
	// Disable default spin-loop-wait-for-GPU:
	cudaSetDeviceFlags(cudaDeviceBlockingSync);
#endif

#ifdef MULTITHREAD

//	printf("start; #tasks = %d, #free_tasks = %d\n", tpool->tasks_queue.num_tasks, tpool->free_tasks_queue.num_tasks);
	struct timespec ns_time;	// We want a sleep interval of 0.1 mSec here...
	ns_time.tv_sec  =      0;	// (time_t)seconds - Don't use this because under OS X it's of type __darwin_time_t, which is long rather than double as under most linux distros
	ns_time.tv_nsec = 10000000;	// (long)nanoseconds - Get our desired 0.1 mSec as 10^5 nSec here

	// Populate the work-unit-encoding data structs which will get done by our pool of threads.
	// Current assignment may be restart of a partially-completed run, in which case npass < TF_PASSES
  #if TF_CLASSES == 60
	m = len/TF_CLASSES + 1;	// len not divisible by TF_CLASSES, so add a pad-word
  #else
	m = (len*64)/TF_CLASSES;	// 64*len divisible by TF_CLASSES, no need for padding
  #endif
	uint32 npass = passmax - passnow + 1;
	fprintf(stderr, "INFO: %u passes to do; bit_map has %u 64-bit words.\n",npass,m);
	/*
	Break overall work into ceil(npass/NTHREADS) 'waves' of NTHREADS each, i.e. each wave using all
	threads in the pool, with thread-synchronization at the end of each thread's factoring interval.
	We need to sync up (rather than just allowing each thread to grab more work as soon as it's done
	with its current (k mod) interval) because we memalloc for only NTHREADS concurrent threads, thus
	e.g. using NTHREADS = 4 if we start with passes 0-3 and the pass 0 and 2 threads finish ahead of 1 and 3,
	those 2 faster threads will get assigned the pass 4 and 5 work, and since 5 == 1 (mod NTHREADS), that
	thread's memory footprint will overlap that of the not-yet-complete pass 1 thread's.
	*/
	uint32 wave, wave_max = ceil( (double)npass/NTHREADS );
	fprintf(stderr,"INFO: Doing %u threadpool-waves of %u pool threads each:\n",wave_max,NTHREADS);
	for(wave = 0; wave < wave_max; wave++)
	{
		for(thr_id = 0; thr_id < NTHREADS; thr_id++)	// Unique (within the context of the current wave) task ID
		{												// used for slotting thread-local accesses to shared data arrays
			i = wave*NTHREADS + thr_id;
			pass = passnow + i;
			// For partial-waves, easiest is to proceed as usual, 'init' the full NTHREADS pool tasks,
			// but make the extra ones no-ops. But also need to avoid reading nonexistent bitmap data:
			if(pass <= passmax) {
				// Load 'master copy' of sievelet for the current pass number:
				for(l = 0; l < m; l++) {
					bit_map[l + m * thr_id] = *(bit_atlas + (l * TF_PASSES) + pass);
				}

				/* Starting no.-of-times-through-sieve = kmin/(64*len) : */
				if(pass == passnow && (know > kmin)) {
					interval_lo = (know>>6)/(uint64)len;
					ASSERT(HERE, know == interval_lo *(len<<6),"know == interval_lo *(len<<6)");
				} else {
					interval_lo = (kmin>>6)/(uint64)len;
					ASSERT(HERE, kmin == interval_lo *(len<<6),"kmin == interval_lo *(len<<6)");
				}
			} else {
				interval_lo = interval_hi;	// This is what defines a 'no-op' pool task.
			}
			/* Set initial k for this pass to default value (= incr[pass]) + interval_lo*(64*len),
			(assume this could be as large as 64 bits), then use it to set initial q for this pass:
			*/
			ASSERT(HERE, (double)interval_lo*(len<<6) < TWO64FLOAT, "(double)interval_lo*len < TWO64FLOAT");
			k = (uint64)incr[pass] + interval_lo*(len<<6);
		//	fprintf(stderr," [*** Init pass %u data: k0 = %llu, word0 = %16llX\n",pass,k,bit_map[0]);
			struct fac_thread_data_t* targ = tdat + thr_id;
			targ->count = &count;
			targ->tid = thr_id;		// Within the per-thread TFing, only the pool-thread ID matters
			targ->pass = pass;
			targ->interval_lo = interval_lo;
			targ->interval_hi = interval_hi;
			targ->fbits_in_2p = fbits_in_2p;
		#ifdef USE_AVX512
			targ->psmall = psmall;
		#endif
			targ->nclear = nclear;
			targ->sieve_len = len;
			targ->p_last_small = p_last_small;
			targ->nprime = nprime;
			targ->MAX_SIEVING_PRIME = MAX_SIEVING_PRIME;
			targ->pdiff = pdiff + NUM_SIEVING_PRIME * thr_id;
			targ->startval = startval + NUM_SIEVING_PRIME * thr_id;
			targ->k_to_try = k_to_try + TRYQ              * thr_id;
			targ->factor_k = factor_k + TRYQ              * thr_id;
			targ->nfactor = &nfactor;
			targ->findex = findex;
			targ->p     = p;
			targ->two_p = two_p;
			targ->q       = q       + lenQ * thr_id;
			targ->q2      = q2      + lenQ * thr_id;
			targ->u64_arr = u64_arr + lenQ * thr_id;
			targ->lenP = lenP;
			targ->lenQ = lenQ;
			targ->kdeep = kdeep;
			targ->ndeep = &ndeep;
			targ->countmask = countmask;
			targ->CMASKBITS = CMASKBITS;
			targ->incr = incr[pass];
			targ->kstart = k;
			targ->bit_map  = bit_map  + m * thr_id;
			targ->bit_map2 = bit_map2 + m * thr_id;
			targ->tdiff = &tdiff;	// In || mode update tdiff directly, but only from the 0-thread
			targ->MODULUS_TYPE = MODULUS_TYPE;
			targ->VERSION      = VERSION;
			targ->OFILE        = OFILE;

		}	// thr_id-loop
		// Use exit value of [pass] here: If doing only a subset of the full 'current wave' complement
		// of NTHREADS passes - this can only occur during the final wave - adjust pool_work_units accordingly:
		if(pass > passmax) {
			pool_work_units = NTHREADS - (pass - passmax);	// Subtract excess #passes from default pool_work_units value
			fprintf(stderr,"INFO: Final threadpool wave will use only %u of the %u pool threads.\n",pool_work_units,NTHREADS);
		}

		if(pool_work_units > 1)
			fprintf(stderr, "Passes %u - %u: ",pass-NTHREADS+1, pass-NTHREADS+pool_work_units);
		else
			fprintf(stderr, "Pass %u: ",pass);

		// For partial-waves, easiest is to proceed as usual, 'init' the full NTHREADS pool tasks,
		// but make the extra ones no-ops. Here that means adding the full complement of NTHREADS tasks to the pool:
		for(thr_id = 0; thr_id < NTHREADS; ++thr_id)
		{
			task_control.data = (void*)(&tdat[thr_id]);
			threadpool_add_task(tpool, &task_control, task_is_blocking);
		#if 0
			printf("adding pool task %d with pool ID [%d]\n",thr_id,((struct thread_init *)(&task_control)->data)->thread_num);
			struct fac_thread_data_t* targ = tdat + thr_id;
			printf("This task has: pass %u, interval_[lo,hi] = [%llu,%llu]\n",targ->pass,targ->interval_lo,targ->interval_hi);
			printf("; #tasks = %d, #free_tasks = %d\n", tpool->tasks_queue.num_tasks, tpool->free_tasks_queue.num_tasks);
		#endif
		}

		while(tpool->free_tasks_queue.num_tasks != NTHREADS) {
			// Posix sleep() too granular here; use finer-resolution, declared in <time.h>; cf. http://linux.die.net/man/2/nanosleep
			ASSERT(HERE, 0 == nanosleep(&ns_time, 0x0), "nanosleep fail!");
		}
		fprintf(stderr,"\n");	// For pretty-printing, have the inline-pass-printing reflect || work, newlines reflect sync-points
	};	// wave-loop

#else	// Single-threaded execution:

	for(pass = passnow; pass <= passmax; pass++)
	{
		// Load 'master copy' of sievelet for the current pass number:
	  #if TF_CLASSES == 60
		m = len/TF_CLASSES + 1;	// len not divisible by TF_CLASSES, so add a pad-word
	  #else
		m = (len*64)/TF_CLASSES;	// 64*len divisible by TF_CLASSES, no need for padding
	  #endif
		for(i = 0; i < m; i++) {
			bit_map[i] = *(bit_atlas + (i * TF_PASSES) + pass);
		}

	#if DBG_SIEVE
		/* If debugging sieve, make sure critical bit hasn't been cleared: */
		if( k_targ && (((bit_map[i64_targ] >> bit_targ) & 1) == 0) ) {
			fprintf(stderr,"Critical bit cleared in master bitmap!\n");
			ASSERT(HERE, 0,"0");
		}
	#endif

	#ifdef FACTOR_STANDALONE
		if(!restart) {
			printf("pass = %u",pass);	fflush(stdout);
		}
	#else
		ASSERT(HERE, fp == 0x0,"0");
		fp = mlucas_fopen(STATFILE,"a");
		fprintf(fp,"Starting Trial-factoring Pass %2u...\n",pass);
		fclose(fp); fp = 0x0;
	#endif

		/* Starting no.-of-times-through-sieve = kmin/(64*len) : */
		if(pass == passnow && (know > kmin)) {
			interval_lo = (know>>6)/(uint64)len;
			ASSERT(HERE, know == interval_lo *(len<<6),"know == interval_lo *(len<<6)");
		} else {
			interval_lo = (kmin>>6)/(uint64)len;
			ASSERT(HERE, kmin == interval_lo *(len<<6),"kmin == interval_lo *(len<<6)");
		}

		/* Set initial k for this pass to default value (= incr[pass]) + interval_lo*(64*len),
		(assume this could be as large as 64 bits), then use it to set initial q for this pass:
		*/
		ASSERT(HERE, (double)interval_lo*(len<<6) < TWO64FLOAT, "(double)interval_lo*len < TWO64FLOAT");
		k = (uint64)incr[pass] + interval_lo*(len<<6);

		i = NUM_SIEVING_PRIME;
		count += PerPass_tfSieve(
			interval_lo,  interval_hi,
			fbits_in_2p,
			nclear,
			len,	// #64-bit words in the full-length sieving bitmap setup by the (CPU-side) caller.
			p_last_small,	//largest odd prime appearing in the product; that is, the (nclear)th odd prime.
			i,	// #sieving primes (counting from 3)
			MAX_SIEVING_PRIME,
			pdiff,
			startval,	// This gets updated within
			k_to_try,	// Unused by GPU code; include to yield a (mostly) uniform API
			factor_k,	// List of found factors for each p gets updated (we hope) within
			&nfactor,	// Here the '*' is to denote a writeable scalar
			findex,
			p, two_p, lenP, lenQ, incr[pass],
		#ifndef USE_GPU
 			kdeep, &ndeep, countmask, CMASKBITS, q, q2, u64_arr,
		#endif
			k,
			bit_map, bit_map2,	// GPU version uses only 1st of these
			&tdiff,
			MODULUS_TYPE,
			VERSION,
			OFILE
		);

	#ifdef USE_GPU
		cudaError = cudaGetLastError();
		if(cudaError != cudaSuccess)
		{
			printf("ERROR: cudaGetLastError() returned %d: %s\n", cudaError, cudaGetErrorString(cudaError));
			ASSERT(HERE, 0, "factor.c : GPU-side error detected!");
		}
	#endif

	#ifdef FACTOR_STANDALONE
		if(!restart)
			printf("\n");
	#else
		fp = mlucas_fopen(STATFILE,"a");
		fprintf(fp,"Trial-factoring Pass %2u: time =%s\n", pass,get_time_str(td));
		fclose(fp); fp = 0x0;
	#endif

	/***********/
	#ifdef ONEPASS
		return 0;
	#endif
	/***********/
	}	/* end of pass loop	*/

#endif	// MULTITHREAD ?

/*...all done.	*/
#ifdef FACTOR_STANDALONE
	if(!restart)
	{
		printf(   "%s(%s) has %u factors in range k = [%llu, %llu], passes %u-%u\n",
	 	NUM_PREFIX[MODULUS_TYPE], pstring, nfactor, kmin, kmax, passmin, passmax);
		printf(   "Performed %s trial divides\n", &char_buf0[convert_uint64_base10_char(char_buf0, count)]);
		/* Since we're done accumulating cycle count, divide to get total time in seconds: */
		printf(   "Clocks =%s\n",get_time_str(tdiff));
	}
#else
	ASSERT(HERE, fp == 0x0,"0");
	fp = mlucas_fopen(STATFILE,"a");
	fprintf(fp,"Performed %s trial divides\n", &char_buf0[convert_uint64_base10_char(char_buf0, count)]);
	/* Since we're done accumulating cycle count, divide to get total time in seconds: */
	fprintf(fp,"Clocks =%s\n",get_time_str(tdiff));
	fclose(fp); fp = 0x0;
#endif

	fp = mlucas_fopen(   OFILE,"a");
  #ifdef P1WORD
	 fprintf(fp,"M(%s) has %u factors in range k = [%llu, %llu], passes %u-%u\n", pstring, nfactor, kmin, kmax, passmin, passmax);
  #else
	 fprintf(fp,"M(%s) has %u factors in range k = [%llu, %llu], passes %u-%u\n", pstring, nfactor, kmin, kmax, passmin, passmax);
  #endif
	fclose(fp); fp = 0x0;

#if FAC_DEBUG
	/* If a test factor was given, make sure we found at least one factor: */
	if(k_targ > 0)
	{
		ASSERT(HERE, nfactor > 0,"k_targ > 0 but failed to find at least one factor");
	}
#endif

	// If in double-Mersenne deep-sieve mode, print sorted list of k-to-do:
	if((MODULUS_TYPE == MODULUS_TYPE_MERSMERS) && (findex > 10000)) {
		if(ndeep > 0) {
			qsort(kdeep, ndeep, sizeof(uint32), ncmp_uint32);
			printf("MM(%u): Do deep sieving for k = ",findex);
			for(i = 0; i < ndeep-1; i++) {
				printf("%u,",kdeep[i]);
			}
			printf("%u\n",kdeep[i]);
		}
	}

	// Free the allocated memory:
	free((void *)factor_ptmp);
	free((void *)p);
	free((void *)kdeep);
	free((void *)bit_map);
	free((void *)bit_map2);
	free((void *)bit_atlas);
	free((void *)pdiff);
	free((void *)startval);
	free((void *)pinv);
	free((void *)two_p);
	free((void *)p2NC);
	free((void *)q);
	free((void *)q2);
	free((void *)u64_arr);
#ifdef MULTITHREAD
	free((void *)tdat); tdat = 0x0;
#endif

	return(0);

	/* Only reachable from argc/argv section: */
#ifdef FACTOR_STANDALONE
MFACTOR_HELP:
	printf(" Mfactor command line options ...\n");
	printf(" <CR>        Default mode: prompts for manual keyboard entry\n");
	printf("\n");
	printf(" -h          Prints this help file and exits\n");
	printf("\n");
	printf(" -m {num}    Trial-factor the Mersenne number M(num) = 2^num - 1.\n");
	printf("\n");
	printf(" -mm {num}   Trial-factor the double-Mersenne number M(M(num)) = 2^(2^num) - 1.\n");
	printf("\n");
	printf(" -f {num}    Trial-factor the Fermat number F(num) = 2^(2^num) + 1.\n");
	printf("\n");
	printf(" -file {string}    Name of checkpoint file (needed for restart-from-interrupt)\n");
	printf("\n");
  #ifdef P1WORD
	printf(" -bmin {num} Log2(minimum factor to try), in floating double form.\n");
	printf(" If > 10^9 its whole-number part is taken as the kmin value instead.\n");
	printf("\n");
	printf(" -bmax {num} Log2(maximum factor to try), in floating double form.\n");
	printf(" If > 10^9 its whole-number part is taken as the kmax value instead.\n");
	printf("\n");
  #endif
	printf(" -kmin {num}  Lowest factor K value to be tried in each pass ( > 0).\n");
	printf("\n");
	printf(" -kmax {num} Highest factor K value to be tried in each pass ( < 2^64).\n");
	printf("\n");
	printf(" -passmin {num}  Current factoring pass (0-%d).\n",TF_PASSES-1);
	printf("\n");
	printf(" -passmax {num}  Maximum pass for the run (0-%d).\n",TF_PASSES-1);
  #ifdef MULTITHREAD
	printf("\n");
	printf(" -nthread {num}  Number of threads to use (1-%u). Each pass gets done by\n\t\t a separate thread; if #passes > #threads, some threads will do multiple passes.\n",TF_PASSES);
  #endif
	/* If we reached here other than via explicit invocation of the help menu, assert: */
	if(!STREQ(stFlag, "-h"))
		ASSERT(HERE, 0,"Mfactor: Unrecognized command-line option!");
	return(0);
#endif
}

/******************/

#ifndef USE_GPU

  #ifndef MULTITHREAD

	uint64 PerPass_tfSieve(
		const uint64 interval_lo, const uint64 interval_hi,
		const double fbits_in_2p,
		const uint32 nclear,
		const uint32 sieve_len,
		const uint32 p_last_small,	//largest odd prime appearing in the product; that is, the (nclear)th odd prime.
		const uint32 nprime,	// #sieving primes (counting from 3)
		const uint32 MAX_SIEVING_PRIME,
		const uint8 *pdiff,
			  uint32*startval,
			  uint64*k_to_try,
			  uint64*factor_k,	// List of found factors for each p gets updated (we hope) within
			  uint32*nfactor,	// Here the '*' is to denote a writeable scalar
		const uint32 findex,
		const uint64*p, const uint64*two_p, const uint32 lenP, const uint32 lenQ, const uint32 incr,
		uint32*kdeep, uint32*ndeep, const uint64 countmask, const uint32 CMASKBITS,
		uint64*q, uint64*q2, uint64*u64_arr,
		const uint64 kstart,
		const uint64*bit_map, uint64*bit_map2,
		double *tdiff,
		const int MODULUS_TYPE,
		const char*VERSION,
		const char*OFILE
	) {
		int    tid = 0;
  #else

	void*
	PerPass_tfSieve(void*thread_arg)	// Thread-arg pointer *must* be cast to void and specialized inside the function
	{
		struct fac_thread_data_t* targ = thread_arg;	// Ref'd as task->data in threadpool.c::worker_thr_routine() caller
		int    tid          = targ->tid;	// Thread ID (Use the pool-thread ID here rather than the task ID ... there are typically many more tasks than pool threads)
		uint32 pass         = targ->pass;	// Which factoring pass is the thread doing?
		uint64 interval_lo  = targ->interval_lo;
		uint64 interval_hi  = targ->interval_hi;
		double fbits_in_2p  = targ->fbits_in_2p;
	#ifdef USE_AVX512
		uint32 *psmall = targ->psmall;
	#endif
		uint32 nclear       = targ->nclear;
		uint32 sieve_len    = targ->sieve_len;
		uint32 p_last_small = targ->p_last_small;	//largest odd prime appearing in the product; that is = targ->; the (nclear)th odd prime.
		uint32 nprime       = targ->nprime;			// #sieving primes (counting from 3)
		uint32 MAX_SIEVING_PRIME = targ->MAX_SIEVING_PRIME;
		uint8 *pdiff        = targ->pdiff;
		uint32*startval     = targ->startval;
		uint64*k_to_try     = targ->k_to_try;
		uint64*factor_k     = targ->factor_k;		// List of found factors for each p gets updated (we hope) within
		uint32*nfactor      = targ->nfactor;		// Here the '*' is to denote a writeable scalar
		uint32 findex       = targ->findex;
		uint64*p            = targ->p;
		uint64*two_p        = targ->two_p;
		uint64*q            = targ->q;
		uint64*q2           = targ->q2;
		uint64*u64_arr      = targ->u64_arr;
		uint32 lenP         = targ->lenP;
		uint32 lenQ         = targ->lenQ;
		uint32*kdeep        = targ->kdeep;
		uint32*ndeep        = targ->ndeep;
		uint64 countmask    = targ->countmask;
		uint32 CMASKBITS    = targ->CMASKBITS;
		uint32 incr         = targ->incr;
		uint64 kstart       = targ->kstart;
		uint64*bit_map      = targ->bit_map ;
		uint64*bit_map2     = targ->bit_map2;
		double *tdiff       = targ->tdiff;
		int    MODULUS_TYPE = targ->MODULUS_TYPE;
		const char *VERSION = targ->VERSION;
		const char *OFILE   = targ->OFILE;
  #endif
	#ifdef MULTITHREAD
		// Proper init (as opposed to no-init) key to avoiding deadlock here.
		// Started with 2 separate _checkpoint and _foundfactor mutexes here, but since both code sections
		// in question call some of the same mi64 functions, replaced with 'one mutex to rule them all' model:
		pthread_mutex_t mutex_mi64        = PTHREAD_MUTEX_INITIALIZER,
						mutex_updatecount = PTHREAD_MUTEX_INITIALIZER;	// No mi64 calls here.
	#endif
		FILE *fp = 0x0;
	#if TF_CLASSES == 60
		const uint32 TRYQM1 = TRYQ-1, bit_len = (sieve_len << TF_CLSHIFT)/TF_CLASSES; 	// 255255*64  /  60 = 272272: Number of bits in each of the  16 mod-  60 sievelets
	#else	// 4620 classes:
		const uint32 TRYQM1 = TRYQ-1, bit_len = (sieve_len << TF_CLSHIFT)/TF_CLASSES;	// 255255*64^2/4620 = 226304: Number of bits in each of the 960 mod-4620 sievelets
	#endif
		uint32 bit,bit_hi,curr_p,i,ihi,idx,j,l,m;
		uint64 count = 0, itmp64, k = kstart, sweep, res;
		int32 q_index = -1;
		double fbits_in_k = 0, fbits_in_q = 0;
	#ifdef P1WORD
		double twop_float = 0,fqlo,fqhi;
		uint128 p128,q128,t128;	// Despite the naming, these are needed for nominal 1-word runs with moduli exceeding 64 bits
	#endif
	#ifdef P3WORD
		uint192 p192,q192,t192;
	  #ifdef USE_FLOAT
		uint256 x256;	// Needed to hold result of twopmodq200_8WORD_DOUBLE
	  #endif
	#endif
	#ifdef P4WORD
		uint256 p256,q256,t256;
	#endif
		char cbuf[STR_MAX_LEN], cbuf2[STR_MAX_LEN];
		clock_t clock1, clock2;

		if(interval_lo == interval_hi) {
			printf("Thread %u immediate-return (no-op)\n",tid);
			return 0x0;
		}

	#ifdef MULTITHREAD
	//	fprintf(stderr, "In PerPass_tfSieve task_id = %u, worker thread id %u\n", tid, ((struct thread_init *)targ)->thread_num);
	//	if(interval_hi > interval_lo) fprintf(stderr, "pass = %u",pass);	// Only print this diagnostic for non-empty tasks
	#endif
		clock1 = clock();	// In || mode, only the 0-thread accumulates runtime, but do this for all threads to avoid uninit warnings

	  #if FAC_DEBUG
		// compute qstart = 2.kstart.p + 1:
		ASSERT(HERE, 0 == mi64_mul_scalar(two_p,k,q,lenQ), "2.k.p overflows!");
		q[0] += 1;	// q = 2.k.p + 1; No need to check for carry since 2.k.p even
		printf(" Initial q for this pass = %s.\n", &char_buf0[convert_mi64_base10_char(char_buf0, q, lenQ, 0)]);
	  #endif
//if(pass==4)
//	printf("\nPass %u: k0 = %u, word0 prior to deep-prime clearing = %16llX\n",pass,(uint32)kstart,bit_map[0]);
		// Compute startbit k (occurrence of first multiple of prime curr_p in first pass through the relevant sievelet:
		if((lenP == 1) && (p[0] <= MAX_SIEVING_PRIME))
			get_startval(MODULUS_TYPE, p[0], findex, two_p, lenQ, bit_len, interval_lo, incr, nclear, nprime, p_last_small, pdiff, startval);
		else
			get_startval(MODULUS_TYPE, 0ull, findex, two_p, lenQ, bit_len, interval_lo, incr, nclear, nprime, p_last_small, pdiff, startval);

		for(sweep = interval_lo; sweep < interval_hi; ++sweep)
		{
#ifdef MULTITHREAD
//if(tid == 0)
#endif
//	printf("k0 = %llu, sweep %llu, count %llu: k0-3 = %llu,%llu,%llu,%llu\n",kstart,sweep,count,k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3]);

			/* Accumulate the cycle count every so often to avoid problems with integer overflow
			of the clock() result, if clock_t happens to be a 32-bit int type on the host platform:
			*/
			if((tid == 0) && (sweep & 127) == 0) {	// Only the lowest-index thread does screen status-update prints
			#ifdef FACTOR_STANDALONE
				printf(".");	fflush(stdout);
			#endif
			}

		  #if TF_CLASSES == 60
			ihi = sieve_len/TF_CLASSES + 1;	// sieve_len not divisible by TF_CLASSES, so add a pad-word
		  #else
			ihi = (sieve_len*64)/TF_CLASSES;	// 64*sieve_len divisible by TF_CLASSES, no need for padding
		  #endif
			memcpy(bit_map2, bit_map, (ihi<<3));	// Load fresh copy of master sievelet

		#if FAC_DEBUG	// If enable this, make sure to also uncomment "# survived" complement below!
			m = 0;	// accum popc
			for(i = 0; i < ihi; i++) {
				m += popcount64(bit_map2[i]);
			}
		  #ifdef MULTITHREAD
			if(tid == 0)
		  #endif
			printf("%u ones bits of %u [%6.2f%%] in bit_map set.\n",m,bit_len,100.*(float)m/bit_len);
		#endif

			// To track lg(q) = lg(2.k.p+1), use approximation q ~= 2.k.p, thus lg(q) ~= lg(2.p) + lg(k).
			// At start of each pass through the k-based sieve, use 2.k.p with k = [starting k + sievebits]
			// to bound qmax from above, and compute lg(qmax) using the above logarithmic sum.
			fbits_in_k = log((double)k + TF_CLASSES*bit_len)*ILG2;	// Use k-value at end of upcoming pass thru sieve as upper-bound
			fbits_in_q = fbits_in_2p + fbits_in_k;
	//	if(fbits_in_q > 64)
	//	printf("sweep = %llu: fbits_in_q = fbits_in_2p [%10.4f] + fbits_in_k [%10.4f] = %10.4f\n",sweep,fbits_in_2p,fbits_in_k,fbits_in_q);

		/*********************************************/
		#if DBG_SIEVE
			if(k_targ)
			{
				/* See if k_targ falls in the range of k's for the current sieve interval: */
				k = (uint64)incr + sweep*(sieve_len<<6);	/* Starting k for the current interval: */

				/* If so, calculate the location of the critical bit
				and allow execution to proceed as normal to bit-clearing step:
				*/
				if((k <= k_targ) && (k_targ < (k+(sieve_len<<6))))
				{
					itmp64 = k_targ - k;
					ASSERT(HERE, itmp64%TF_CLASSES == 0,"(k_targ - k)%TF_CLASSES == 0");
					itmp64 /= TF_CLASSES;
					i64_targ = itmp64 >> 6;
					bit_targ = itmp64 & 63;
				}
				/* If debugging sieve & known factor will not occur in the current sieve interval,
				skip all of that bit-clearing nonsense and just increment the offset for each
				sieving prime to what it will be after another full pass through the sievelet:
				*/
				else
				{
					curr_p = p_last_small;
					for(m = nclear; m < nprime; m++)
					{
						curr_p += (pdiff[m] << 1);

						/* Special-handling code for p == curr_p case: */
						if(startval[m] == 0xffffffff)
						{
							continue;
						}

						/* Need to account for the fact that primes greater than the # of bits in the sieve
						may not hit *any* sieve bit on the current pass through the sieve:
						*/
						if(startval[m] >= bit_len) {
							startval[m] -= bit_len;
						} else {
							/* Compute new startvalue: */
							startval[m] += startval_incr[m] - curr_p;		/* Subtract off curr_p... */
							startval[m] += (-(startval_incr[m] >> 31)) & curr_p;	/* ...and restore it if result was < 0. */
						}
					}
					/* If reference factor not in current k-range, skip the TFing... */
					goto QUIT;
				}
			}
		#endif
		/*********************************************/

			/*   ...and clear the bits corresponding to the small primes.	*/

		#ifdef USE_AVX512	// Use vector-int math and gather-load/scatter-store to accelerate the bit-clearing
								// EWM: For pmax around the 'sweet spot', this 2-loop approach is barely faster than
								// above pure-C scalar-int code, though AVX-512 asm is a clear winner for large pmax.
			// Split our loop-over-primes into 2 parts, the 2nd of which handles primes > bit_len
			// [ = 272272 or 226304, resp., depending on whether TF_CLASSES = 60 or 4620].
			// We vectorize the 2nd loop, since each prime therein will hit at most one bit of the sievelet,
			// i.e. we require no while-loop, only an if(curr_p's startval < bit_len or not) conditional.
		// Loop #1:
			curr_p = p_last_small;
			for(m = nclear; m < nprime; m++)
			{
				curr_p += (pdiff[m] << 1);
				if(curr_p > bit_len && !((nprime - m)&63)) {	// 2nd clause is to make Loop #2 count a multiple of 64
					curr_p -= (pdiff[m] << 1);
					ASSERT(HERE, curr_p < p[0],"On Loop 1 exit: curr_p >= p!");
					break;
				}
				l = startval[m];
				// Need to account for the fact that primes greater than the # of bits in the sieve
				// may not hit *any* sieve bit on the current pass through the sieve:
				while(l < bit_len) {
					bit_clr32((uint32 *)bit_map2,l);	// 64-bit arithmetic offers no advamtage here
					l += curr_p;
				}
				startval[m] = l-bit_len;	// Save new startvalue
			}
		// Loop #2:
		//	printf("loop 2: m = %u, nprime = %u\n",m,nprime); exit(0);
		/*	for( ; m < nprime; m += 32) {	*/
			__asm__ volatile (\
			"	movl	%[__m] ,%%edx 	\n\t"\
			"	movq	%[__psmall]  ,%%rax 			\n\t	leaq (%%rax,%%rdx,4),%%rax	\n\t"/* &psmall[m] */\
			"	movq	%[__startval],%%rbx 			\n\t	leaq (%%rbx,%%rdx,4),%%rbx	\n\t"/* &startval[m] */\
			"	movq	%[__bit_map] ,%%rcx 			\n\t"\
			"	movl	$-2,%%edx						\n\t"\
			"	vpbroadcastd	%%edx,%%zmm31			\n\t"/* 0x111...110 x 16, shared across cols */
			"	movl	%[__bit_len] ,%%edx 			\n\t"\
			"	vpbroadcastd	%%edx,%%zmm30			\n\t"/* bit_len x 16, shared across cols */\
			"movl	%[__nprime] ,%%esi 	\n\t"/* ASM loop control structured as for(j = nprime-m; j != 0; j -= 32){...} */\
			"loop_bitclear_short:		\n\t"/* loop begin */\
				/* Each additional column to the right has zmm indices (except for data shared across cols, as noted) += 4, k-indices += 2: */\
				"	vmovups	(%%rbx),%%zmm0					\n\t	vmovups	0x40(%%rbx),%%zmm4				\n\t"/* next 16 startvals */\
				"	vpcmpd	$1,%%zmm30,%%zmm0,%%k1			\n\t	vpcmpd	$1,%%zmm30,%%zmm4,%%k3			\n\t"/* startval < bit_len ? If true, the current prime hits a bit in the sievelet. */\
				"	vmovdqa32 %%zmm0,%%zmm2%{%%k1%}			\n\t	vmovdqa32 %%zmm4,%%zmm6%{%%k3%}			\n\t"/* copy of 16 startvals, with elts which will not be touched set = 0. This is only to keep the resulting bitmap-dword-fetch index in range, though note the 0-word is 'live' data ... we will again use the same writemask to prevent the fetched bit_map[0] word from being modified. */\
				"	kmovw	%%k1,%%k2						\n\t	kmovw	%%k3,%%k4						\n\t"/* mask-reg zeroed by gather-load below, so save copy */\
				"	vpsrld	$5,%%zmm2,%%zmm2				\n\t	vpsrld	$5,%%zmm6,%%zmm6				\n\t"/* >>= 5 to convert startvals into dword indices */\
				"vpgatherdd (%%rcx,%%zmm2,4),%%zmm3%{%%k2%}	\n\t vpgatherdd (%%rcx,%%zmm6,4),%%zmm7%{%%k4%}	\n\t"/* gather-load the bitmap words */\
				"	vprolvd %%zmm0,%%zmm31,%%zmm1%{%%k1%}	\n\t	vprolvd %%zmm4,%%zmm31,%%zmm5%{%%k3%}	\n\t"/* 1 <<= bit (circular shift). Note no need to explicitly (mod 32) shift count */\
				"	vpandd	%%zmm1,%%zmm3 ,%%zmm3%{%%k1%}	\n\t	vpandd	%%zmm5,%%zmm7 ,%%zmm7%{%%k3%}	\n\t"/* AND with mask to clear the bits */\
				"	kmovw	%%k1,%%k2						\n\t	kmovw	%%k3,%%k4						\n\t"/* mask-reg zeroed by scatter-store below, so save copy */\
				"vpscatterdd %%zmm3,(%%rcx,%%zmm2,4)%{%%k2%}\n\t vpscatterdd %%zmm7,(%%rcx,%%zmm6,4)%{%%k4%}\n\t"/* scatter-store the bit-cleared bitmap words */\
				/* update the startvals - k1-mask determines which words get += curr_p; all words get -= bit_len */\
				"	vpaddd	(%%rax),%%zmm0,%%zmm0%{%%k1%}	\n\t vpaddd	0x40(%%rax),%%zmm4,%%zmm4%{%%k3%}	\n\t"/* startval{k1} += curr_p */\
				"	vpsubd	%%zmm30,%%zmm0,%%zmm0			\n\t	vpsubd	%%zmm30,%%zmm4,%%zmm4			\n\t"/* startval -= bit_len */\
				"	vmovups	%%zmm0,(%%rbx)					\n\t	vmovups	%%zmm4,0x40(%%rbx)				\n\t"/* write startvals */\
			"addq	$0x80,%%rax 	\n\t	addq	$0x80,%%rbx 	\n\t"\
			"subq	$32,%%rsi		\n\t"\
			"jnz loop_bitclear_short	\n\t"/* loop end; continue is via jump-back if rdi != 0 */\
			:	: [__psmall] "m" (psmall)	/* No outputs; All inputs from memory addresses here */\
				 ,[__startval] "m" (startval)	\
				 ,[__bit_map] "m" (bit_map2)	\
				 ,[__bit_len] "m" (bit_len)	\
				 ,[__m] "m" (m)	\
				 ,[__nprime] "nprime" (nprime-m)	\
				: "cc","memory","cl","rax","rbx","rcx","rdx","rsi","xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7","xmm30","xmm31"	/* Clobbered registers */\
			);
		/*	}	*/

		#else	/******** Non-SIMD (pre-AVX512) **********/

			uint32 cq[4], ncq = 0;	// mnemonic: ncq = 'Number in to-be-Cleared Queue', cq[] stores said queue
			curr_p = p_last_small;
			for(m = nclear; m < nprime; m++)
			{
				curr_p += (pdiff[m] << 1);	//	if(current_prime == 107) printf("   prime %8d has offset = %8d\n", curr_p, startval[m]);	//	if(pass == 4 && startval[m] < 100) printf("1: Found a multiple of %u in bit %u\n", curr_p,startval[m]);
				l = startval[m];
				// Special-handling code for p == curr_p case:
				if(l == 0xffffffff) {	//	printf("hit p == curr_p case!\n");
					continue;
				}
				// Need to account for the fact that primes greater than the # of bits in the sieve
				// may not hit *any* sieve bit on the current pass through the sieve:
				if(l >= bit_len) {
					startval[m] -= bit_len;
				} else {
					while(l < bit_len) {
					#ifdef USE_NCQ
						cq[ncq++] = l;
						if(ncq == 4) {
							bit_clr32_x4((uint32 *)bit_map2,cq[0],cq[1],cq[2],cq[3]);
							ncq = 0;
						}
					#else
						bit_clr32((uint32 *)bit_map2,l);
					#endif
					#if DBG_SIEVE
						if(k_targ && l == (i64_targ*64 + bit_targ))
							fprintf(stderr,"Critical bit being cleared by prime %u, with offset %u\n", curr_p, startval[m]);	ASSERT(HERE, 0,"0");
					#endif
						l += curr_p;
					}
					/*...save new startvalue:	*/
				#if DBG_SIEVE
					ASSERT(HERE, (startval[m] + startval_incr[m]) < (curr_p + curr_p), "factor.c : (startval[m] + startval_incr[m]) < (curr_p + curr_p)");
					ASSERT(HERE, l-bit_len == (startval[m] + startval_incr[m])%curr_p, "factor.c : l-bit_len == (startval[m] + startval_incr[m])%curr_p");
				#endif
					startval[m] = l-bit_len;
				}
			}

		#endif	// USE_AVX512 ?

//	if(pass==4)printf("\nPass %u: word0 after deep-prime clearing = %16llX\n",pass,bit_map2[0]);

			// Now run through the bits of the current copy of the sieve, trial dividing if a bit = 1:
		  #if TF_CLASSES == 60
			ihi = sieve_len/TF_CLASSES + 1;	// sieve_len not divisible by TF_CLASSES, so add a pad-word
		  #else
			ihi = (sieve_len*64)/TF_CLASSES;	// 64*sieve_len divisible by TF_CLASSES, no need for padding
		  #endif
			ASSERT(HERE, ihi == ((bit_len+63)>>6), "Ihi value-check failed!");
		#if FAC_DEBUG
			m = 0;	// accum popc
			for(i = 0; i < ihi; i++) {
				m += popcount64(bit_map2[i]);
			  #ifdef MULTITHREAD
			//	if(tid == 0)
			  #endif
			//	{ ui64_bitstr(bit_map2[i], cbuf);	printf("%4u: %s\n",i,cbuf); }
			}
		  #ifdef MULTITHREAD
			if(tid == 0)
		  #endif
			printf("%u [%6.2f%%] survived; count = %llu\n",m,100.*(float)m/bit_len,count);
		#endif

			bit_hi = 64;
			for(i = 0; i < ihi; i++)	/* K loops over 64-bit registers. Don't assume bit_len a multiple of 64.	*/
			{
				// Special casing for last sievelet word, which may be only partly full:
				if((bit_len - (i<<6)) < 64) {
					bit_hi = (bit_len - (i<<6));
				}
				for(bit = 0; bit < bit_hi; bit++)	// BIT loops over bits in each sievelet word
				{
				#if FAC_DEBUG
					/* If a known factor is specified, here it is in the bitmap: */
					if(k == k_targ)
					{
						printf("here it is: sweep = %s, bitmap word = %u, bit = %3u\n", &cbuf[convert_uint64_base10_char(cbuf, sweep)], i, bit);
						if((bit_map2[i] >> bit) & 1)
							printf("Trying k_targ = %llu...\n", k_targ);
						else
							ASSERT(HERE, 0,"0");
					}
				#endif

				// *** If current sieve bit=1, add q to trial-division queue: ***

					if((bit_map2[i] >> bit) & 1)
					{
						q_index = count++ & TRYQM1;	/* Post-increment count, so this will work. */

						/* Every so often (every [2^32 / (nearest power of 2 to lenP*lenQ^2)] q's seems a good interval)
						do some factor-candidate sanity checks.

						***NOTE: *** The (count & ...) here must be with a constant = 2^n-1, n >= 3.

						Due to the thread-unsafeness of the mi64 library used herein, in || mode, serialize execution here with a mutex.
						*/
						if((count & countmask) == 0)
						{
						#ifdef MULTITHREAD
							pthread_mutex_lock(&mutex_mi64);
						//	printf("Count = %u * 2^%u checkpoint: Thread %u locked mutex_mi64 ... ",(uint32)(count >> CMASKBITS),CMASKBITS,tid);
						#endif
							fp = mlucas_fopen(OFILE,"a");
							ASSERT(HERE, 0 == mi64_mul_scalar(two_p,k,q,lenQ), "2.k.p overflows!");
							q[0] += 1;	// q = 2.k.p + 1; No need to check for carry since 2.k.p even
						#if FAC_DEBUG
							sprintf(cbuf, " Count = %u * 2^%u: k = %llu, Current q = %s\n",
								(uint32)(count >> CMASKBITS),CMASKBITS,k,&cbuf[convert_mi64_base10_char(cbuf, q, lenQ, 0)]);
							fprintf(stderr, "%s", cbuf);
						#endif

							/* Do some sanity checks on the occasional factor candidate to ensure
							that the sieve is functioning properly and no overflows have occurred.
							*/

							/* In MMp mode, make sure results of fast and slow-debug modpow agree: */
							if(MODULUS_TYPE == MODULUS_TYPE_MERSMERS) {
								res = (mi64_twopmodq_qmmp(findex, k, u64_arr) == 1);
								if(res != (mi64_twopmodq(p, lenP, k, q, lenQ, q2) == 1) || q2[0] != u64_arr[0]) {
									sprintf(cbuf, "ERROR: Spot-check k = %llu, Results of mi64_twopmodq_qmmp and mi64_twopmodq differ!\n", k);
									fprintf(fp,"%s", cbuf);
									ASSERT(HERE, 0, cbuf);
								}
							}

							/* Make sure that q == 1 (mod 2p) and that q is a base-2 PRP: */
							mi64_clear(u64_arr, lenQ);	// Use q2 for quotient [i.e. factor-candidate k] and u64_arr for remainder
							mi64_div(q,two_p,lenQ,lenQ,q2,u64_arr);
							if(mi64_getlen(q2, lenQ) != 1) {
								sprintf(cbuf, "ERROR: Count = %u * 2^%u: k = %llu, Current q = %s: k must be 64-bit!\n",
									(uint32)(count >> CMASKBITS),CMASKBITS,k,&cbuf[convert_mi64_base10_char(cbuf, q, lenQ, 0)]);
								fprintf(fp,"%s", cbuf);
								ASSERT(HERE, 0, cbuf);
							}
							if(!mi64_cmp_eq_scalar(u64_arr, 1ull, lenQ))
							{
								sprintf(cbuf, "ERROR: Count = %u * 2^%u: k = %llu, Current q = %s: q mod (2p) = %s != 1!\n",
									(uint32)(count >> CMASKBITS),CMASKBITS,k,&cbuf[convert_mi64_base10_char(cbuf, q, lenQ, 0)],
									&cbuf2[convert_mi64_base10_char(cbuf2, u64_arr, lenQ, 0)]);
								fprintf(fp,"%s", cbuf);
								ASSERT(HERE, 0, cbuf);
							}

							/* If q is composite [only check this in debug mode since it costs more than checking
							divisibility of 2^p-1 by q], make sure its smallest divisor
							is larger than the max sieving prime being used for the run: */
							mi64_set_eq    (q2, q, lenQ);
							mi64_sub_scalar(q2,1ull,q2,lenQ);	// Re-use q2 to store q-1
							if(mi64_twopmodq(q2, lenQ, 0, q, lenQ, 0x0) != 1) {
							#if SPOT_CHECK
								printf(" INFO: Spot-check q with k = %llu is composite\n",k);
							#endif
								l = 3;
								for(m = 0; m < nprime; m++) {
									l += (pdiff[m] << 1);
									// Is q % (current small sieving prime) == 0?
									// Cast-to-32-bit-array means doubling the length argument, but THAT IS DONE AUTOMATICALLY INSIDE THE FUNCTION
									if(mi64_is_div_by_scalar32((uint32 *)q, l, lenQ)) {
									#ifdef MULTITHREAD
									//	if(tid != 0) break;	// Can make thread-specific by fiddling the rhs of the !=
										printf("Thread %u, k = %llu: q = ",tid,k);
										if(lenQ > 1)printf("2^64 * %llu + ",q[1]);
										printf("%llu has a small divisor: %u\n",q[0], l);
										ASSERT(HERE, 0, "Abort...");
									#else
										sprintf(cbuf, "ERROR: Count = %u * 2^%u: k = %llu, Current q = %s has a small divisor: %u\n",
											(uint32)(count >> CMASKBITS),CMASKBITS,k,&cbuf[convert_mi64_base10_char(cbuf, q, lenQ, 0)],l);
										fprintf(fp,"%s", cbuf);
										ASSERT(HERE, 0, cbuf);
									#endif
									}
								}
							} else {
							#if SPOT_CHECK
								printf(" INFO: Spot-check q with k = %llu is base-2 PRP\n",k);
							#endif
							}
							fclose(fp); fp = 0x0;

						#ifdef MULTITHREAD
						//	printf("Thread %u unlocking mutex_mi64.\n",tid);
							pthread_mutex_unlock(&mutex_mi64);
						#endif
						}	/* endif((count & countmask) == 0) */

					/***************************************************************************************/
					#if(TRYQ == 0)	/* If testing speed of sieve alone, skip to incrementing of q. */
					/***************************************************************************************/

					#else

						k_to_try[q_index] = k;

						if(q_index == TRYQM1)
						{
							q_index = -1;	/* q_index = -1 indicates factor-candidate queue empty. (More precisely,
											it will be, after we test the current batch of candidates. */

					/***************************************************************************************/
						#if(TRYQ == 1)		/************** try 1 factor candidates at a time **************/
					/***************************************************************************************/

						  #ifdef NWORD

							if(MODULUS_TYPE == MODULUS_TYPE_MERSMERS) {
								if(findex > 10000) {
									if(k < 1000) {
										printf("Do deep sieving for k = %u\n",(uint32)k);
									/****** Apr 2105: This all needs to be made thread-safe ******/
									ASSERT(HERE, 0, "This all needs to be made thread-safe!");
										kdeep[*ndeep++] = (uint32)k;
										ASSERT(HERE, *ndeep < 1024, "Increase allocation of kdeep[] array or use deeper sieving bound to reduce #candidate k's!");
									//	itmp64 = factor_qmmp_sieve64((uint32)findex, k, MAX_SIEVING_PRIME+2, 0x0001000000000000ull);
									//	if(itmp64) {
									//		printf("Q( k = %u ) has a small factor: %20llu\n",(uint32)k, itmp64);
									//	}
									}
									res = 0;
								} else {
									ASSERT(HERE, 0 == mi64_mul_scalar(two_p,k,q,lenQ), "2.k.p overflows!");
									q[0] += 1;	// q = 2.k.p + 1; No need to check for carry since 2.k.p even
									res = (mi64_twopmodq_qmmp(findex, k, u64_arr) == 1);
								// Uncomment to debug by comparing the results of the slow and fast-MMp-optimized modmul routines
								/*
									if(res != (mi64_twopmodq(p, lenP, k, q, lenQ, q2) == 1) || q2[0] != u64_arr[0]) {
										ASSERT(HERE, 0, "bzzt!");
									}
								*/
								}
							} else {
//if(k == 233112)
//printf("Here! k = %llu\n",k);
								ASSERT(HERE, 0 == mi64_mul_scalar(two_p,k,q,lenQ), "2.k.p overflows!");
								q[0] += 1;	// q = 2.k.p + 1; No need to check for carry since 2.k.p even
								res = mi64_twopmodq(p, lenP, k, q, lenQ, u64_arr);
							}

						  #elif(defined(P4WORD))

							ASSERT(HERE, 0ull == mi64_mul_scalar(two_p,k,(uint64*)&q256,lenQ), "2.k.p overflows!");
							q256.d0 += 1;	// No need to check for carry since 2.k.p even
							p256.d0 = p[0]; p256.d1 = p[1]; p256.d2 = p[2]; p256.d3 = p[3];
							t256 = twopmodq256(p256,q256);
							res = CMPEQ256(t256, ONE256);

						  #elif(defined(P3WORD))

						   #ifdef USE_FLOAT

							ASSERT(HERE, !p[2], "twopmodq200: p[2] nonzero!");
							x256 = twopmodq200_8WORD_qmmp(p,k);	res = (uint64)CMPEQ256(x256, ONE256);

						   #else

							ASSERT(HERE, 0ull == mi64_mul_scalar(two_p,k,(uint64*)&q192,lenQ), "2.k.p overflows!");
							q192.d0 += 1;	// No need to check for carry since 2.k.p even
							p192.d0 = p[0]; p192.d1 = p[1]; p192.d2 = p[2];
							t192 = twopmodq192(p192,q192);
							res = CMPEQ192(t192, ONE192);

						   #endif	/* USE_FLOAT */

						  #elif(defined(P2WORD))

						   #if(  defined(USE_128x96) && USE_128x96 == 1)
							/* Use strictly  96-bit routines: */
							if(p[1] == 0 && (q[1] >> 32) == 0)
								res = twopmodq96	(p[0],k);
							else
						   #elif(defined(USE_128x96) && USE_128x96 == 2)
							/* Use hybrid 128_96-bit routines: */
							if(p[1] == 0 && (q[1] >> 32) == 0)
								res = twopmodq128_96(p[0],k);
							else
						   #endif
							/* Use fully 128-bit routines: */
							res = twopmodq128x2(p[0],k);

						  #else

							#ifdef USE_FMADD
								/* Use 50x50-bit FMADD-based modmul routines, if def'd: */
								res = twopmodq100_2WORD_DOUBLE(p[0],k);
							#elif(defined(USE_FLOAT))
								/* Otherwise use 78-bit floating-double-based modmul: */
								res = twopmodq78_3WORD_DOUBLE(p[0],k);
							#else
								/* Otherwise use pure-integer-based modmul: */
								if(fbits_in_q < 63) {
									itmp64 = k*(p[0]<<1) + 1;
									res = twopmodq63(p[0],itmp64);
									res = (res == 1);
								} else if(fbits_in_q < 64) {
									itmp64 = k*(p[0]<<1) + 1;
									res = twopmodq64(p[0],itmp64);
									res = (res == 1);
								}
							  #ifdef USE_65BIT
								else if(fbits_in_q < 65)
									res = twopmodq65(p[0],k);
							  #endif
								else
								{
									ASSERT(HERE, fbits_in_q < 96, "fbits_in_q exceeds allowable limit of 96!");
								  #if(  defined(USE_128x96) && USE_128x96 == 1)
									/* Use strictly  96-bit routines: */
									res = twopmodq96	(p[0],k);
								  #elif(defined(USE_128x96) && USE_128x96 == 2)
									/* Use hybrid 128_96-bit routines: */
									res = twopmodq128_96(p[0],k);
								  #else
									/* Use fully 128-bit routines: */
								//	ASSERT(HERE, 0 == mi64_mul_scalar(two_p,k,(uint64*)&q128,lenQ), "2.k.p overflows!");
									res = twopmodq128x2(p,k);
								  #endif
								}
							#endif	/* #ifdef USE_FMADD */
						  #endif	/* #ifdef NWORD */

					/***************************************************************************************/
						#elif(TRYQ == 2)	/************** try 2 factor candidates at a time **************/
					/***************************************************************************************/

						  #ifdef P3WORD

							#ifndef USE_FLOAT
								#error	TRYQ = 2 / P3WORD only allowed if USE_FLOAT is defined!
							#endif	/* #ifdef USE_FMADD */

							ASSERT(HERE, !p[2], "twopmodq200: p[2] nonzero!");
							res  = twopmodq200_8WORD_qmmp_x2_sse2(p,k_to_try[0],k_to_try[1]);

						  #elif(defined(P1WORD))

							#ifdef USE_FMADD
								/* Use 50x50-bit FMADD-based modmul routines, if def'd: */
								res = twopmodq100_2WORD_DOUBLE_q2(p[0],k_to_try[0],k_to_try[1]);
							#elif(defined(USE_FLOAT))
								/* Otherwise use 78-bit floating-double-based modmul: */
								res = twopmodq78_3WORD_DOUBLE_q2(p[0],k_to_try[0],k_to_try[1], 0,tid);
							#else
								#error	TRYQ = 2 / P1WORD only allowed if USE_FLOAT or USE_FMADD is defined!
							#endif	/* #ifdef USE_FMADD */

						  #else

							#error TRYQ == 2 requires P1WORD or P3WORD to be defined!

						  #endif

					/***************************************************************************************/
						#elif(TRYQ == 4)	/************** try 4 factor candidates at a time **************/
					/***************************************************************************************/

						  #ifdef P3WORD

						//	ASSERT(HERE, !p[2], "twopmodq200: p[2] nonzero!");
							res = twopmodq192_q4(p,k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3]);

						  #elif(defined(P2WORD))

							/* Itanium seems to perform poorly with 96-bit variant: */
						   #if(  defined(USE_128x96) && USE_128x96 == 1)
							/* Use strictly  96-bit routines: */
							if(p[1] == 0 && fbits_in_q < 96)
								res = twopmodq96_q4     (p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3], 0,tid);
							else
						   #elif(defined(USE_128x96) && USE_128x96 == 2)
							/* Use hybrid 128_96-bit routines: */
							if(p[1] == 0 && fbits_in_q < 96)
								res = twopmodq128_96_q4 (p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3]);
							else
						   #endif
							/* Use fully 128-bit routines: */
								res = twopmodq128_q4    (p   ,k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3]);

						  #else	// Default single-word-p mode:

							#ifdef USE_FMADD
								/* Use 50x50-bit FMADD-based modmul routines, if def'd: */
								res = twopmodq100_2WORD_DOUBLE_q4(p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3]);

							#elif(defined(USE_FLOAT))
								/* Otherwise use 78-bit floating-double-based modmul: */
								res = twopmodq78_3WORD_DOUBLE_q4(p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3], 0,tid);

							#else
								/* fbits_in_q is calculated for largest q of current
								set, so if that > 64, use 96-bit routines for all q's. */
							  #ifndef YES_ASM
								if(fbits_in_q < 63)
									res = twopmodq63_q4(p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3]);
								else
							  #endif	// If x86_64, use faster inline-asm-ified 64-bit modpow for all q's < 2^64:
								if(fbits_in_q < 64)
									res = twopmodq64_q4(p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3]);

							  #ifdef USE_65BIT
								else if(fbits_in_q < 65)
									res = twopmodq65_q4(p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3]);

							  #endif
							  #ifdef USE_72BIT
								else if(fbits_in_q < 72)
									res = twopmodq72_q4(p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3]);
							  #endif
								else {
									ASSERT(HERE, fbits_in_q < 96, "fbits_in_q exceeds allowable limit of 96!");
								#if(defined(USE_128x96) && USE_128x96 == 1)
									/* Use strictly  96-bit routines: */
									res = twopmodq96_q4		(p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3], 0,tid);
								#elif(!defined(USE_128x96) || USE_128x96 == 2)
									/* Use hybrid 128_96-bit routines: */
									res = twopmodq128_96_q4	(p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3]);
								#else
									/* Use fully 128-bit routines: */
									res = twopmodq128_q4	(p   ,k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3]);
								#endif
								}
							#endif	/* #ifdef USE_FLOAT */
						  #endif	/* #ifdef NWORD */

					/***************************************************************************************/
						#elif(TRYQ == 8)	/************** try 8 factor candidates at a time **************/
					/***************************************************************************************/

						  #ifdef P3WORD
						/*
							if((q[2] >> 32) == 0)
								res = twopmodq160_q8(p,k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3],k_to_try[4],k_to_try[5],k_to_try[6],k_to_try[7]);
							else
						*/
								res = twopmodq192_q8(p,k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3],k_to_try[4],k_to_try[5],k_to_try[6],k_to_try[7]);

						  #elif(defined(P2WORD))

							/* Itanium seems to perform poorly with 96-bit variant: */
						   #if(  defined(USE_128x96) && USE_128x96 == 1)
							/* Use strictly  96-bit routines: */
							if(p[1] == 0 && fbits_in_q < 96)
								res = twopmodq96_q8     (p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3],k_to_try[4],k_to_try[5],k_to_try[6],k_to_try[7], 0,tid);
							else
						   #elif(defined(USE_128x96) && USE_128x96 == 2)
							/* Use hybrid 128_96-bit routines: */
							if(p[1] == 0 && fbits_in_q < 96)
								res = twopmodq128_96_q8 (p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3],k_to_try[4],k_to_try[5],k_to_try[6],k_to_try[7]);
							else
						   #endif
							/* Use fully 128-bit routines: */
								res = twopmodq128_q8    (p   ,k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3],k_to_try[4],k_to_try[5],k_to_try[6],k_to_try[7]);

						  #else

							/* fbits_in_q is calculated for largest q of current
							set, so if that > 64, use 65,78 or 96-bit routines for all q's. */
							#if defined(USE_FLOAT) && defined(USE_SSE2) && (OS_BITS == 64)
								/* Otherwise use 78-bit floating-double-based modmul: */
								res = twopmodq78_3WORD_DOUBLE_q8(p[0],k_to_try, 0,tid);
							#else
								if(fbits_in_q < 63)
									res = twopmodq63_q8(p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3],k_to_try[4],k_to_try[5],k_to_try[6],k_to_try[7]);
								else if(fbits_in_q < 64)
									res = twopmodq64_q8(p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3],k_to_try[4],k_to_try[5],k_to_try[6],k_to_try[7]);
							  #ifdef USE_65BIT
								else if(fbits_in_q < 65)
									res = twopmodq65_q8(p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3],k_to_try[4],k_to_try[5],k_to_try[6],k_to_try[7]);
							  #endif
								else {
									ASSERT(HERE, fbits_in_q < 96, "fbits_in_q exceeds allowable limit of 96!");
								#if(defined(USE_128x96) && USE_128x96 == 1)
									/* Use strictly  96-bit routines: */
									res = twopmodq96_q8		(p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3],k_to_try[4],k_to_try[5],k_to_try[6],k_to_try[7], 0,tid);
								#elif(!defined(USE_128x96) || USE_128x96 == 2)
									/* Use hybrid 128_96-bit routines: */
									res = twopmodq128_96_q8	(p[0],k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3],k_to_try[4],k_to_try[5],k_to_try[6],k_to_try[7]);
								#else
									/* Use fully 128-bit routines: */
									p128.d0 = p[0]; p128.d1 = 0;
									res = twopmodq128_q8	(p   ,k_to_try[0],k_to_try[1],k_to_try[2],k_to_try[3],k_to_try[4],k_to_try[5],k_to_try[6],k_to_try[7]);
								#endif
								}

							#endif	/* #ifdef USE_FLOAT */
						  #endif	/* #ifdef NWORD */

					/***************************************************************************************/
						#elif(TRYQ == 16)	/************** try 16 factor candidates at a time *************/
					/***************************************************************************************/

							#if(defined(NWORD) || defined(P4WORD) || defined(P3WORD) || defined(P2WORD))
								#error (TRYQ == 16) only supported for 64-bit/P1WORD/GCC/AVX builds!
							#elif defined(USE_FLOAT) && defined(USE_AVX) && defined(COMPILER_TYPE_GCC) && (OS_BITS == 64)
								/* Use 78-bit floating-double-based modmul: */
								res = twopmodq78_3WORD_DOUBLE_q16( p[0], k_to_try, 0,tid );
							#else
								#error (TRYQ == 16) only supported for 64-bit/P1WORD/GCC/AVX builds!
							#endif	/* #ifdef USE_FLOAT */

					/***************************************************************************************/
						#elif(TRYQ == 32)	/************** try 32 factor candidates at a time *************/
					/***************************************************************************************/

							#if(defined(NWORD) || defined(P4WORD) || defined(P3WORD) || defined(P2WORD))
								#error (TRYQ == 32) only supported for 64-bit/P1WORD/GCC/AVX512 builds!
							#elif defined(USE_FLOAT) && defined(USE_AVX512) && defined(COMPILER_TYPE_GCC) && (OS_BITS == 64)
								/* Use 78-bit floating-double-based modmul: */
								res = twopmodq78_3WORD_DOUBLE_q32( p[0], k_to_try, 0,tid );
							#else
								#error (TRYQ == 32) only supported for 64-bit/P1WORD/GCC/AVX512 builds!
							#endif	/* #ifdef USE_FLOAT */

					/***************************************************************************************/
						#elif(TRYQ == 64)	/************** try 64 factor candidates at a time *************/
					/***************************************************************************************/

							#if(defined(NWORD) || defined(P4WORD) || defined(P3WORD) || defined(P2WORD))
								#error (TRYQ == 64) only supported for 64-bit/P1WORD/GCC/AVX512 builds!
							#elif defined(USE_FLOAT) && defined(USE_AVX512) && defined(COMPILER_TYPE_GCC) && (OS_BITS == 64)
								/* Use 78-bit floating-double-based modmul: */
								res = twopmodq78_3WORD_DOUBLE_q64( p[0], k_to_try, 0,tid );
							#else
								#error (TRYQ == 64) only supported for 64-bit/P1WORD/GCC/AVX512 builds!
							#endif	/* #ifdef USE_FLOAT */

						#endif	/* endif(TRYQ == ...) */

							/* Print any factors that were found in the current batch: */
							for(l = 0; l < TRYQ; l++)
							{
								if((res >> l) & 1)	/* If Lth bit = 1, Lth candidate of the inputs is a factor */
								{
								#ifdef MULTITHREAD
									pthread_mutex_lock(&mutex_mi64);
								//	printf("Found Factor: Thread %u locked mutex_mi64 ... ",tid);
								#endif
									/* Recover the factor: */
									q[lenP] = mi64_mul_scalar( p, 2*k_to_try[l], q, lenP);
									q[0] += 1;	// q = 2.k.p + 1; No need to check for carry since 2.k.p even
									if(mi64_twopmodq(p, lenP, k_to_try[l], q, lenQ, q2) != 1) {
										fprintf(stderr, "ERROR: k = %llu, post-check indicates this does not yield a factor.\n", k_to_try[l]);
									//	printf("Args sent to mi64_twopmodq:\n");
									//	printf("p = %s\n", &cbuf[convert_mi64_base10_char(cbuf, p, lenP, 0)]);
									//	printf("q = %s\n", &cbuf[convert_mi64_base10_char(cbuf, q, lenQ, 0)]);
									//	printf("res = %s\n", &cbuf[convert_mi64_base10_char(cbuf, q2, lenQ, 0)]);
									} else {
									  #if FAC_DEBUG
										printf("Factor found: q = %s. Checking primality...\n", &cbuf[convert_mi64_base10_char(cbuf, q, lenQ, 0)]);
									  #endif
										/* Do a quick base-3 compositeness check (base-2 would be much faster due to
										our fast Montgomery arithmetic-based powering for that, but it's useless for
										weeding out composite Mersenne factors since those are all base-2 Fermat pseudoprimes).
										If it's composite we skip it, since we expect to recover the individual prime subfactors
										on subsequent passes (although this should only ever happen for small p and q > (2p+1)^2 :
										*/
									TEST_FAC_PRIM:
										if(mi64_pprimeF(q, 3ull, lenQ))
										{
											factor_k[(*nfactor)++] = k_to_try[l];
											sprintf(cbuf,"\n\tFactor with k = %llu. This factor is a probable prime.\n", k_to_try[l]);
										#if FAC_DEBUG
											if(TRYQM1 > 1)
												printf("factor was number %u of 0-%u in current batch.\n", l, TRYQM1);
										#endif
										} else {	// Composite factor: see if any previously-found ones divide it:
											printf("\n\tFactor with k = %llu. This factor is composite - checking if any previously-found ones divide it...\n", k_to_try[l]);
											for(j = 0; j < *nfactor; j++) {
												q2[lenP] = mi64_mul_scalar( p, 2*factor_k[j], q2, lenP);
												q2[0] += 1;	// q2 = 2.k.p + 1; No need to check for carry since 2.k.p even
												mi64_clear(u64_arr, lenQ);	// Use u64_arr for quotient; only care if remainder == 0 or not
												if(mi64_div(q,q2,lenQ,lenQ,u64_arr,0x0)) {
													printf("\tFactor divisible by previously-found factor with k = %llu.\n", factor_k[j]);
												}
												mi64_set_eq(q, u64_arr, lenQ);
											}
											if(!mi64_cmp_eq_scalar(q, 1ull, lenQ))
												goto TEST_FAC_PRIM;
										}	/* endif(factor a probable prime?) */
									#ifdef FACTOR_STANDALONE
										fprintf(stderr,"%s", cbuf);
									#else
										fp = mlucas_fopen(STATFILE,"a");	ASSERT(HERE, fp != 0x0,"0");
										fprintf(fp,"%s", cbuf);
										fclose(fp); fp = 0x0;
									#endif
										fp = mlucas_fopen(   OFILE,"a");	ASSERT(HERE, fp != 0x0,"0");
										fprintf(fp,"%s", cbuf);
										fclose(fp); fp = 0x0;
									#ifdef QUIT_WHEN_FACTOR_FOUND
										return 0;
									#endif
									}	// end(L-loop)
								#ifdef MULTITHREAD
								//	printf("Thread %u unlocking mutex_mi64.",tid);
									pthread_mutex_unlock(&mutex_mi64);
								#endif
								}	/* endif((res >> l) & 1)		*/
							}	/* endfor(l = 0; l < TRYQ; l++)	*/
						}	/* endif(q_index == TRYQM1)		*/

					#endif	/* endif(TRYQ == 0) */

					}	/* endif((bit_map2[i] >> bit) & 1)	*/
					// Increment k, i.e. increment current q by 2*p*TF_CLASSES:
					k += TF_CLASSES;

				} /* end of BIT loop	*/
			}	/* end of K loop	*/

		#if(TRYQ > 1)

			/* Clean up any remaining in queue */
			if(q_index >= 0)
			{
				for(l = 0; l <= (uint32)q_index; l++)
				{
				#if FAC_DEBUG
					ASSERT(HERE, 0 == mi64_mul_scalar(two_p,k_to_try[l],q,lenQ), "2.k.p overflows!");
					q[0] += 1;	// q = 2.k.p + 1; No need to check for carry since 2.k.p even
					printf("A: Trying q = %s\n", &cbuf[convert_mi64_base10_char(cbuf, q, lenQ, 0)]);
				#endif

				#ifdef P4WORD

					ASSERT(HERE, 0 == mi64_mul_scalar(two_p,k_to_try[l],(uint64*)&q256,lenQ), "2.k.p overflows!");
					q256.d0 += 1;	// No need to check for carry since 2.k.p even
					p256.d0 = p[0]; p256.d1 = p[1]; p256.d1 = p[1]; p256.d2 = p[2]; p256.d3 = p[3];
					t256 = twopmodq256(p256,q256);
					res = CMPEQ256(t256, ONE256);

				#elif(defined(P3WORD))

					ASSERT(HERE, 0 == mi64_mul_scalar(two_p,k_to_try[l],(uint64*)&q192,lenQ), "2.k.p overflows!");
					q192.d0 += 1;	// No need to check for carry since 2.k.p even
					p192.d0 = p[0]; p192.d1 = p[1]; p192.d1 = p[1]; p192.d2 = p[2];
					t192 = twopmodq192(p192,q192);
					res = CMPEQ192(t192, ONE192);

				#elif(defined(P2WORD))

					res = twopmodq128x2(p,k_to_try[l]);

				#else

					if(fbits_in_q < 63) {
						itmp64 = p[0]*k_to_try[l];	itmp64 += itmp64 + 1;
						res = twopmodq63(p[0],itmp64);
						res = (res == 1);
					} else if(fbits_in_q < 64) {
						itmp64 = p[0]*k_to_try[l];	itmp64 += itmp64 + 1;
						res = twopmodq64(p[0],itmp64);
						res = (res == 1);
					} else {
						res = twopmodq128_96(p[0],k_to_try[l]);
					}

				#endif	/* endif(P1WORD) */

					if(res == 1)	/* If Lth bit = 1, Lth candidate of the inputs is a factor */
					{
					#ifdef MULTITHREAD
					//	pthread_mutex_lock(&mutex_mi64);
					#endif
						/* Check if it's a composite factor - if so, skip: */
						if(mi64_pprimeF(q, 3ull, lenQ))
						{
							sprintf(cbuf,"Factor with k = %llu. Program: E%s\n", k, VERSION);
						#ifdef FACTOR_STANDALONE
							fprintf(stderr,"%s", cbuf);
						#else
							fp = mlucas_fopen(STATFILE,"a");	ASSERT(HERE, fp != 0x0,"0");
							fprintf(fp,"%s", cbuf);
							fclose(fp); fp = 0x0;
						#endif

							fp = mlucas_fopen(   OFILE,"a");	ASSERT(HERE, fp != 0x0,"0");
							fprintf(fp,"%s", cbuf);
							fclose(fp); fp = 0x0;

						#if FAC_DEBUG
							printf("factor was number %u of 0-%u in current batch.\n", l, TRYQM1);
						#endif
							factor_k[(*nfactor)++] = k;

						#ifdef QUIT_WHEN_FACTOR_FOUND
							return 0;
						#endif
						}
					#ifdef MULTITHREAD
					//	pthread_mutex_unlock(&mutex_mi64);
					#endif
					}	/* endif(res == 1) */
				}	/* endfor(l = 0; l <= (uint32)q_index; l++) */
			}	/* endif(q_index >= 0) */
		#endif	/* end #if(TRYQ > 1) */

	/******************* MOVE CHKPT STUFF TO FACTOR-MAIN! ***********************/
		#if 0//(!FAC_DEBUG)
			/*
			Every 1024th pass, write the checkpoint file, with format as described previously.
			*/
			if(((sweep + 1) %(1024/lenQ + 1)) == 0 || ((sweep + 1) == interval_hi))
			{
				/* TF restart files are in HRF, not binary: */
				fp = mlucas_fopen(RESTARTFILE, "w");
				if(!fp) {
					fprintf(stderr,"INFO: Unable to open factoring savefile %s for writing...quitting.\n",RESTARTFILE);
				#ifndef FACTOR_STANDALONE
					fp = mlucas_fopen(STATFILE,"a");
					fprintf(	fp,"INFO: Unable to open factoring savefile %s for writing...quitting.\n",RESTARTFILE);
					fclose(fp); fp = 0x0;
				#endif
					ASSERT(HERE, 0,"0");
				} else {
					curr_line = 0;

					/* pstring: */
					++curr_line;
					itmp = fprintf(fp,"%s\n",pstring);
					if(itmp <= 0)
					{
						fprintf(stderr,"ERROR: unable to write Line %d (current exponent) of factoring restart file %s!\n", curr_line, RESTARTFILE);
						ASSERT(HERE, 0,"0");
					}

					/* bmin: */
					++curr_line;
					itmp = fprintf(fp, "%lf\n", bmin);
					if(itmp <= 0)
					{
						fprintf(stderr,"ERROR: unable to write Line %d (bmin) of factoring restart file %s!\n", curr_line, RESTARTFILE);
						ASSERT(HERE, 0,"0");
					}

					/* bmax: */
					++curr_line;
					itmp = fprintf(fp, "%lf\n", bmax);
					if(itmp <= 0)
					{
						fprintf(stderr,"ERROR: unable to write Line %d (bmax) of factoring restart file %s!\n", curr_line, RESTARTFILE);
						ASSERT(HERE, 0,"0");
					}

					/* KMin: */
					++curr_line;
					itmp = fprintf(fp,"KMin = %s\n", &char_buf0[convert_uint64_base10_char (char_buf0, kmin)]);
					if(itmp <= 0)
					{
						fprintf(stderr,"ERROR: unable to write Line %d (KMin) of factoring restart file %s!\n", curr_line, RESTARTFILE);
						ASSERT(HERE, 0,"0");
					}

					/* KNow: */
					++curr_line;
					/* Calculate the current k-value... */
					k = (uint64)incr + (sweep+1)*(sieve_len<<6);
					itmp = fprintf(fp,"KNow = %s\n", &char_buf0[convert_uint64_base10_char (char_buf0, k)]);
					if(itmp <= 0)
					{
						fprintf(stderr,"ERROR: unable to write Line %d (KNow) of factoring restart file %s!\n", curr_line, RESTARTFILE);
						ASSERT(HERE, 0,"0");
					}

					/* KMax: */
					++curr_line;
					itmp = fprintf(fp,"KMax = %s\n", &char_buf0[convert_uint64_base10_char (char_buf0, kmax)]);
					if(itmp <= 0)
					{
						fprintf(stderr,"ERROR: unable to write Line %d (KMax) of factoring restart file %s!\n", curr_line, RESTARTFILE);
						ASSERT(HERE, 0,"0");
					}

					/* PassMin: */
					++curr_line;
					itmp = fprintf(fp,"PassMin = %u\n", passmin);
					if(itmp <= 0)
					{
						fprintf(stderr,"ERROR: unable to write Line %d (PassMin) of factoring restart file %s!\n", curr_line, RESTARTFILE);
						ASSERT(HERE, 0,"0");
					}

					/* PassNow: */
					++curr_line;
					itmp = fprintf(fp,"PassNow = %u\n", pass   );
					if(itmp <= 0)
					{
						fprintf(stderr,"ERROR: unable to write Line %d (PassNow) of factoring restart file %s!\n", curr_line, RESTARTFILE);
						ASSERT(HERE, 0,"0");
					}

					/* PassMax: */
					++curr_line;
					itmp = fprintf(fp,"PassMax = %u\n", passmax);
					if(itmp <= 0)
					{
						fprintf(stderr,"ERROR: unable to write Line %d (PassMax) of factoring restart file %s!\n", curr_line, RESTARTFILE);
						ASSERT(HERE, 0,"0");
					}

					/* Number of q's tried: */
					++curr_line;
					itmp = fprintf(fp,"#Q tried = %s\n", &char_buf0[convert_uint64_base10_char (char_buf0, count)]);
					if(itmp <= 0)
					{
						fprintf(stderr,"ERROR: unable to write Line %d (#Q tried) of factoring restart file %s!\n", curr_line, RESTARTFILE);
						ASSERT(HERE, 0,"0");
					}

					fclose(fp); fp = 0x0;
				}
			}	/* Successfully wrote restart file. */
		#endif /* #if !FAC_DEBUG */
	#if DBG_SIEVE
		QUIT:
	#endif
		#ifdef MULTITHREAD
		  if(tid == 0) {	// In || mode, only the 0-thread accumulated runtime
		#endif
			clock2 = clock();	*tdiff += (double)(clock2 - clock1);	clock1 = clock2;
//		exit(0);
		#ifdef MULTITHREAD
		  }
		#endif
			continue;
		} /* end of sweep loop	*/

	  #ifdef MULTITHREAD

		pthread_mutex_lock(&mutex_updatecount);
	//	printf("Thread %u locked mutex_updatecount ... Updating q-tried count: %llu + %llu = ",tid,*(targ->count),count);
		*(targ->count) += count;
	//	printf("%llu ... Thread %u done.\n",*(targ->count),tid);
		pthread_mutex_unlock(&mutex_updatecount);
		return 0x0;
	  #else
		return count;
	  #endif
	}

#endif	// USE_GPU ?

/******************/

/* For an exponent p and a factor index k, each either unmodded or (mod 60), does one of 2 things, depending
on the nullity (or not) of the input array pointer *incr:

[1] incr == 0x0: Checks validity of the input [p,k] (mod 60) combination, by returning the
factoring pass number (in unit-offset form, i.e. 1-16) on which the factor with the given k-mod value
should occur if it's one of the valid combinations of p%60 and k%60. If invalid, returns 0.

[2] incr != 0x0: Checks validity of the input p (mod 60) value, i.e. checks that p can possibly be prime
according to its (mod 60) residue. (We assume the unmodded p > 60 here.) If invalid, returns 0;
otherwise populates the arglist incr[] array with the 16 increments in k (mod 60) covering all the
valid residue classes for the given p (mod 60). These increments sum to 60, i.e. te final pass
will be the k == 0 (mod 60) one.
*/
uint32 CHECK_PKMOD60(uint64 p, uint64 k, uint32*incr)
{
	uint32 i,kcur, *iptr = 0x0;	// iptr will point to either the in-array (if one provided) or the following local array:
	uint32 iloc[16];
	// Note isPow2 works the same for unmodded and modded exponent, e.g. 2^[2,3,4,5,6,...]%60 = [4,8,16,32,4,...]:
	uint32 pm = p%60, km = k%60, FERMAT = (pm > 1) && isPow2(pm);
	uint64 q = 2*km*pm + 1;

	if((pm%3 == 0) || (pm%5 == 0))
		return 0;

	if(incr == 0x0) {	// If no incr-array, check the validity of the km := k (mod 60) value:
		iptr = iloc;
		if(FERMAT) {
			// Fermat: For a valid p-mod, only possible values of km in a factor q = 2.k.p+1 are those for which k even [as shown by Lucas]
			// and for which GCD(2*km*pm + 1, 2*60) = 1, i.e. (2*km*pm + 1) is not divisible by 3 or 5.
			if((km&1) == 0) {
				if((q%3 == 0) || (q%5 == 0))
					return 0;
			} else {
			//	printf("CHECK_PKMOD60: q mod 8 = %u ... invalid.\n",q&7);
				return 0;
			}
		} else {
			// Mersenne: For a valid p-mod, only possible values of km are those for which k == +-1 (mod 8) [by quadratic residuacity]
			// and for which GCD(2*km*pm + 1, 2*60) = 1, i.e. (2*km*pm + 1) is not divisible by 3 or 5.
			if(((q&7) == 1) || ((q&7) == 7)) {
				if((q%3 == 0) || (q%5 == 0))
					return 0;
			} else {
			//	printf("CHECK_PKMOD60: q mod 8 = %u ... invalid.\n",q&7);
				return 0;
			}
		}
	} else {
		iptr = incr;
	}

	// Populate the incr-array (either the arglist one, if provided, or the local one)
	// with the km-increments of valid factor candidates classes corresponding for the given pm-value:
//printf("pm = %u: Acceptable km-values = ",pm);
	i = 0;	// Index of current array slot
	kcur = 0;
	for(k = 1; k <= 60; k++) {	// Unit-offset pass values here!
		q = 2*k*pm + 1;
		if( FERMAT && ( (k&1) || (q%3 == 0) || (q%5 == 0) ) )
			continue;
		else if( ((q&7) == 3) || ((q&7) == 5) || (q%3 == 0) || (q%5 == 0) )
			continue;

		iptr[i++] = k - kcur;	kcur = k;	// iptr stores the *increments* between adjacent km-values
//printf("%u .. ",kcur);
		if(!incr && (k == km)) {	// In Check-pair-valid mode can exit as soon as we have the input-km's pass
			return i;
		}
	}
	ASSERT(HERE, i == 16, "Expect precisely 16 valid k (mod 60) classes!");
//printf("\n");
	return i;	// Nonzero return value indicates success
}

// Same as above, but (mod 4620) - i.e. small-primes 3,5,7,11 built into the sieve length - and 960 resulting passes:
uint32 CHECK_PKMOD4620(uint64 p, uint64 k, uint32*incr)
{
	uint32 i,kcur, *iptr = 0x0;	// iptr will point to either the in-array (if one provided) or the following local array:
	uint32 iloc[960];
	// For (mod 4620) we do not have the property that isPow2 works the same for unmodded and modded power-of-2
	// exponents that we do (mod 60), so must infer Fermat-ness based simply on evenness of exponent (modded or not):
	uint32 pm = p%4620, km = k%4620, FERMAT = IS_EVEN(pm);
	uint64 q = 2*km*pm + 1;

	if((pm%3 == 0) || (pm%5 == 0) || (pm%7 == 0) || (pm%11 == 0))
		return 0;

	if(incr == 0x0) {	// If no incr-array, check the validity of the km := k (mod 60) value:
		iptr = iloc;
		if(FERMAT) {
			// Fermat: For a valid p-mod, only possible values of km in a factor q = 2.k.p+1 are those for which k even [as shown by Lucas]
			// and for which GCD(2*km*pm + 1, 2*4620) = 1, i.e. (2*km*pm + 1) is not divisible by 3,5,7 or 11.
			if((km&1) == 0) {
				if((q%3 == 0) || (q%5 == 0) || (q%7 == 0) || (q%11 == 0))
					return 0;
			} else {
			//	printf("CHECK_PKMOD4620: q mod 8 = %u ... invalid.\n",q&7);
				return 0;
			}
		} else {
			// Mersenne: For a valid p-mod, the only possible value of km are those for which k == +-1 (mod 8) [by quadratic residuacity]
			// and for which GCD(2*km*pm + 1, 2*4620) = 1, i.e. (2*km*pm + 1) is not divisible by 3,5,7 or 11.
		//	printf("CHECK_PKMOD4620: pm,km = %u,%u: q = %llu [mod 8 = %u]\n",pm,km,q,(uint32)q&7);
			if(((q&7) == 1) || ((q&7) == 7)) {
				if((q%3 == 0) || (q%5 == 0) || (q%7 == 0) || (q%11 == 0))
					return 0;
			} else {
			//	printf("CHECK_PKMOD4620: q mod 8 = %u ... invalid.\n",q&7);
				return 0;
			}
		}
	} else {
		iptr = incr;
	}

	// Populate the incr-array (either the arglist one, if provided, or the local one)
	// with the km-increments of valid factor candidates classes corresponding for the given pm-value:
//printf("pm = %u: Acceptable km-values = ",pm);
	i = 0;	// Index of current array slot
	kcur = 0;
	for(k = 1; k <= 4620; k++) {	// Unit-offset pass values here!
		q = 2*k*pm + 1;
		if( FERMAT && ( (k&1) || (q%3 == 0) || (q%5 == 0) || (q%7 == 0) || (q%11 == 0) ) )
			continue;
		else if( ((q&7) == 3) || ((q&7) == 5) || (q%3 == 0) || (q%5 == 0) || (q%7 == 0) || (q%11 == 0) )
			continue;

		iptr[i++] = k - kcur;	kcur = k;	// iptr stores the *increments* between adjacent km-values
//printf("%u .. ",kcur);
		if(!incr && (k == km)) {	// In Check-pair-valid mode can exit as soon as we have the input-km's pass
			return i;
		}
	}
	ASSERT(HERE, i == 960, "Expect precisely 960 valid k (mod 4620) classes!");
	return i;	// Nonzero return value indicates success
}

// Computes 2*p (mod curr_p):
uint32 twop_mod_smallp(const int MODULUS_TYPE, const uint64*two_p, const uint32 findex, const uint32 lenP, const uint32 curr_p)
{
	uint32 r;
#ifdef P1WORD
	r = two_p[0] % curr_p;
#else
	// 26. Sep 2012: This step is horribly slow for larger MMp - Accelerate by using that 2p = 2*Mp for double Mersennes.
	// Ex: For p = 43112609, the binary-powering-based version is ~10000x faster than the long-div-based one:
	if(MODULUS_TYPE == MODULUS_TYPE_MERSMERS) {
		r = twompmodq32(findex, curr_p);			// 2^-p (mod q)
		r = modinv32(r, curr_p)-1;	// 2^+p (mod q) = Mp (mod q)
		// modinv32 returns a signed result, do a conditional add to make >= 0
		r += (-((int32)r < 0)) & curr_p;
		r += r;
		if(r >= curr_p) { r -= curr_p; }
	//	ASSERT(HERE, r == mi64_div_y32(two_p, curr_p, 0x0, lenP), "Fast 2p (mod q) for MMp fails!");
	} else {
		r = mi64_div_y32(two_p, curr_p, 0x0, lenP+1);	// 2p may have  more word than p
	}
#endif
	return r;
}

void	get_startval(
	const int MODULUS_TYPE,
	const uint64 p,		// Only need LSW of this
	const uint32 findex,// Double-Mersenne and Fermat cases
	const uint64*two_p,	// Here, need the full multiword array (of which use just LSW if P!WORD def'd)
	const uint32 lenP,	// Manyword case
	const uint32 bit_len,
	const uint32 interval_lo, const uint32 incr,
	const uint32 nclear, const uint32 nprime, const uint32 p_last_small,
	const uint8 *pdiff,
	      uint32*startval
)
{
	uint32 i, m, curr_p;
	uint64 dstartval;
	/* startbit k (occurrence of first multiple of prime curr_p in first pass
	through the relevant sievelet) is defined by

		(offset[curr_ p] + k*prime) (mod TF_CLASSES) = incr(pass)-1, k = 0, ... ,TF_CLASSES-1 .
	*/
	curr_p = p_last_small;
	for(m = nclear; m < nprime; m++)
	{
		curr_p += (pdiff[m] << 1);
		// Special-handling code for p == curr_p case - this is needed to prevent 0-input assertion in below modinv computation:
		if(p == curr_p) {
			startval[m] = 0xffffffff;
			continue;
		}
	/*
		Given a pass#, get inc = incr[pass] [3452 here] and seek an index x [604 here] such that
		1 + 2*p*( x*TF_CLASSES + inc ) is divisible by the current small-prime, curr_p.
		In other words, we need to find the smallest nonnegative integer x such that

			2*p*( x*TF_CLASSES + inc ) == -1 (mod curr_p),

		i.e. find x such that

			(2*p*TF_CLASSES)*x == (-1 - 2*p*inc) (mod curr_p).

		Letting A := 2*p*TF_CLASSES (mod curr_p) and B := (-1 - 2*p*inc) (mod curr_p), we need to solve A*x == B (mod curr_p)
		for nonnegative integer x.
		If we first find BI := inverse of the rhs constant B (mod curr_p), we multiply both sides by that to get
		(A*BI)*x == 1 (mod curr_p), and then we can simply use a second eGCD to find x = inverse of (A*BI) (mod curr_p):
	*/										// 2p may have 1 more word than p: vvvv
		uint32 twop_mod_currp = twop_mod_smallp(MODULUS_TYPE, two_p, findex, lenP+1, curr_p);	// This handles both the 1-word and multiword-exponent cases
		uint32 A = ((uint64)twop_mod_currp * (uint64)TF_CLASSES) % curr_p;
		uint32 B = ((uint64)twop_mod_currp * (uint64)incr + 1) % curr_p;
		if(B == 0) {	// Must guard against eGCD with identical args below
			i = 0;
		} else {
			// Debug NOTE: PARI has a poorly-findable-for-the-non-PARI-expert modinv functionality:
			// its eGCD is hidden behind the bezout(x,y) function; help for that ('? bezout') gives
			//	bezout(x,y): returns [u,v,d] such that d=gcd(x,y) and u*x+v*y=d.
			// Thus e.g. p = 933551; i=809470; bezout(i,p) ==> [-435932, 377991, 1], thus -435932 == 497619 is the inverse of i (mod p).
			uint32 BI = modinv32(curr_p - B, curr_p);	// For the above example (curr_p = 933551; (curr_p - B) = 809470) gives 4294531364, which is just the correct -435932 aliased to 2^32 - 435932
			uint32 ABI = ((uint64)A * (uint64)(curr_p - BI)) % curr_p;	// A*BI
			i = curr_p - modinv32(ABI, curr_p); i %= curr_p;
		}
		startval[m] = i;

	// 2nd Part only Needed for intervals not starting from the min-k for the pass in question:
	/*
		Calculate and store increment of offset for each sieving prime < bit_len,
		used to quickly find what offset will be after another pass through sievelet.
		For each sieving prime curr_p, we hop through the bit_len bits of the
		sievelet in strides of curr_p, starting at bit = startval[curr_p].
		Letting k := ceil(bit_len/curr_p) (i.e. how many times we hit curr_p
		on a single pass through the sieve, rounded up), the change in offset
		due to a single pass through the sieve is

			d(startval) = k*curr_p - bit_len , which we note can also be written as
						= curr_p - (bitlen % curr_p).

		Example: bit_len = 100 (unrealistic number, but that's not important here)
				 curr_p = 17

		Then:	k = ceil(bit_len/curr_p) = ceil(5.88...) = 6,
		and
			d(startval) = k*curr_p - bit_len		 = 6*17 - 100 = 102 - 100 = 2 , or
						= curr_p - (bitlen % curr_p) = 17 - (100%17) = 17- 15 = 2 .

		(For primes > bitlen, (bitlen % curr_p) = bitlen, so the mod is superfluous.)

		Thus the offset at the beginning of the next pass through the sieve is

			startval' = (startval + d(startval))%curr_p .

		If we want to accomodate arbitrarily large kmin values for the start
		of our sieving runs, we need to calculate how many passes through the
		sieve the given kmin value corresponds to - that is stored in the
		interval_lo:

			interval_lo = floor(kmin/64.0/len) ,

		and thus the offset at the beginning of the initial pass through the sieve is

			startval' = (startval + interval_lo*d(startval)))%curr_p ,

		where we'll probably want to do a mod-curr_p of interval_lo prior to
		the multiply by (k*curr_p - bit_len) to keep intermediates < (curr_p)^2,
		which means < 2^64 is we allow curr_p as large as 32 bits.
	*/
		if(interval_lo != 0) {
			/* bit_len is a uint32, so use i (also a 32-bit) in place of k (64-bit) here: */
			i = ceil(1.0*bit_len/curr_p);
			ASSERT(HERE, i*curr_p - bit_len == curr_p - (bit_len % curr_p), "i*curr_p - bit_len == curr_p - (bit_len % curr_p)");

			/* Now calculate dstartval for the actual current-pass kmin value,
			according to the number of times we'd need to run through the sieve
			(starting with k = 0) to get to kmin: */
			dstartval = (uint64)(i*curr_p - bit_len);
			dstartval = (interval_lo*dstartval) % curr_p;
			dstartval += startval[m];
			if(dstartval >= curr_p)
				startval[m] = dstartval - curr_p;
			else
				startval[m] = dstartval;

		#if FAC_DEBUG
			ASSERT(HERE, startval     [m] < curr_p, "factor.c : startval     [m] < curr_p");
		  #if DBG_SIEVE
			startval_incr[m] = i*curr_p - bit_len;
			ASSERT(HERE, startval_incr[m] < curr_p, "factor.c : startval_incr[m] < curr_p");
		  #endif
		#endif
		}
	}	/* endfor(m = nclear; m < nprime; m++) */
}

uint64 given_b_get_k(double bits, const uint64 two_p[], uint32 len)
{
	uint32 i,l;
	uint64 itmp64, k;
	double fqlo, twop_float;
#ifdef P1WORD
	/* Find FP approximation to 2*p - can't use this for multiword case, because double approximation tp 2*p may overflow: */
	twop_float = (double)two_p[0];
	fqlo = pow(2.0, bits);
	k = (uint64)(fqlo/twop_float);
#else
	// In the multiword case, need to compute a double-precision approximation to 2^bits/(2*p)
	// while avoiding possible overflow of a double-exponent field. (I.e. can't directly compute
	// pow(2.0, bits) because b may exceed __DBL_MAX_EXP__ = 1024).
	i = mi64_extract_lead64(two_p, len, &itmp64);	// i has bitlength of 2*p; itmp64 has leading 64 bits
	l = i-64;	// Number of low-order bits we discarded in retaining just the leading 64
	k = (uint64)(pow(2.0, bits-l)/(double)itmp64);
//	convert_uint64_base2_char(cbuf, itmp64);
//	printf("2*p = %16llX has %u bits, lead64 = %s ==> k = %16llu.\n",itmp64,i,cbuf,k);
#endif
	return k;
}

/* This is actually an auxiliary source file, but give it a .h extension to allow wildcarded project builds of form 'gcc -c *.c' */
#include "factor_test.h"

#undef YES_ASM