File: radix768_ditN_cy_dif1.c

package info (click to toggle)
mlucas 20.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 25,788 kB
  • sloc: ansic: 303,316; sh: 4,455; python: 640; perl: 115; makefile: 11
file content (3267 lines) | stat: -rw-r--r-- 191,823 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
/*******************************************************************************
*                                                                              *
*   (C) 1997-2021 by Ernst W. Mayer.                                           *
*                                                                              *
*  This program is free software; you can redistribute it and/or modify it     *
*  under the terms of the GNU General Public License as published by the       *
*  Free Software Foundation; either version 2 of the License, or (at your      *
*  option) any later version.                                                  *
*                                                                              *
*  This program is distributed in the hope that it will be useful, but WITHOUT *
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or       *
*  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for   *
*  more details.                                                               *
*                                                                              *
*  You should have received a copy of the GNU General Public License along     *
*  with this program; see the file GPL.txt.  If not, you may view one at       *
*  http://www.fsf.org/licenses/licenses.html, or obtain one by writing to the  *
*  Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA     *
*  02111-1307, USA.                                                            *
*                                                                              *
*******************************************************************************/

#include "Mlucas.h"
#include "radix256.h"

#define RADIX 768	// Use #define rather than const int to ensure it's really a compile-time const in the C sense

#define EPS 1e-10

#ifndef PFETCH_DIST
  #ifdef USE_AVX512
	#define PFETCH_DIST	64	// Feb 2017: Test on KNL point to this as best
  #elif defined(USE_AVX)
	#define PFETCH_DIST	32	// This seems to work best on my Haswell, even though 64 bytes seems more logical in AVX mode
  #else
	#define PFETCH_DIST	32
  #endif
#endif

#ifdef USE_SSE2

	#define EPS 1e-10

  // For Mersenne-mod need (16 [SSE2] or 64 [AVX]) + (4 [HIACC] or 40 [LOACC]) added slots for half_arr lookup tables.
  // Max = (40 [SSE2]; 132 [AVX]), add to (half_arr_offset768 + RADIX) to get SIMD value of radix768_creals_in_local_store:
  #ifdef USE_AVX512	// RADIX/8 = 0x60 fewer carry slots than AVX:
	const int half_arr_offset768 = 0xe47;	// + RADIX + 132 (=0x84); Used for thread local-storage-integrity checking
	const int radix768_creals_in_local_store = 0x11cc;	// ... + 0x300 + 0x084, and round up to nearest multiple of 4
  #elif defined(USE_AVX)
	const int half_arr_offset768 = 0xea7;	// + RADIX + 132 (=0x84); Used for thread local-storage-integrity checking
	const int radix768_creals_in_local_store = 0x122c;	// ... + 0x300 + 0x084, and round up to nearest multiple of 4
  #else
	const int half_arr_offset768 = 0xf67;	// + RADIX + 40 = 0xf67 + 0x300 + 0x028; Used for thread local-storage-integrity checking
	const int radix768_creals_in_local_store = 0x1290;	// ...and round up to nearest multiple of 4
  #endif

	#include "sse2_macro_gcc64.h"

#endif	// SSE2

#ifdef USE_PTHREAD

	// Use non-pooled simple spawn/rejoin thread-team model
	#include "threadpool.h"

	struct cy_thread_data_t{
	// int data:
		int iter;
		int tid;
		int ndivr;
		int target_idx, target_set;	// Jun 2018: Add support for residue shift. (Only LL-test needs intervention at carry-loop level).
		double target_cy;

		int khi;
		int i;
		int jstart;
		int jhi;
		int col;
		int co2;
		int co3;
		int sw;
		int nwt;

	// double data:
		double maxerr;
		double scale;
		double prp_mult;

	// pointer data:
		double *arrdat;			/* Main data array */
		double *wt0;
		double *wt1;
		double *wts_mult, *inv_mult;
		int *si;
	#ifdef USE_SSE2
		vec_dbl *r000;
		vec_dbl *half_arr;
	#else
		double *r000;
		double *half_arr;
	#endif
		uint32 bjmodnini;
		int bjmodn0;
	// For large radix0 use thread-local arrays for DWT indices/carries - only caveat is these must be SIMD-aligned:
	#if GCC_EVER_GETS_ITS_ACT_TOGETHER_HERE
	/* Jan 2014: Bloody hell - turns out GCC uses __BIGGEST_ALIGNMENT__ = 16 on x86, which is too small to be useful for avx data!
		int bjmodn[RADIX] __attribute__ ((aligned (32)));
		double cy[RADIX] __attribute__ ((aligned (32)));
	*/
	#else
	// Thus, we are forced to resort to fugly hackage - add pad slots to a garbage-named struct-internal array along with
	// a pointer-to-be-inited-at-runtime, when we set ptr to the lowest-index array element having the desired alginment:
		double *cy;
	  #ifdef USE_AVX512
		double cy_dat[RADIX+8] __attribute__ ((__aligned__(8)));
	  #else
		double cy_dat[RADIX+4] __attribute__ ((__aligned__(8)));	// Enforce min-alignment of 8 bytes in 32-bit builds.
	  #endif
	#endif
	};

#endif

/**************/

int radix768_ditN_cy_dif1(double a[], int n, int nwt, int nwt_bits, double wt0[], double wt1[], int si[], double base[], double baseinv[], int iter, double *fracmax, uint64 p)
{
/*
!...Acronym: DWT = Discrete Weighted Transform, DIT = Decimation In Time, DIF = Decimation In Frequency
!
!...Performs a final radix-768 complex DIT pass, an inverse DWT weighting, a carry propagation,
!   a forward DWT weighting, and an initial radix-768 complex DIF pass on the data in the length-N real vector A.
!
!   Data enter and are returned in the A-array.
!
!   See the documentation in mers_mod_square and radix16_dif_pass for further details on the array
!   storage scheme, and radix16_ditN_cy_dif1 for details on the reduced-length weights array scheme.
*/
	const char func[] = "radix768_ditN_cy_dif1";
	const int stride = (int)RE_IM_STRIDE << 1;	// main-array loop stride = 2*RE_IM_STRIDE
#ifndef MULTITHREAD
	const int pfetch_dist = PFETCH_DIST;

	static int dif_offsets_lo[64];	// 4 subsets of 16
	// Bitfields encoding the sequence of the dif_offsets_lo subset0-3 vectors to use for each radix-256 DIF's outputs:
	const uint32 dif_idx1 = 0xe79e79e4,dif_idx2 = 0x79e79e79,dif_idx3 = 0x9e79e79e;
	static int dif_offsets_hi1[16],dif_offsets_hi2[16],dif_offsets_hi3[16];

	static int dit_offsets_lo[96];	// 6 subsets of 16
	// Bitfields encoding the sequence of the dit_offsets_lo subset0-5 vectors to use for each radix-256 DIT's outputs:
	const uint32 dit_idx1 = 0x55555554,dit_idx2 = 0x44404040,dit_idx3 = 0x54445444;
	static int dit_offsets_hi1[16],dit_offsets_hi2[16],dit_offsets_hi3[16];

	static int dif_triplets[144], dit_triplets[48];
#endif

	static double wts_mult[2], inv_mult[2];	// Const wts-multiplier and 2*(its multiplicative inverse)
	double wt_re,wt_im, wi_re,wi_im;	// Fermat-mod/LOACC weights stuff, used in both scalar and SIMD mode
	// Cleanup loop assumes carryins propagate at most 4 words up, but need at least 1 vec_cmplx
	// (2 vec_dbl)'s worth of doubles in wraparound step, hence AVX-512 needs value bumped up:
  #ifdef USE_AVX512
	const int jhi_wrap = 15;
  #else
	const int jhi_wrap =  7;
  #endif
	int NDIVR,i,incr,j,j1,j2,jt,jp,jstart,jhi,full_pass,k,khi,l,l1,l2,outer,nbytes;
	// incr = Carry-chain wts-multipliers recurrence length, which must divide
	// RADIX/[n-wayness of carry macro], e.g. RADIX/[16|8|4] = 48|96|192 for avx512,avx,sse, respectively:
	const int incr_long = 16,incr_med = 8,incr_short = 4;
  // Have no specialized HIACC carry macro in USE_AVX512 and ARMv8 SIMD, so use "goes to 11" in LOACC mode via an incr_hiacc = 2:
  #if defined(USE_AVX512) || defined(USE_ARM_V8_SIMD)
	const int incr_hiacc = 2;
  #else
	const int incr_hiacc = 0;
  #endif
	// Allows cy-macro error data to be used to fiddle incr on the fly to a smaller, safer value if necessary
	if(USE_SHORT_CY_CHAIN == 0)
		incr = incr_long;
	else if(USE_SHORT_CY_CHAIN == 1)
		incr = incr_med;
	else if(USE_SHORT_CY_CHAIN == 2)
		incr = incr_short;
	else
		incr = incr_hiacc;

	int k0,k1,k2;
	// Jun 2018: Add support for residue shift. (Only LL-test needs intervention at carry-loop level).
	int target_idx = -1, target_set = 0,tidx_mod_stride;
	double target_cy = 0;
	static double ndivr_inv;
	uint64 itmp64;
	static uint64 psave = 0;
	static uint32 bw,sw,bjmodnini,
		p1,p2,p3,p4,p5,p6,p7,p8,p9,pa,pb,pc,pd,pe,pf,
		p10,p20,p30,p40,p50,p60,p70,p80,p90,pa0,pb0,pc0,pd0,pe0,pf0,
		p100,p110,p120,p130,p140,p150,p160,p170,p180,p190,p1a0,p1b0,p1c0,p1d0,p1e0,p1f0,
		p200,p210,p220,p230,p240,p250,p260,p270,p280,p290,p2a0,p2b0,p2c0,p2d0,p2e0,p2f0, nsave = 0;
	static int poff[RADIX>>2];	// Store mults of p4 offset for loop control
	static double radix_inv, n2inv;
#if defined(USE_SSE2) || !defined(MULTITHREAD)
	const double	c3m1= -1.50000000000000000000,	/* cos(twopi/3)-1	*/
					s   =  0.86602540378443864675;
#endif
	// FMA-based DFT needs the tangent:
#ifdef USE_AVX2
	static double tan = 0.41421356237309504879;
#endif
	double scale, dtmp, maxerr = 0.0;
	// Local storage: We must use an array here because scalars have no guarantees about relative address offsets
	// [and even if those are contiguous-as-hoped-for, they may run in reverse]; Make array type (struct complex)
	// to allow us to use the same offset-indexing as in the original radix-32 in-place DFT macros:
	struct complex t[RADIX], *tptr;
	int err;
	static int first_entry=TRUE;

/*...stuff for the reduced-length DWT weights array is here:	*/
	int n_div_nwt;
  #ifdef USE_AVX512
	double t0,t1,t2,t3;
   #ifdef CARRY_16_WAY
	static struct uint32x16 *n_minus_sil,*n_minus_silp1,*sinwt,*sinwtm1;
   #else
	static struct uint32x8  *n_minus_sil,*n_minus_silp1,*sinwt,*sinwtm1;
   #endif
  #elif defined(USE_AVX)
	static struct uint32x4 *n_minus_sil,*n_minus_silp1,*sinwt,*sinwtm1;
  #endif
#ifndef MULTITHREAD
	int col,co2,co3;
	double wtl,wtlp1,wtn,wtnm1;	/* Mersenne-mod weights stuff */
  #ifndef USE_AVX
	int n_minus_sil,n_minus_silp1,sinwt,sinwtm1;
  #endif
#endif

#ifdef USE_SSE2

  #if !(defined(COMPILER_TYPE_MSVC) || defined(COMPILER_TYPE_GCC))
	#error SSE2 code not supported for this compiler!
  #endif

	static int cslots_in_local_store;
	static vec_dbl *sc_arr = 0x0, *sc_ptr;
	static uint64 *sm_ptr, *sign_mask, *sse_bw, *sse_sw, *sse_n;
	uint64 tmp64;

  #ifdef MULTITHREAD
	static vec_dbl *__r0;	// Base address for discrete per-thread local stores
  #else
	double *addr, *add0,*add1,*add2,*add3;
	int *itmp,*itm2;			// Pointer into the bjmodn array
  #endif

	// Uint64 bitmaps for alternate "rounded the other way" copies of sqrt2,isrt2. Default round-to-nearest versions
	// (SQRT2, ISRT2) end in ...3BCD. Since we round these down as ...3BCC90... --> ..3BCC, append _dn to varnames:
	const uint64 sqrt2_dn = 0x3FF6A09E667F3BCCull, isrt2_dn = 0x3FE6A09E667F3BCCull;
	static int *bjmodn;	// Alloc mem for this along with other 	SIMD stuff
	const double crnd = 3.0*0x4000000*0x2000000;
	struct complex *ctmp;	// Hybrid AVX-DFT/SSE2-carry scheme used for Mersenne-mod needs a 2-word-double pointer
	vec_dbl *tmp,*tm1,*tm2;	// Non-static utility ptrs
	static vec_dbl *two,*one,*sqrt2,*isrt2, *cc0, *ss0, *cc1, *ss1, *max_err, *sse2_rnd, *half_arr,
		// ptrs to 16 sets of twiddles shared by the 2nd-half DIF and DIT DFT macros:
		*twid0,*twid1,*twid2,*twid3,*twid4,*twid5,*twid6,*twid7,*twid8,*twid9,*twida,*twidb,*twidc,*twidd,*twide,*twidf,
		*r000,*r100,*r200,	// Head of RADIX*vec_cmplx-sized local store #1
		*s1p000,	// Head of RADIX*vec_cmplx-sized local store #2
		*cy;	// Need RADIX/2 slots for sse2 carries, RADIX/4 for avx
#else
	static int p0123[4];
#endif	// USE_SSE2?

#ifdef MULTITHREAD

	static struct cy_thread_data_t *tdat = 0x0;
	// Threadpool-based dispatch stuff:
	static int main_work_units = 0, pool_work_units = 0;
	static struct threadpool *tpool = 0x0;
	static int task_is_blocking = TRUE;
	static thread_control_t thread_control = {0,0,0};
	// First 3 subfields same for all threads, 4th provides thread-specifc data, will be inited at thread dispatch:
	static task_control_t   task_control = {NULL, (void*)cy768_process_chunk, NULL, 0x0};

#elif !defined(USE_SSE2)

	// Vars needed in scalar mode only:
	const double one_half[3] = {1.0, 0.5, 0.25};	/* Needed for small-weights-tables scheme */
	int m,m2,ntmp;
	double wt,wtinv,wtA,wtB,wtC;	/* Mersenne-mod weights stuff */
  #if PFETCH
	int prefetch_offset;
  #endif
	double *addr;
	int bjmodn[RADIX];
	int *itmp,*itm2;	// Pointer into the bjmodn array
	double temp,frac,cy[RADIX],
		t00,t01,t02,t03,t04,t05;

	static int t_offsets_lo[16], t_offsets_hi[16];

#endif

/*...stuff for the multithreaded implementation is here:	*/
	static uint32 CY_THREADS,pini;
	int ithread,j_jhi;
	uint32 ptr_prod;
	static int *_bjmodnini = 0x0,*_bjmodn[RADIX];
	static int *_i, *_jstart = 0x0, *_jhi = 0x0, *_col = 0x0, *_co2 = 0x0, *_co3 = 0x0;
	static double *_cy[RADIX];
	if(!_jhi) {
		_cy[0] = 0x0;	// First of these used as an "already inited consts?" sentinel, must init = 0x0 at same time do so for non-array static ptrs
	}

	if(MODULUS_TYPE == MODULUS_TYPE_FERMAT)
	{
		ASSERT(HERE, 0, "Fermat-mod only available for radices 7,8,9,15 and their multiples!");
	}

	// Jan 2018: To support PRP-testing, read the LR-modpow-scalar-multiply-needed bit for the current iteration from the global array:
	double prp_mult = 1.0;
	if((TEST_TYPE & 0xfffffffe) == TEST_TYPE_PRP) {	// Mask off low bit to lump together PRP and PRP-C tests
		i = (iter-1) % ITERS_BETWEEN_CHECKPOINTS;	// Bit we need to read...iter-counter is unit-offset w.r.to iter-interval, hence the -1
		if((BASE_MULTIPLIER_BITS[i>>6] >> (i&63)) & 1)
			prp_mult = PRP_BASE;
	}

/*...change NDIVR and n_div_wt to non-static to work around a gcc compiler bug. */
	NDIVR   = n/RADIX;	ndivr_inv = (double)RADIX/n;
	n_div_nwt = NDIVR >> nwt_bits;

	if((n_div_nwt << nwt_bits) != NDIVR)
	{
		fprintf(stderr,"ERROR: iter = %10d; NWT_BITS does not divide N/RADIX in %s.\n",iter,func);
		err = ERR_SKIP_RADIX_SET;
		return(err);
	}

	if(p != psave || n != nsave
	#ifdef USE_PTHREAD	// Oct 2021: cf. radix176_ditN_cy_dif1.c for why I added this
		|| (tdat != 0x0 && tdat[0].wt1 != wt1)
	#endif
	) {	/* Exponent or array length change triggers re-init */
		first_entry=TRUE;
		/* To-do: Support #thread change here! */
	}

/*...initialize things upon first entry: */

	if(first_entry)
	{
		psave = p;	nsave = n;
		radix_inv = qfdbl(qf_rational_quotient((int64)1, (int64)RADIX));
		n2inv     = qfdbl(qf_rational_quotient((int64)1, (int64)(n/2)));

		bw    = p%n;	/* Number of bigwords in the Crandall/Fagin mixed-radix representation = (Mersenne exponent) mod (vector length).	*/
		sw    = n - bw;	/* Number of smallwords.	*/

	  #ifdef USE_AVX512
	   #ifdef CARRY_16_WAY
		i = 16;
	   #else
		i = 8;
	   #endif
	  #elif defined(USE_AVX)	// AVX LOACC: Make CARRY_8_WAY default here:
		i = 8;
	  #elif defined(USE_SSE2)	// AVX and SSE2 modes use 4-way carry macros
		i = 4;
	  #else	// Scalar-double mode:
		i = 1;
	  #endif

		// For n a power of 2 don't need to worry about 32-bit integer overflow in the sw*NDIVR term,
		// but for non-power-of-2 n we must cast-to-uint64 to avoid such overflows fubaring the result:
		struct qfloat qt,qn;
		qt = i64_to_q(i*(uint64)sw*NDIVR % n);
		qn = i64_to_q((int64) n);
		qt = qfdiv(qt, qn);		// x = (sw*NDIVR (mod n))/n
		qt = qfmul(qt, QLN2);	// x*ln(2)...
		qt = qfexp(qt);			// ...and get 2^x via exp[x*ln(2)].
		wts_mult[0] = qfdbl(qt);		// a = 2^(x/n), with x = sw
		inv_mult[0] = qfdbl(qfinv(qt));	// Double-based inversion (1.0 / wts_mult_a[0]) often gets LSB wrong
		ASSERT(HERE,fabs(wts_mult[0]*inv_mult[0] - 1.0) < EPS, "wts_mults fail accuracy check!");
		//curr have w, 2/w, separate-mul-by-1-or-0.5 gives [w,w/2] and [1/w,2/w] for i = 0,1, resp:
		wts_mult[1] = 0.5*wts_mult[0];
		inv_mult[1] = 2.0*inv_mult[0];
		ASSERT(HERE,fabs(wts_mult[1]*inv_mult[1] - 1.0) < EPS, "wts_mults fail accuracy check!");

	#ifdef MULTITHREAD

		/* #Chunks ||ized in carry step is ideally a power of 2, so use the largest
		power of 2 that is <= the value of the global NTHREADS (but still <= MAX_THREADS):
		*/
		if(isPow2(NTHREADS))
			CY_THREADS = NTHREADS;
		else {
			i = leadz32(NTHREADS);
			CY_THREADS = (((uint32)NTHREADS << i) & 0x80000000) >> i;
		}

		if(CY_THREADS > MAX_THREADS)
		{
		//	CY_THREADS = MAX_THREADS;
			fprintf(stderr,"WARN: CY_THREADS = %d exceeds number of cores = %d\n", CY_THREADS, MAX_THREADS);
		}
		if(!isPow2(CY_THREADS))		{ WARN(HERE, "CY_THREADS not a power of 2!", "", 1); return(ERR_ASSERT); }
		if(CY_THREADS > 1)
		{
			if(NDIVR    %CY_THREADS != 0) { WARN(HERE, "NDIVR    %CY_THREADS != 0 ... likely more threads than this leading radix can handle.", "", 1); return(ERR_ASSERT); }
			if(n_div_nwt%CY_THREADS != 0) { WARN(HERE, "n_div_nwt%CY_THREADS != 0 ... likely more threads than this leading radix can handle.", "", 1); return(ERR_ASSERT); }
		}

	  #ifdef USE_PTHREAD
		if(tdat == 0x0) {
			j = (uint32)sizeof(struct cy_thread_data_t);
			tdat = (struct cy_thread_data_t *)calloc(CY_THREADS, sizeof(struct cy_thread_data_t));

			// MacOS does weird things with threading (e.g. Idle" main thread burning 100% of 1 CPU)
			// so on that platform try to be clever and interleave main-thread and threadpool-work processing
			#if 0//def OS_TYPE_MACOSX

				if(CY_THREADS > 1) {
					main_work_units = CY_THREADS/2;
					pool_work_units = CY_THREADS - main_work_units;
					ASSERT(HERE, 0x0 != (tpool = threadpool_init(pool_work_units, MAX_THREADS, pool_work_units, &thread_control)), "threadpool_init failed!");
					printf("radix%d_ditN_cy_dif1: Init threadpool of %d threads\n", RADIX, pool_work_units);
				} else {
					main_work_units = 1;
					printf("radix%d_ditN_cy_dif1: CY_THREADS = 1: Using main execution thread, no threadpool needed.\n", RADIX);
				}

			#else

				pool_work_units = CY_THREADS;
				ASSERT(HERE, 0x0 != (tpool = threadpool_init(CY_THREADS, MAX_THREADS, CY_THREADS, &thread_control)), "threadpool_init failed!");

			#endif

			fprintf(stderr,"Using %d threads in carry step\n", CY_THREADS);
		}
	  #endif

	#else
		CY_THREADS = 1;
	#endif

	#ifdef USE_PTHREAD
		/* Populate the elements of the thread-specific data structs which don't change after init: */
		for(ithread = 0; ithread < CY_THREADS; ithread++)
		{
			tdat[ithread].iter = iter;
		// int data:
			tdat[ithread].tid = ithread;
			tdat[ithread].ndivr = NDIVR;

			tdat[ithread].sw  = sw;
			tdat[ithread].nwt = nwt;

		// pointer data:
		//	tdat[ithread].arrdat = a;			/* Main data array */
			tdat[ithread].wt0 = wt0;
			tdat[ithread].wt1 = wt1;
			tdat[ithread].wts_mult = wts_mult;
			tdat[ithread].inv_mult = inv_mult;
			tdat[ithread].si  = si;

		// This array pointer must be set based on vec_dbl-sized alignment at runtime for each thread:
			for(l = 0; l < RE_IM_STRIDE; l++) {
				if( ((long)&tdat[ithread].cy_dat[l] & SZ_VDM1) == 0 ) {
					tdat[ithread].cy = &tdat[ithread].cy_dat[l];
				//	fprintf(stderr,"%d-byte-align cy_dat array at element[%d]\n",SZ_VD,l);
					break;
				}
			}
			ASSERT(HERE, l < RE_IM_STRIDE, "Failed to align cy_dat array!");
		}
	#endif

	#ifdef USE_SSE2

		ASSERT(HERE, ((long)wt0    & 0x3f) == 0, "wt0[]  not 64-byte aligned!");
		ASSERT(HERE, ((long)wt1    & 0x3f) == 0, "wt1[]  not 64-byte aligned!");

		// Use double-complex type size (16 bytes) to alloc a block of local storage
		// consisting of radix768_creals_in_local_store dcomplex and (12+RADIX/2) uint64 element slots per thread
		// (Add as many padding elts to the latter as needed to make it a multiple of 4):
		cslots_in_local_store = radix768_creals_in_local_store + (((12+RADIX/2)/2 + 3) & ~0x3);
		sc_arr = ALLOC_VEC_DBL(sc_arr, cslots_in_local_store*CY_THREADS);	if(!sc_arr){ sprintf(cbuf, "ERROR: unable to allocate sc_arr!.\n"); fprintf(stderr,"%s", cbuf);	ASSERT(HERE, 0,cbuf); }
		sc_ptr = ALIGN_VEC_DBL(sc_arr);
		ASSERT(HERE, ((long)sc_ptr & 0x3f) == 0, "sc_ptr not 64-byte aligned!");
		sm_ptr = (uint64*)(sc_ptr + radix768_creals_in_local_store);
		ASSERT(HERE, ((long)sm_ptr & 0x3f) == 0, "sm_ptr not 64-byte aligned!");

	  #ifdef USE_PTHREAD
		__r0 = sc_ptr;
	  #endif
		tmp = r000 = sc_ptr;
		r100 = tmp + 0x200;
		r200 = tmp + 0x400;
		tmp += 0x600;	s1p000 = tmp;
		tmp += 0x600;	// sc_ptr += 0xc00
		two     = tmp + 0;	// AVX+ versions of radix-8,16,32 twiddleless-DFT macros need consts [2,1,sqrt2,isrt2] quartet laid out thusly
		one     = tmp + 1;
		sqrt2   = tmp + 2;
		isrt2   = tmp + 3;
		cc0		= tmp + 4;
		ss0		= tmp + 5;
		cc1		= tmp + 6;
		ss1		= tmp + 7;
		tmp += 0x08;	// sc_ptr += 0xc08
		// ptrs to 15 sets (30 vec_dbl data each) of non-unity twiddles shared by the 2nd-half DIF and DIT DFT macros:
		twid0  = tmp + 0x00;
		twid1  = tmp + 0x1e;
		twid2  = tmp + 0x3c;
		twid3  = tmp + 0x5a;
		twid4  = tmp + 0x78;
		twid5  = tmp + 0x96;
		twid6  = tmp + 0xb4;
		twid7  = tmp + 0xd2;
		twid8  = tmp + 0xf0;
		twid9  = tmp + 0x10e;
		twida  = tmp + 0x12c;
		twidb  = tmp + 0x14a;
		twidc  = tmp + 0x168;
		twidd  = tmp + 0x186;
		twide  = tmp + 0x1a4;
		twidf  = tmp + 0x1c2;
		tmp += 0x1e0;	// += 15*30 => sc_ptr += 0xde8
	  #ifdef USE_AVX512
		cy = tmp;		tmp += 0x60;	// RADIX/8 vec_dbl slots for carry sub-array
		max_err = tmp + 0x00;
		sse2_rnd= tmp + 0x01;
		half_arr= tmp + 0x02;
	  #elif defined(USE_AVX)
		cy = tmp;		tmp += 0xc0;	// RADIX/4 vec_dbl slots for carry sub-array
		max_err = tmp + 0x00;
		sse2_rnd= tmp + 0x01;	// += 0xc0 + 2 => sc_ptr += 0xeaa
		// This is where the value of half_arr_offset comes from
		half_arr= tmp + 0x02;	/* This table needs 96 vec_dbl for Mersenne-mod, and 3.5*RADIX[avx] | RADIX[sse2] for Fermat-mod */
	  #else
		cy = tmp;		tmp += 0x180;	// RADIX/2 vec_dbl slots for carry sub-array
		max_err = tmp + 0x00;
		sse2_rnd= tmp + 0x01;	// += 0x180 + 2 => sc_ptr += 0xf6a
		// This is where the value of half_arr_offset comes from
		half_arr= tmp + 0x02;	/* This table needs 32 x 16 bytes for Mersenne-mod, 2 for Fermat-mod */
	  #endif
//		ASSERT(HERE, half_arr_offset == (uint32)(half_arr-sc_ptr), "half_arr_offset mismatches actual!");
		ASSERT(HERE, (radix768_creals_in_local_store << L2_SZ_VD) >= ((long)half_arr - (long)r000) + (20 << L2_SZ_VD), "radix768_creals_in_local_store checksum failed!");

		/* These remain fixed: */
		VEC_DBL_INIT(two  , 2.0  );	VEC_DBL_INIT(one, 1.0  );
		dtmp = *(double *)&sqrt2_dn;	VEC_DBL_INIT(sqrt2, dtmp);
		dtmp = *(double *)&isrt2_dn;	VEC_DBL_INIT(isrt2, dtmp);
		VEC_DBL_INIT(cc0  ,  c16);
		VEC_DBL_INIT(ss0  ,  s16);
		/* cc0 = (cc1+cc2+cc3)/3 - 1; subtract 1 from Nussbaumer's definition in order to ease in-place computation */
		VEC_DBL_INIT(cc1, c3m1);
		VEC_DBL_INIT(ss1, s   );
		/* SSE2 math = 53-mantissa-bit IEEE double-float: */
	  #ifdef USE_AVX512	// In AVX-512 mode, use VRNDSCALEPD for rounding and hijack this vector-data slot for the 4 base/baseinv-consts
		sse2_rnd->d0 = base[0]; sse2_rnd->d1 = baseinv[1]; sse2_rnd->d2 = wts_mult[1]; sse2_rnd->d3 = inv_mult[0];
	  #else
		VEC_DBL_INIT(sse2_rnd, crnd);
	  #endif

		// ptrs to 16 sets (30 vec_dbl data each) of non-unity twiddles shared by the 2nd-half DIF and DIT DFT macros.
		// Since we copied the init-blocks here from the code below in which the twiddle-sets appear in BR order, init same way:
		// The first 2 sets (twid0/8) are processed in non-FMA fashion by both DIF/DIT macros, so init in non-FMA fashion:
		tmp = twid0; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp,0); ++tmp;
		tmp = twid8; VEC_DBL_INIT(tmp,0); ++tmp; VEC_DBL_INIT(tmp,1); ++tmp; VEC_DBL_INIT(tmp, ISRT2); ++tmp; VEC_DBL_INIT(tmp,ISRT2); ++tmp; VEC_DBL_INIT(tmp, -ISRT2); ++tmp; VEC_DBL_INIT(tmp,ISRT2); ++tmp; VEC_DBL_INIT(tmp, c16); ++tmp; VEC_DBL_INIT(tmp,s16); ++tmp; VEC_DBL_INIT(tmp, -s16); ++tmp; VEC_DBL_INIT(tmp,c16); ++tmp; VEC_DBL_INIT(tmp, s16); ++tmp; VEC_DBL_INIT(tmp,c16); ++tmp; VEC_DBL_INIT(tmp, -c16); ++tmp; VEC_DBL_INIT(tmp,s16); ++tmp; VEC_DBL_INIT(tmp, c32_1); ++tmp; VEC_DBL_INIT(tmp,s32_1); ++tmp; VEC_DBL_INIT(tmp, -s32_1); ++tmp; VEC_DBL_INIT(tmp,c32_1); ++tmp; VEC_DBL_INIT(tmp, s32_3); ++tmp; VEC_DBL_INIT(tmp,c32_3); ++tmp; VEC_DBL_INIT(tmp, -c32_3); ++tmp; VEC_DBL_INIT(tmp,s32_3); ++tmp; VEC_DBL_INIT(tmp, c32_3); ++tmp; VEC_DBL_INIT(tmp,s32_3); ++tmp; VEC_DBL_INIT(tmp, -s32_3); ++tmp; VEC_DBL_INIT(tmp,c32_3); ++tmp; VEC_DBL_INIT(tmp, s32_1); ++tmp; VEC_DBL_INIT(tmp,c32_1); ++tmp; VEC_DBL_INIT(tmp, -c32_1); ++tmp; VEC_DBL_INIT(tmp,s32_1);

		// The remaining 14 sets are inited differently depending on whether SIMD+FMA is used:
	  #ifndef USE_AVX2

		tmp = twid4; VEC_DBL_INIT(tmp,ISRT2); ++tmp; VEC_DBL_INIT(tmp,ISRT2); ++tmp; VEC_DBL_INIT(tmp, c16); ++tmp; VEC_DBL_INIT(tmp,s16); ++tmp; VEC_DBL_INIT(tmp, s16); ++tmp; VEC_DBL_INIT(tmp,c16); ++tmp; VEC_DBL_INIT(tmp, c32_1); ++tmp; VEC_DBL_INIT(tmp,s32_1); ++tmp; VEC_DBL_INIT(tmp, s32_3); ++tmp; VEC_DBL_INIT(tmp,c32_3); ++tmp; VEC_DBL_INIT(tmp, c32_3); ++tmp; VEC_DBL_INIT(tmp,s32_3); ++tmp; VEC_DBL_INIT(tmp, s32_1); ++tmp; VEC_DBL_INIT(tmp,c32_1); ++tmp; VEC_DBL_INIT(tmp, c64_1); ++tmp; VEC_DBL_INIT(tmp,s64_1); ++tmp; VEC_DBL_INIT(tmp, s64_7); ++tmp; VEC_DBL_INIT(tmp,c64_7); ++tmp; VEC_DBL_INIT(tmp, c64_5); ++tmp; VEC_DBL_INIT(tmp,s64_5); ++tmp; VEC_DBL_INIT(tmp, s64_3); ++tmp; VEC_DBL_INIT(tmp,c64_3); ++tmp; VEC_DBL_INIT(tmp, c64_3); ++tmp; VEC_DBL_INIT(tmp,s64_3); ++tmp; VEC_DBL_INIT(tmp, s64_5); ++tmp; VEC_DBL_INIT(tmp,c64_5); ++tmp; VEC_DBL_INIT(tmp, c64_7); ++tmp; VEC_DBL_INIT(tmp,s64_7); ++tmp; VEC_DBL_INIT(tmp, s64_1); ++tmp; VEC_DBL_INIT(tmp,c64_1);
		tmp = twidc; VEC_DBL_INIT(tmp,-ISRT2); ++tmp; VEC_DBL_INIT(tmp,ISRT2); ++tmp; VEC_DBL_INIT(tmp, s16); ++tmp; VEC_DBL_INIT(tmp,c16); ++tmp; VEC_DBL_INIT(tmp, -c16); ++tmp; VEC_DBL_INIT(tmp,-s16); ++tmp; VEC_DBL_INIT(tmp, c32_3); ++tmp; VEC_DBL_INIT(tmp,s32_3); ++tmp; VEC_DBL_INIT(tmp, -c32_1); ++tmp; VEC_DBL_INIT(tmp,s32_1); ++tmp; VEC_DBL_INIT(tmp, -s32_1); ++tmp; VEC_DBL_INIT(tmp,c32_1); ++tmp; VEC_DBL_INIT(tmp, -s32_3); ++tmp; VEC_DBL_INIT(tmp,-c32_3); ++tmp; VEC_DBL_INIT(tmp, c64_3); ++tmp; VEC_DBL_INIT(tmp,s64_3); ++tmp; VEC_DBL_INIT(tmp, -c64_5); ++tmp; VEC_DBL_INIT(tmp,s64_5); ++tmp; VEC_DBL_INIT(tmp, s64_1); ++tmp; VEC_DBL_INIT(tmp,c64_1); ++tmp; VEC_DBL_INIT(tmp, -c64_7); ++tmp; VEC_DBL_INIT(tmp,-s64_7); ++tmp; VEC_DBL_INIT(tmp, s64_7); ++tmp; VEC_DBL_INIT(tmp,c64_7); ++tmp; VEC_DBL_INIT(tmp, -c64_1); ++tmp; VEC_DBL_INIT(tmp,-s64_1); ++tmp; VEC_DBL_INIT(tmp, -s64_5); ++tmp; VEC_DBL_INIT(tmp,c64_5); ++tmp; VEC_DBL_INIT(tmp, -s64_3); ++tmp; VEC_DBL_INIT(tmp,-c64_3);
		tmp = twid2; VEC_DBL_INIT(tmp,c16); ++tmp; VEC_DBL_INIT(tmp,s16); ++tmp; VEC_DBL_INIT(tmp, c32_1); ++tmp; VEC_DBL_INIT(tmp,s32_1); ++tmp; VEC_DBL_INIT(tmp, c32_3); ++tmp; VEC_DBL_INIT(tmp,s32_3); ++tmp; VEC_DBL_INIT(tmp, c64_1); ++tmp; VEC_DBL_INIT(tmp,s64_1); ++tmp; VEC_DBL_INIT(tmp, c64_5); ++tmp; VEC_DBL_INIT(tmp,s64_5); ++tmp; VEC_DBL_INIT(tmp, c64_3); ++tmp; VEC_DBL_INIT(tmp,s64_3); ++tmp; VEC_DBL_INIT(tmp, c64_7); ++tmp; VEC_DBL_INIT(tmp,s64_7); ++tmp; VEC_DBL_INIT(tmp, c128_1); ++tmp; VEC_DBL_INIT(tmp,s128_1); ++tmp; VEC_DBL_INIT(tmp, c128_9); ++tmp; VEC_DBL_INIT(tmp,s128_9); ++tmp; VEC_DBL_INIT(tmp, c128_5); ++tmp; VEC_DBL_INIT(tmp,s128_5); ++tmp; VEC_DBL_INIT(tmp, c128_d); ++tmp; VEC_DBL_INIT(tmp,s128_d); ++tmp; VEC_DBL_INIT(tmp, c128_3); ++tmp; VEC_DBL_INIT(tmp,s128_3); ++tmp; VEC_DBL_INIT(tmp, c128_b); ++tmp; VEC_DBL_INIT(tmp,s128_b); ++tmp; VEC_DBL_INIT(tmp, c128_7); ++tmp; VEC_DBL_INIT(tmp,s128_7); ++tmp; VEC_DBL_INIT(tmp, c128_f); ++tmp; VEC_DBL_INIT(tmp,s128_f);
		tmp = twida; VEC_DBL_INIT(tmp,-s16); ++tmp; VEC_DBL_INIT(tmp,c16); ++tmp; VEC_DBL_INIT(tmp, s32_3); ++tmp; VEC_DBL_INIT(tmp,c32_3); ++tmp; VEC_DBL_INIT(tmp, -c32_1); ++tmp; VEC_DBL_INIT(tmp,s32_1); ++tmp; VEC_DBL_INIT(tmp, c64_5); ++tmp; VEC_DBL_INIT(tmp,s64_5); ++tmp; VEC_DBL_INIT(tmp, -c64_7); ++tmp; VEC_DBL_INIT(tmp,s64_7); ++tmp; VEC_DBL_INIT(tmp, s64_1); ++tmp; VEC_DBL_INIT(tmp,c64_1); ++tmp; VEC_DBL_INIT(tmp, -c64_3); ++tmp; VEC_DBL_INIT(tmp,-s64_3); ++tmp; VEC_DBL_INIT(tmp, c128_5); ++tmp; VEC_DBL_INIT(tmp,s128_5); ++tmp; VEC_DBL_INIT(tmp, -s128_d); ++tmp; VEC_DBL_INIT(tmp,c128_d); ++tmp; VEC_DBL_INIT(tmp, s128_7); ++tmp; VEC_DBL_INIT(tmp,c128_7); ++tmp; VEC_DBL_INIT(tmp, -c128_1); ++tmp; VEC_DBL_INIT(tmp,-s128_1); ++tmp; VEC_DBL_INIT(tmp, c128_f); ++tmp; VEC_DBL_INIT(tmp,s128_f); ++tmp; VEC_DBL_INIT(tmp, -c128_9); ++tmp; VEC_DBL_INIT(tmp,s128_9); ++tmp; VEC_DBL_INIT(tmp, -s128_3); ++tmp; VEC_DBL_INIT(tmp,c128_3); ++tmp; VEC_DBL_INIT(tmp, -c128_b); ++tmp; VEC_DBL_INIT(tmp,-s128_b);
		tmp = twid6; VEC_DBL_INIT(tmp,s16); ++tmp; VEC_DBL_INIT(tmp,c16); ++tmp; VEC_DBL_INIT(tmp, c32_3); ++tmp; VEC_DBL_INIT(tmp,s32_3); ++tmp; VEC_DBL_INIT(tmp, -s32_1); ++tmp; VEC_DBL_INIT(tmp,c32_1); ++tmp; VEC_DBL_INIT(tmp, c64_3); ++tmp; VEC_DBL_INIT(tmp,s64_3); ++tmp; VEC_DBL_INIT(tmp, s64_1); ++tmp; VEC_DBL_INIT(tmp,c64_1); ++tmp; VEC_DBL_INIT(tmp, s64_7); ++tmp; VEC_DBL_INIT(tmp,c64_7); ++tmp; VEC_DBL_INIT(tmp, -s64_5); ++tmp; VEC_DBL_INIT(tmp,c64_5); ++tmp; VEC_DBL_INIT(tmp, c128_3); ++tmp; VEC_DBL_INIT(tmp,s128_3); ++tmp; VEC_DBL_INIT(tmp, s128_5); ++tmp; VEC_DBL_INIT(tmp,c128_5); ++tmp; VEC_DBL_INIT(tmp, c128_f); ++tmp; VEC_DBL_INIT(tmp,s128_f); ++tmp; VEC_DBL_INIT(tmp, -s128_7); ++tmp; VEC_DBL_INIT(tmp,c128_7); ++tmp; VEC_DBL_INIT(tmp, c128_9); ++tmp; VEC_DBL_INIT(tmp,s128_9); ++tmp; VEC_DBL_INIT(tmp, -s128_1); ++tmp; VEC_DBL_INIT(tmp,c128_1); ++tmp; VEC_DBL_INIT(tmp, s128_b); ++tmp; VEC_DBL_INIT(tmp,c128_b); ++tmp; VEC_DBL_INIT(tmp, -s128_d); ++tmp; VEC_DBL_INIT(tmp,c128_d);
		tmp = twide; VEC_DBL_INIT(tmp,-c16); ++tmp; VEC_DBL_INIT(tmp,s16); ++tmp; VEC_DBL_INIT(tmp, s32_1); ++tmp; VEC_DBL_INIT(tmp,c32_1); ++tmp; VEC_DBL_INIT(tmp, -s32_3); ++tmp; VEC_DBL_INIT(tmp,-c32_3); ++tmp; VEC_DBL_INIT(tmp, c64_7); ++tmp; VEC_DBL_INIT(tmp,s64_7); ++tmp; VEC_DBL_INIT(tmp, -c64_3); ++tmp; VEC_DBL_INIT(tmp,-s64_3); ++tmp; VEC_DBL_INIT(tmp, -s64_5); ++tmp; VEC_DBL_INIT(tmp,c64_5); ++tmp; VEC_DBL_INIT(tmp, s64_1); ++tmp; VEC_DBL_INIT(tmp,-c64_1); ++tmp; VEC_DBL_INIT(tmp, c128_7); ++tmp; VEC_DBL_INIT(tmp,s128_7); ++tmp; VEC_DBL_INIT(tmp, -c128_1); ++tmp; VEC_DBL_INIT(tmp,s128_1); ++tmp; VEC_DBL_INIT(tmp, -s128_3); ++tmp; VEC_DBL_INIT(tmp,c128_3); ++tmp; VEC_DBL_INIT(tmp, -s128_5); ++tmp; VEC_DBL_INIT(tmp,-c128_5); ++tmp; VEC_DBL_INIT(tmp, s128_b); ++tmp; VEC_DBL_INIT(tmp,c128_b); ++tmp; VEC_DBL_INIT(tmp, -c128_d); ++tmp; VEC_DBL_INIT(tmp,-s128_d); ++tmp; VEC_DBL_INIT(tmp, -c128_f); ++tmp; VEC_DBL_INIT(tmp,s128_f); ++tmp; VEC_DBL_INIT(tmp, s128_9); ++tmp; VEC_DBL_INIT(tmp,-c128_9);
		tmp = twid1; VEC_DBL_INIT(tmp,c32_1); ++tmp; VEC_DBL_INIT(tmp,s32_1); ++tmp; VEC_DBL_INIT(tmp, c64_1); ++tmp; VEC_DBL_INIT(tmp,s64_1); ++tmp; VEC_DBL_INIT(tmp, c64_3); ++tmp; VEC_DBL_INIT(tmp,s64_3); ++tmp; VEC_DBL_INIT(tmp, c128_1); ++tmp; VEC_DBL_INIT(tmp,s128_1); ++tmp; VEC_DBL_INIT(tmp, c128_5); ++tmp; VEC_DBL_INIT(tmp,s128_5); ++tmp; VEC_DBL_INIT(tmp, c128_3); ++tmp; VEC_DBL_INIT(tmp,s128_3); ++tmp; VEC_DBL_INIT(tmp, c128_7); ++tmp; VEC_DBL_INIT(tmp,s128_7); ++tmp; VEC_DBL_INIT(tmp, c256_01); ++tmp; VEC_DBL_INIT(tmp,s256_01); ++tmp; VEC_DBL_INIT(tmp, c256_09); ++tmp; VEC_DBL_INIT(tmp,s256_09); ++tmp; VEC_DBL_INIT(tmp, c256_05); ++tmp; VEC_DBL_INIT(tmp,s256_05); ++tmp; VEC_DBL_INIT(tmp, c256_0d); ++tmp; VEC_DBL_INIT(tmp,s256_0d); ++tmp; VEC_DBL_INIT(tmp, c256_03); ++tmp; VEC_DBL_INIT(tmp,s256_03); ++tmp; VEC_DBL_INIT(tmp, c256_0b); ++tmp; VEC_DBL_INIT(tmp,s256_0b); ++tmp; VEC_DBL_INIT(tmp, c256_07); ++tmp; VEC_DBL_INIT(tmp,s256_07); ++tmp; VEC_DBL_INIT(tmp, c256_0f); ++tmp; VEC_DBL_INIT(tmp,s256_0f);
		tmp = twid9; VEC_DBL_INIT(tmp,-s32_1); ++tmp; VEC_DBL_INIT(tmp,c32_1); ++tmp; VEC_DBL_INIT(tmp, s64_7); ++tmp; VEC_DBL_INIT(tmp,c64_7); ++tmp; VEC_DBL_INIT(tmp, -c64_5); ++tmp; VEC_DBL_INIT(tmp,s64_5); ++tmp; VEC_DBL_INIT(tmp, c128_9); ++tmp; VEC_DBL_INIT(tmp,s128_9); ++tmp; VEC_DBL_INIT(tmp, -s128_d); ++tmp; VEC_DBL_INIT(tmp,c128_d); ++tmp; VEC_DBL_INIT(tmp, s128_5); ++tmp; VEC_DBL_INIT(tmp,c128_5); ++tmp; VEC_DBL_INIT(tmp, -c128_1); ++tmp; VEC_DBL_INIT(tmp,s128_1); ++tmp; VEC_DBL_INIT(tmp, c256_09); ++tmp; VEC_DBL_INIT(tmp,s256_09); ++tmp; VEC_DBL_INIT(tmp, -s256_11); ++tmp; VEC_DBL_INIT(tmp,c256_11); ++tmp; VEC_DBL_INIT(tmp, s256_13); ++tmp; VEC_DBL_INIT(tmp,c256_13); ++tmp; VEC_DBL_INIT(tmp, -c256_0b); ++tmp; VEC_DBL_INIT(tmp,s256_0b); ++tmp; VEC_DBL_INIT(tmp, c256_1b); ++tmp; VEC_DBL_INIT(tmp,s256_1b); ++tmp; VEC_DBL_INIT(tmp, -c256_1d); ++tmp; VEC_DBL_INIT(tmp,s256_1d); ++tmp; VEC_DBL_INIT(tmp, s256_01); ++tmp; VEC_DBL_INIT(tmp,c256_01); ++tmp; VEC_DBL_INIT(tmp, -c256_07); ++tmp; VEC_DBL_INIT(tmp,-s256_07);
		tmp = twid5; VEC_DBL_INIT(tmp,s32_3); ++tmp; VEC_DBL_INIT(tmp,c32_3); ++tmp; VEC_DBL_INIT(tmp, c64_5); ++tmp; VEC_DBL_INIT(tmp,s64_5); ++tmp; VEC_DBL_INIT(tmp, s64_1); ++tmp; VEC_DBL_INIT(tmp,c64_1); ++tmp; VEC_DBL_INIT(tmp, c128_5); ++tmp; VEC_DBL_INIT(tmp,s128_5); ++tmp; VEC_DBL_INIT(tmp, s128_7); ++tmp; VEC_DBL_INIT(tmp,c128_7); ++tmp; VEC_DBL_INIT(tmp, c128_f); ++tmp; VEC_DBL_INIT(tmp,s128_f); ++tmp; VEC_DBL_INIT(tmp, -s128_3); ++tmp; VEC_DBL_INIT(tmp,c128_3); ++tmp; VEC_DBL_INIT(tmp, c256_05); ++tmp; VEC_DBL_INIT(tmp,s256_05); ++tmp; VEC_DBL_INIT(tmp, s256_13); ++tmp; VEC_DBL_INIT(tmp,c256_13); ++tmp; VEC_DBL_INIT(tmp, c256_19); ++tmp; VEC_DBL_INIT(tmp,s256_19); ++tmp; VEC_DBL_INIT(tmp, -s256_01); ++tmp; VEC_DBL_INIT(tmp,c256_01); ++tmp; VEC_DBL_INIT(tmp, c256_0f); ++tmp; VEC_DBL_INIT(tmp,s256_0f); ++tmp; VEC_DBL_INIT(tmp, s256_09); ++tmp; VEC_DBL_INIT(tmp,c256_09); ++tmp; VEC_DBL_INIT(tmp, s256_1d); ++tmp; VEC_DBL_INIT(tmp,c256_1d); ++tmp; VEC_DBL_INIT(tmp, -s256_0b); ++tmp; VEC_DBL_INIT(tmp,c256_0b);
		tmp = twidd; VEC_DBL_INIT(tmp,-c32_3); ++tmp; VEC_DBL_INIT(tmp,s32_3); ++tmp; VEC_DBL_INIT(tmp, s64_3); ++tmp; VEC_DBL_INIT(tmp,c64_3); ++tmp; VEC_DBL_INIT(tmp, -c64_7); ++tmp; VEC_DBL_INIT(tmp,-s64_7); ++tmp; VEC_DBL_INIT(tmp, c128_d); ++tmp; VEC_DBL_INIT(tmp,s128_d); ++tmp; VEC_DBL_INIT(tmp, -c128_1); ++tmp; VEC_DBL_INIT(tmp,-s128_1); ++tmp; VEC_DBL_INIT(tmp, -s128_7); ++tmp; VEC_DBL_INIT(tmp,c128_7); ++tmp; VEC_DBL_INIT(tmp, -s128_5); ++tmp; VEC_DBL_INIT(tmp,-c128_5); ++tmp; VEC_DBL_INIT(tmp, c256_0d); ++tmp; VEC_DBL_INIT(tmp,s256_0d); ++tmp; VEC_DBL_INIT(tmp, -c256_0b); ++tmp; VEC_DBL_INIT(tmp,s256_0b); ++tmp; VEC_DBL_INIT(tmp, -s256_01); ++tmp; VEC_DBL_INIT(tmp,c256_01); ++tmp; VEC_DBL_INIT(tmp, -s256_17); ++tmp; VEC_DBL_INIT(tmp,-c256_17); ++tmp; VEC_DBL_INIT(tmp, s256_19); ++tmp; VEC_DBL_INIT(tmp,c256_19); ++tmp; VEC_DBL_INIT(tmp, -c256_0f); ++tmp; VEC_DBL_INIT(tmp,-s256_0f); ++tmp; VEC_DBL_INIT(tmp, -s256_1b); ++tmp; VEC_DBL_INIT(tmp,c256_1b); ++tmp; VEC_DBL_INIT(tmp, s256_03); ++tmp; VEC_DBL_INIT(tmp,-c256_03);
		tmp = twid3; VEC_DBL_INIT(tmp,c32_3); ++tmp; VEC_DBL_INIT(tmp,s32_3); ++tmp; VEC_DBL_INIT(tmp, c64_3); ++tmp; VEC_DBL_INIT(tmp,s64_3); ++tmp; VEC_DBL_INIT(tmp, s64_7); ++tmp; VEC_DBL_INIT(tmp,c64_7); ++tmp; VEC_DBL_INIT(tmp, c128_3); ++tmp; VEC_DBL_INIT(tmp,s128_3); ++tmp; VEC_DBL_INIT(tmp, c128_f); ++tmp; VEC_DBL_INIT(tmp,s128_f); ++tmp; VEC_DBL_INIT(tmp, c128_9); ++tmp; VEC_DBL_INIT(tmp,s128_9); ++tmp; VEC_DBL_INIT(tmp, s128_b); ++tmp; VEC_DBL_INIT(tmp,c128_b); ++tmp; VEC_DBL_INIT(tmp, c256_03); ++tmp; VEC_DBL_INIT(tmp,s256_03); ++tmp; VEC_DBL_INIT(tmp, c256_1b); ++tmp; VEC_DBL_INIT(tmp,s256_1b); ++tmp; VEC_DBL_INIT(tmp, c256_0f); ++tmp; VEC_DBL_INIT(tmp,s256_0f); ++tmp; VEC_DBL_INIT(tmp, s256_19); ++tmp; VEC_DBL_INIT(tmp,c256_19); ++tmp; VEC_DBL_INIT(tmp, c256_09); ++tmp; VEC_DBL_INIT(tmp,s256_09); ++tmp; VEC_DBL_INIT(tmp, s256_1f); ++tmp; VEC_DBL_INIT(tmp,c256_1f); ++tmp; VEC_DBL_INIT(tmp, c256_15); ++tmp; VEC_DBL_INIT(tmp,s256_15); ++tmp; VEC_DBL_INIT(tmp, s256_13); ++tmp; VEC_DBL_INIT(tmp,c256_13);
		tmp = twidb; VEC_DBL_INIT(tmp,-s32_3); ++tmp; VEC_DBL_INIT(tmp,c32_3); ++tmp; VEC_DBL_INIT(tmp, s64_5); ++tmp; VEC_DBL_INIT(tmp,c64_5); ++tmp; VEC_DBL_INIT(tmp, -c64_1); ++tmp; VEC_DBL_INIT(tmp,-s64_1); ++tmp; VEC_DBL_INIT(tmp, c128_b); ++tmp; VEC_DBL_INIT(tmp,s128_b); ++tmp; VEC_DBL_INIT(tmp, -c128_9); ++tmp; VEC_DBL_INIT(tmp,s128_9); ++tmp; VEC_DBL_INIT(tmp, -s128_1); ++tmp; VEC_DBL_INIT(tmp,c128_1); ++tmp; VEC_DBL_INIT(tmp, -c128_d); ++tmp; VEC_DBL_INIT(tmp,-s128_d); ++tmp; VEC_DBL_INIT(tmp, c256_0b); ++tmp; VEC_DBL_INIT(tmp,s256_0b); ++tmp; VEC_DBL_INIT(tmp, -c256_1d); ++tmp; VEC_DBL_INIT(tmp,s256_1d); ++tmp; VEC_DBL_INIT(tmp, s256_09); ++tmp; VEC_DBL_INIT(tmp,c256_09); ++tmp; VEC_DBL_INIT(tmp, -c256_0f); ++tmp; VEC_DBL_INIT(tmp,-s256_0f); ++tmp; VEC_DBL_INIT(tmp, s256_1f); ++tmp; VEC_DBL_INIT(tmp,c256_1f); ++tmp; VEC_DBL_INIT(tmp, -c256_07); ++tmp; VEC_DBL_INIT(tmp,s256_07); ++tmp; VEC_DBL_INIT(tmp, -s256_0d); ++tmp; VEC_DBL_INIT(tmp,c256_0d); ++tmp; VEC_DBL_INIT(tmp, -s256_1b); ++tmp; VEC_DBL_INIT(tmp,-c256_1b);
		tmp = twid7; VEC_DBL_INIT(tmp,s32_1); ++tmp; VEC_DBL_INIT(tmp,c32_1); ++tmp; VEC_DBL_INIT(tmp, c64_7); ++tmp; VEC_DBL_INIT(tmp,s64_7); ++tmp; VEC_DBL_INIT(tmp, -s64_5); ++tmp; VEC_DBL_INIT(tmp,c64_5); ++tmp; VEC_DBL_INIT(tmp, c128_7); ++tmp; VEC_DBL_INIT(tmp,s128_7); ++tmp; VEC_DBL_INIT(tmp, -s128_3); ++tmp; VEC_DBL_INIT(tmp,c128_3); ++tmp; VEC_DBL_INIT(tmp, s128_b); ++tmp; VEC_DBL_INIT(tmp,c128_b); ++tmp; VEC_DBL_INIT(tmp, -c128_f); ++tmp; VEC_DBL_INIT(tmp,s128_f); ++tmp; VEC_DBL_INIT(tmp, c256_07); ++tmp; VEC_DBL_INIT(tmp,s256_07); ++tmp; VEC_DBL_INIT(tmp, s256_01); ++tmp; VEC_DBL_INIT(tmp,c256_01); ++tmp; VEC_DBL_INIT(tmp, s256_1d); ++tmp; VEC_DBL_INIT(tmp,c256_1d); ++tmp; VEC_DBL_INIT(tmp, -s256_1b); ++tmp; VEC_DBL_INIT(tmp,c256_1b); ++tmp; VEC_DBL_INIT(tmp, c256_15); ++tmp; VEC_DBL_INIT(tmp,s256_15); ++tmp; VEC_DBL_INIT(tmp, -s256_0d); ++tmp; VEC_DBL_INIT(tmp,c256_0d); ++tmp; VEC_DBL_INIT(tmp, s256_0f); ++tmp; VEC_DBL_INIT(tmp,c256_0f); ++tmp; VEC_DBL_INIT(tmp, -c256_17); ++tmp; VEC_DBL_INIT(tmp,s256_17);
		tmp = twidf; VEC_DBL_INIT(tmp,-c32_1); ++tmp; VEC_DBL_INIT(tmp,s32_1); ++tmp; VEC_DBL_INIT(tmp, s64_1); ++tmp; VEC_DBL_INIT(tmp,c64_1); ++tmp; VEC_DBL_INIT(tmp, -s64_3); ++tmp; VEC_DBL_INIT(tmp,-c64_3); ++tmp; VEC_DBL_INIT(tmp, c128_f); ++tmp; VEC_DBL_INIT(tmp,s128_f); ++tmp; VEC_DBL_INIT(tmp, -c128_b); ++tmp; VEC_DBL_INIT(tmp,-s128_b); ++tmp; VEC_DBL_INIT(tmp, -s128_d); ++tmp; VEC_DBL_INIT(tmp,c128_d); ++tmp; VEC_DBL_INIT(tmp, s128_9); ++tmp; VEC_DBL_INIT(tmp,-c128_9); ++tmp; VEC_DBL_INIT(tmp, c256_0f); ++tmp; VEC_DBL_INIT(tmp,s256_0f); ++tmp; VEC_DBL_INIT(tmp, -c256_07); ++tmp; VEC_DBL_INIT(tmp,-s256_07); ++tmp; VEC_DBL_INIT(tmp, -s256_0b); ++tmp; VEC_DBL_INIT(tmp,c256_0b); ++tmp; VEC_DBL_INIT(tmp, s256_03); ++tmp; VEC_DBL_INIT(tmp,-c256_03); ++tmp; VEC_DBL_INIT(tmp, s256_13); ++tmp; VEC_DBL_INIT(tmp,c256_13); ++tmp; VEC_DBL_INIT(tmp, -s256_1b); ++tmp; VEC_DBL_INIT(tmp,-c256_1b); ++tmp; VEC_DBL_INIT(tmp, -c256_17); ++tmp; VEC_DBL_INIT(tmp,s256_17); ++tmp; VEC_DBL_INIT(tmp, c256_1f); ++tmp; VEC_DBL_INIT(tmp,-s256_1f);

	  #else // USE_AVX2 = true:

		// Precompute the FMA-modified twiddles for the 2nd-pass radix-16 DFTs:
		#ifdef USE_FMA
			#error USE_FMA flag not supported in SIMD mode - to use FMA under AVX2/FMA3, define *only* USE_AVX2!
		#endif

		#include "radix16_dif_dit_pass_asm.h"	// Need this for FMA_TWIDDLE_FIDDLE macro

		FMA_TWIDDLE_FIDDLE(
			ISRT2,ISRT2, c16,s16, s16,c16, c32_1,s32_1, s32_3,c32_3, c32_3,s32_3, s32_1,c32_1, c64_1,s64_1, s64_7,c64_7, c64_5,s64_5, s64_3,c64_3, c64_3,s64_3, s64_5,c64_5, c64_7,s64_7, s64_1,c64_1	,c16,tan,
			twid4)
		FMA_TWIDDLE_FIDDLE(
			-ISRT2,ISRT2, s16,c16, -c16,-s16, c32_3,s32_3, -c32_1,s32_1, -s32_1,c32_1, -s32_3,-c32_3, c64_3,s64_3, -c64_5,s64_5, s64_1,c64_1, -c64_7,-s64_7, s64_7,c64_7, -c64_1,-s64_1, -s64_5,c64_5, -s64_3,-c64_3	,c16,tan,
			twidc)
		FMA_TWIDDLE_FIDDLE(
			c16,s16, c32_1,s32_1, c32_3,s32_3, c64_1,s64_1, c64_5,s64_5, c64_3,s64_3, c64_7,s64_7, c128_1,s128_1, c128_9,s128_9, c128_5,s128_5, c128_d,s128_d, c128_3,s128_3, c128_b,s128_b, c128_7,s128_7, c128_f,s128_f	,c16,tan,
			twid2)
		FMA_TWIDDLE_FIDDLE(
			-s16,c16, s32_3,c32_3, -c32_1,s32_1, c64_5,s64_5, -c64_7,s64_7, s64_1,c64_1, -c64_3,-s64_3, c128_5,s128_5, -s128_d,c128_d, s128_7,c128_7, -c128_1,-s128_1, c128_f,s128_f, -c128_9,s128_9, -s128_3,c128_3, -c128_b,-s128_b	,c16,tan,
			twida)
		FMA_TWIDDLE_FIDDLE(
			s16,c16, c32_3,s32_3, -s32_1,c32_1, c64_3,s64_3, s64_1,c64_1, s64_7,c64_7, -s64_5,c64_5, c128_3,s128_3, s128_5,c128_5, c128_f,s128_f, -s128_7,c128_7, c128_9,s128_9, -s128_1,c128_1, s128_b,c128_b, -s128_d,c128_d	,c16,tan,
			twid6)
		FMA_TWIDDLE_FIDDLE(
			-c16,s16, s32_1,c32_1, -s32_3,-c32_3, c64_7,s64_7, -c64_3,-s64_3, -s64_5,c64_5, s64_1,-c64_1, c128_7,s128_7, -c128_1,s128_1, -s128_3,c128_3, -s128_5,-c128_5, s128_b,c128_b, -c128_d,-s128_d, -c128_f,s128_f, s128_9,-c128_9	,c16,tan,
			twide)
		FMA_TWIDDLE_FIDDLE(
			c32_1,s32_1, c64_1,s64_1, c64_3,s64_3, c128_1,s128_1, c128_5,s128_5, c128_3,s128_3, c128_7,s128_7, c256_01,s256_01, c256_09,s256_09, c256_05,s256_05, c256_0d,s256_0d, c256_03,s256_03, c256_0b,s256_0b, c256_07,s256_07, c256_0f,s256_0f	,c16,tan,
			twid1)
		FMA_TWIDDLE_FIDDLE(
			-s32_1,c32_1, s64_7,c64_7, -c64_5,s64_5, c128_9,s128_9, -s128_d,c128_d, s128_5,c128_5, -c128_1,s128_1, c256_09,s256_09, -s256_11,c256_11, s256_13,c256_13, -c256_0b,s256_0b, c256_1b,s256_1b, -c256_1d,s256_1d, s256_01,c256_01, -c256_07,-s256_07	,c16,tan,
			twid9)
		FMA_TWIDDLE_FIDDLE(
			s32_3,c32_3, c64_5,s64_5, s64_1,c64_1, c128_5,s128_5, s128_7,c128_7, c128_f,s128_f, -s128_3,c128_3, c256_05,s256_05, s256_13,c256_13, c256_19,s256_19, -s256_01,c256_01, c256_0f,s256_0f, s256_09,c256_09, s256_1d,c256_1d, -s256_0b,c256_0b	,c16,tan,
			twid5)
		FMA_TWIDDLE_FIDDLE(
			-c32_3,s32_3, s64_3,c64_3, -c64_7,-s64_7, c128_d,s128_d, -c128_1,-s128_1, -s128_7,c128_7, -s128_5,-c128_5, c256_0d,s256_0d, -c256_0b,s256_0b, -s256_01,c256_01, -s256_17,-c256_17, s256_19,c256_19, -c256_0f,-s256_0f, -s256_1b,c256_1b, s256_03,-c256_03	,c16,tan,
			twidd)
		FMA_TWIDDLE_FIDDLE(
			c32_3,s32_3, c64_3,s64_3, s64_7,c64_7, c128_3,s128_3, c128_f,s128_f, c128_9,s128_9, s128_b,c128_b, c256_03,s256_03, c256_1b,s256_1b, c256_0f,s256_0f, s256_19,c256_19, c256_09,s256_09, s256_1f,c256_1f, c256_15,s256_15, s256_13,c256_13	,c16,tan,
			twid3)
		FMA_TWIDDLE_FIDDLE(
			-s32_3,c32_3, s64_5,c64_5, -c64_1,-s64_1, c128_b,s128_b, -c128_9,s128_9, -s128_1,c128_1, -c128_d,-s128_d, c256_0b,s256_0b, -c256_1d,s256_1d, s256_09,c256_09, -c256_0f,-s256_0f, s256_1f,c256_1f, -c256_07,s256_07, -s256_0d,c256_0d, -s256_1b,-c256_1b	,c16,tan,
			twidb)
		FMA_TWIDDLE_FIDDLE(
			s32_1,c32_1, c64_7,s64_7, -s64_5,c64_5, c128_7,s128_7, -s128_3,c128_3, s128_b,c128_b, -c128_f,s128_f, c256_07,s256_07, s256_01,c256_01, s256_1d,c256_1d, -s256_1b,c256_1b, c256_15,s256_15, -s256_0d,c256_0d, s256_0f,c256_0f, -c256_17,s256_17	,c16,tan,
			twid7)
		FMA_TWIDDLE_FIDDLE(
			-c32_1,s32_1, s64_1,c64_1, -s64_3,-c64_3, c128_f,s128_f, -c128_b,-s128_b, -s128_d,c128_d, s128_9,-c128_9, c256_0f,s256_0f, -c256_07,-s256_07, -s256_0b,c256_0b, s256_03,-c256_03, s256_13,c256_13, -s256_1b,-c256_1b, -c256_17,s256_17, c256_1f,-s256_1f	,c16,tan,
			twidf)

	#endif

		// Propagate the above consts to the remaining threads:
		nbytes = (long)cy - (long)two;	// #bytes in 1st of above block of consts
		tmp = two;
		tm2 = tmp + cslots_in_local_store;
		for(ithread = 1; ithread < CY_THREADS; ++ithread) {
			memcpy(tm2, tmp, nbytes);
			tmp = tm2;		tm2 += cslots_in_local_store;
		}
		nbytes = SZ_VD;	// sse2_rnd is a solo (in the SIMD-vector) datum
		tmp = sse2_rnd;
		tm2 = tmp + cslots_in_local_store;
		for(ithread = 1; ithread < CY_THREADS; ++ithread) {
			memcpy(tm2, tmp, nbytes);
			tmp = tm2;		tm2 += cslots_in_local_store;
		}

		/* SSE2 version of the one_half array - we have a 2-bit lookup, low bit is from the low word of the carry pair,
		high bit from the high, i.e. based on this lookup index [listed with LSB at right], we have:

			index	half_lo	half_hi
			00		1.0		1.0
			01		.50		1.0
			10		1.0		.50
			11		.50		.50

		The inverse-weights computation uses a similar table, but with all entries multiplied by .50:

			index2	half_lo	half_hi
			00		.50		.50
			01		.25		.50
			10		.50		.25
			11		.25		.25

		We do similarly for the base[] and baseinv[] table lookups - each of these get 4 further slots in half_arr.
		We also allocate a further 4 16-byte slots [uninitialized] for storage of the wtl,wtn,wtlp1,wtnm1 locals.

		In 4-way SIMD (AVX) mode, we expand this from 2^2 2-vector table entries to 2^4 4-vector entries.
		*/
		tmp = half_arr;

	#ifdef USE_AVX512
		// Each lookup-category in the 'mini-tables' used in AVX mode balloons from 16x32-bytes to 64x64-bytes,
		// so switch to an opmask-based scheme which starts with e.g. a broadcast constant and onditional doubling.
		// Here are the needed consts and opmasks:
		// [1] Fwd-wt multipliers: Init = 0.50 x 8, anytime AVX-style lookup into 1st table below would have bit = 0, double the corr. datum
		// [2] Inv-wt multipliers: Init = 0.25 x 8, anytime AVX-style lookup into 2nd table below would have bit = 0, double the corr. datum
		// [3] Fwd-base mults: Init = base[0] x 8, anytime AVX-style lookup into 3rd table below would have bit = 1, double the corr. datum
		// [4] Inv-base mults: Init = binv[1] x 8, anytime AVX-style lookup into 4th table below would have bit = 0, double the corr. datum
		// [5] [LOACC] Init = wts_mult[1] x 8, anytime AVX-style lookup into 5th table below would have bit = 0, double the corr. datum
		// [6] [LOACC] Init = inv_mult[0] x 8, anytime AVX-style lookup into 6th table below would have bit = 1, double the corr. datum
		nbytes = 0;
	#elif defined(USE_AVX)
		/* Forward-weight multipliers: */
		tmp->d0 = 1.0;	tmp->d1 = 1.0;	tmp->d2 = 1.0;	tmp->d3 = 1.0;	++tmp;
		tmp->d0 = .50;	tmp->d1 = 1.0;	tmp->d2 = 1.0;	tmp->d3 = 1.0;	++tmp;
		tmp->d0 = 1.0;	tmp->d1 = .50;	tmp->d2 = 1.0;	tmp->d3 = 1.0;	++tmp;
		tmp->d0 = .50;	tmp->d1 = .50;	tmp->d2 = 1.0;	tmp->d3 = 1.0;	++tmp;
		tmp->d0 = 1.0;	tmp->d1 = 1.0;	tmp->d2 = .50;	tmp->d3 = 1.0;	++tmp;
		tmp->d0 = .50;	tmp->d1 = 1.0;	tmp->d2 = .50;	tmp->d3 = 1.0;	++tmp;
		tmp->d0 = 1.0;	tmp->d1 = .50;	tmp->d2 = .50;	tmp->d3 = 1.0;	++tmp;
		tmp->d0 = .50;	tmp->d1 = .50;	tmp->d2 = .50;	tmp->d3 = 1.0;	++tmp;
		tmp->d0 = 1.0;	tmp->d1 = 1.0;	tmp->d2 = 1.0;	tmp->d3 = .50;	++tmp;
		tmp->d0 = .50;	tmp->d1 = 1.0;	tmp->d2 = 1.0;	tmp->d3 = .50;	++tmp;
		tmp->d0 = 1.0;	tmp->d1 = .50;	tmp->d2 = 1.0;	tmp->d3 = .50;	++tmp;
		tmp->d0 = .50;	tmp->d1 = .50;	tmp->d2 = 1.0;	tmp->d3 = .50;	++tmp;
		tmp->d0 = 1.0;	tmp->d1 = 1.0;	tmp->d2 = .50;	tmp->d3 = .50;	++tmp;
		tmp->d0 = .50;	tmp->d1 = 1.0;	tmp->d2 = .50;	tmp->d3 = .50;	++tmp;
		tmp->d0 = 1.0;	tmp->d1 = .50;	tmp->d2 = .50;	tmp->d3 = .50;	++tmp;
		tmp->d0 = .50;	tmp->d1 = .50;	tmp->d2 = .50;	tmp->d3 = .50;	++tmp;
		/* Inverse-weight multipliers (only needed for mersenne-mod): */
		tmp->d0 = .50;	tmp->d1 = .50;	tmp->d2 = .50;	tmp->d3 = .50;	++tmp;
		tmp->d0 = .25;	tmp->d1 = .50;	tmp->d2 = .50;	tmp->d3 = .50;	++tmp;
		tmp->d0 = .50;	tmp->d1 = .25;	tmp->d2 = .50;	tmp->d3 = .50;	++tmp;
		tmp->d0 = .25;	tmp->d1 = .25;	tmp->d2 = .50;	tmp->d3 = .50;	++tmp;
		tmp->d0 = .50;	tmp->d1 = .50;	tmp->d2 = .25;	tmp->d3 = .50;	++tmp;
		tmp->d0 = .25;	tmp->d1 = .50;	tmp->d2 = .25;	tmp->d3 = .50;	++tmp;
		tmp->d0 = .50;	tmp->d1 = .25;	tmp->d2 = .25;	tmp->d3 = .50;	++tmp;
		tmp->d0 = .25;	tmp->d1 = .25;	tmp->d2 = .25;	tmp->d3 = .50;	++tmp;
		tmp->d0 = .50;	tmp->d1 = .50;	tmp->d2 = .50;	tmp->d3 = .25;	++tmp;
		tmp->d0 = .25;	tmp->d1 = .50;	tmp->d2 = .50;	tmp->d3 = .25;	++tmp;
		tmp->d0 = .50;	tmp->d1 = .25;	tmp->d2 = .50;	tmp->d3 = .25;	++tmp;
		tmp->d0 = .25;	tmp->d1 = .25;	tmp->d2 = .50;	tmp->d3 = .25;	++tmp;
		tmp->d0 = .50;	tmp->d1 = .50;	tmp->d2 = .25;	tmp->d3 = .25;	++tmp;
		tmp->d0 = .25;	tmp->d1 = .50;	tmp->d2 = .25;	tmp->d3 = .25;	++tmp;
		tmp->d0 = .50;	tmp->d1 = .25;	tmp->d2 = .25;	tmp->d3 = .25;	++tmp;
		tmp->d0 = .25;	tmp->d1 = .25;	tmp->d2 = .25;	tmp->d3 = .25;	++tmp;
		/* Forward-base[] multipliers: */
		tmp->d0 = base   [0];	tmp->d1 = base   [0];	tmp->d2 = base   [0];	tmp->d3 = base   [0];	++tmp;
		tmp->d0 = base   [1];	tmp->d1 = base   [0];	tmp->d2 = base   [0];	tmp->d3 = base   [0];	++tmp;
		tmp->d0 = base   [0];	tmp->d1 = base   [1];	tmp->d2 = base   [0];	tmp->d3 = base   [0];	++tmp;
		tmp->d0 = base   [1];	tmp->d1 = base   [1];	tmp->d2 = base   [0];	tmp->d3 = base   [0];	++tmp;
		tmp->d0 = base   [0];	tmp->d1 = base   [0];	tmp->d2 = base   [1];	tmp->d3 = base   [0];	++tmp;
		tmp->d0 = base   [1];	tmp->d1 = base   [0];	tmp->d2 = base   [1];	tmp->d3 = base   [0];	++tmp;
		tmp->d0 = base   [0];	tmp->d1 = base   [1];	tmp->d2 = base   [1];	tmp->d3 = base   [0];	++tmp;
		tmp->d0 = base   [1];	tmp->d1 = base   [1];	tmp->d2 = base   [1];	tmp->d3 = base   [0];	++tmp;
		tmp->d0 = base   [0];	tmp->d1 = base   [0];	tmp->d2 = base   [0];	tmp->d3 = base   [1];	++tmp;
		tmp->d0 = base   [1];	tmp->d1 = base   [0];	tmp->d2 = base   [0];	tmp->d3 = base   [1];	++tmp;
		tmp->d0 = base   [0];	tmp->d1 = base   [1];	tmp->d2 = base   [0];	tmp->d3 = base   [1];	++tmp;
		tmp->d0 = base   [1];	tmp->d1 = base   [1];	tmp->d2 = base   [0];	tmp->d3 = base   [1];	++tmp;
		tmp->d0 = base   [0];	tmp->d1 = base   [0];	tmp->d2 = base   [1];	tmp->d3 = base   [1];	++tmp;
		tmp->d0 = base   [1];	tmp->d1 = base   [0];	tmp->d2 = base   [1];	tmp->d3 = base   [1];	++tmp;
		tmp->d0 = base   [0];	tmp->d1 = base   [1];	tmp->d2 = base   [1];	tmp->d3 = base   [1];	++tmp;
		tmp->d0 = base   [1];	tmp->d1 = base   [1];	tmp->d2 = base   [1];	tmp->d3 = base   [1];	++tmp;
		/* Inverse-base[] multipliers: */
		tmp->d0 = baseinv[0];	tmp->d1 = baseinv[0];	tmp->d2 = baseinv[0];	tmp->d3 = baseinv[0];	++tmp;
		tmp->d0 = baseinv[1];	tmp->d1 = baseinv[0];	tmp->d2 = baseinv[0];	tmp->d3 = baseinv[0];	++tmp;
		tmp->d0 = baseinv[0];	tmp->d1 = baseinv[1];	tmp->d2 = baseinv[0];	tmp->d3 = baseinv[0];	++tmp;
		tmp->d0 = baseinv[1];	tmp->d1 = baseinv[1];	tmp->d2 = baseinv[0];	tmp->d3 = baseinv[0];	++tmp;
		tmp->d0 = baseinv[0];	tmp->d1 = baseinv[0];	tmp->d2 = baseinv[1];	tmp->d3 = baseinv[0];	++tmp;
		tmp->d0 = baseinv[1];	tmp->d1 = baseinv[0];	tmp->d2 = baseinv[1];	tmp->d3 = baseinv[0];	++tmp;
		tmp->d0 = baseinv[0];	tmp->d1 = baseinv[1];	tmp->d2 = baseinv[1];	tmp->d3 = baseinv[0];	++tmp;
		tmp->d0 = baseinv[1];	tmp->d1 = baseinv[1];	tmp->d2 = baseinv[1];	tmp->d3 = baseinv[0];	++tmp;
		tmp->d0 = baseinv[0];	tmp->d1 = baseinv[0];	tmp->d2 = baseinv[0];	tmp->d3 = baseinv[1];	++tmp;
		tmp->d0 = baseinv[1];	tmp->d1 = baseinv[0];	tmp->d2 = baseinv[0];	tmp->d3 = baseinv[1];	++tmp;
		tmp->d0 = baseinv[0];	tmp->d1 = baseinv[1];	tmp->d2 = baseinv[0];	tmp->d3 = baseinv[1];	++tmp;
		tmp->d0 = baseinv[1];	tmp->d1 = baseinv[1];	tmp->d2 = baseinv[0];	tmp->d3 = baseinv[1];	++tmp;
		tmp->d0 = baseinv[0];	tmp->d1 = baseinv[0];	tmp->d2 = baseinv[1];	tmp->d3 = baseinv[1];	++tmp;
		tmp->d0 = baseinv[1];	tmp->d1 = baseinv[0];	tmp->d2 = baseinv[1];	tmp->d3 = baseinv[1];	++tmp;
		tmp->d0 = baseinv[0];	tmp->d1 = baseinv[1];	tmp->d2 = baseinv[1];	tmp->d3 = baseinv[1];	++tmp;
		tmp->d0 = baseinv[1];	tmp->d1 = baseinv[1];	tmp->d2 = baseinv[1];	tmp->d3 = baseinv[1];	++tmp;
		// In LOACC mode, put wts_mult and their inverses in the first 32 slots below in place of the 1/2-stuff:
		/* wts_mult:*/
		tmp->d0 = wts_mult[0];	tmp->d1 = wts_mult[0];	tmp->d2 = wts_mult[0];	tmp->d3 = wts_mult[0];	++tmp;
		tmp->d0 = wts_mult[1];	tmp->d1 = wts_mult[0];	tmp->d2 = wts_mult[0];	tmp->d3 = wts_mult[0];	++tmp;
		tmp->d0 = wts_mult[0];	tmp->d1 = wts_mult[1];	tmp->d2 = wts_mult[0];	tmp->d3 = wts_mult[0];	++tmp;
		tmp->d0 = wts_mult[1];	tmp->d1 = wts_mult[1];	tmp->d2 = wts_mult[0];	tmp->d3 = wts_mult[0];	++tmp;
		tmp->d0 = wts_mult[0];	tmp->d1 = wts_mult[0];	tmp->d2 = wts_mult[1];	tmp->d3 = wts_mult[0];	++tmp;
		tmp->d0 = wts_mult[1];	tmp->d1 = wts_mult[0];	tmp->d2 = wts_mult[1];	tmp->d3 = wts_mult[0];	++tmp;
		tmp->d0 = wts_mult[0];	tmp->d1 = wts_mult[1];	tmp->d2 = wts_mult[1];	tmp->d3 = wts_mult[0];	++tmp;
		tmp->d0 = wts_mult[1];	tmp->d1 = wts_mult[1];	tmp->d2 = wts_mult[1];	tmp->d3 = wts_mult[0];	++tmp;
		tmp->d0 = wts_mult[0];	tmp->d1 = wts_mult[0];	tmp->d2 = wts_mult[0];	tmp->d3 = wts_mult[1];	++tmp;
		tmp->d0 = wts_mult[1];	tmp->d1 = wts_mult[0];	tmp->d2 = wts_mult[0];	tmp->d3 = wts_mult[1];	++tmp;
		tmp->d0 = wts_mult[0];	tmp->d1 = wts_mult[1];	tmp->d2 = wts_mult[0];	tmp->d3 = wts_mult[1];	++tmp;
		tmp->d0 = wts_mult[1];	tmp->d1 = wts_mult[1];	tmp->d2 = wts_mult[0];	tmp->d3 = wts_mult[1];	++tmp;
		tmp->d0 = wts_mult[0];	tmp->d1 = wts_mult[0];	tmp->d2 = wts_mult[1];	tmp->d3 = wts_mult[1];	++tmp;
		tmp->d0 = wts_mult[1];	tmp->d1 = wts_mult[0];	tmp->d2 = wts_mult[1];	tmp->d3 = wts_mult[1];	++tmp;
		tmp->d0 = wts_mult[0];	tmp->d1 = wts_mult[1];	tmp->d2 = wts_mult[1];	tmp->d3 = wts_mult[1];	++tmp;
		tmp->d0 = wts_mult[1];	tmp->d1 = wts_mult[1];	tmp->d2 = wts_mult[1];	tmp->d3 = wts_mult[1];	++tmp;
		/* inv_mult: */
		tmp->d0 = inv_mult[0];	tmp->d1 = inv_mult[0];	tmp->d2 = inv_mult[0];	tmp->d3 = inv_mult[0];	++tmp;
		tmp->d0 = inv_mult[1];	tmp->d1 = inv_mult[0];	tmp->d2 = inv_mult[0];	tmp->d3 = inv_mult[0];	++tmp;
		tmp->d0 = inv_mult[0];	tmp->d1 = inv_mult[1];	tmp->d2 = inv_mult[0];	tmp->d3 = inv_mult[0];	++tmp;
		tmp->d0 = inv_mult[1];	tmp->d1 = inv_mult[1];	tmp->d2 = inv_mult[0];	tmp->d3 = inv_mult[0];	++tmp;
		tmp->d0 = inv_mult[0];	tmp->d1 = inv_mult[0];	tmp->d2 = inv_mult[1];	tmp->d3 = inv_mult[0];	++tmp;
		tmp->d0 = inv_mult[1];	tmp->d1 = inv_mult[0];	tmp->d2 = inv_mult[1];	tmp->d3 = inv_mult[0];	++tmp;
		tmp->d0 = inv_mult[0];	tmp->d1 = inv_mult[1];	tmp->d2 = inv_mult[1];	tmp->d3 = inv_mult[0];	++tmp;
		tmp->d0 = inv_mult[1];	tmp->d1 = inv_mult[1];	tmp->d2 = inv_mult[1];	tmp->d3 = inv_mult[0];	++tmp;
		tmp->d0 = inv_mult[0];	tmp->d1 = inv_mult[0];	tmp->d2 = inv_mult[0];	tmp->d3 = inv_mult[1];	++tmp;
		tmp->d0 = inv_mult[1];	tmp->d1 = inv_mult[0];	tmp->d2 = inv_mult[0];	tmp->d3 = inv_mult[1];	++tmp;
		tmp->d0 = inv_mult[0];	tmp->d1 = inv_mult[1];	tmp->d2 = inv_mult[0];	tmp->d3 = inv_mult[1];	++tmp;
		tmp->d0 = inv_mult[1];	tmp->d1 = inv_mult[1];	tmp->d2 = inv_mult[0];	tmp->d3 = inv_mult[1];	++tmp;
		tmp->d0 = inv_mult[0];	tmp->d1 = inv_mult[0];	tmp->d2 = inv_mult[1];	tmp->d3 = inv_mult[1];	++tmp;
		tmp->d0 = inv_mult[1];	tmp->d1 = inv_mult[0];	tmp->d2 = inv_mult[1];	tmp->d3 = inv_mult[1];	++tmp;
		tmp->d0 = inv_mult[0];	tmp->d1 = inv_mult[1];	tmp->d2 = inv_mult[1];	tmp->d3 = inv_mult[1];	++tmp;
		tmp->d0 = inv_mult[1];	tmp->d1 = inv_mult[1];	tmp->d2 = inv_mult[1];	tmp->d3 = inv_mult[1];	++tmp;
		nbytes = 96 << L2_SZ_VD;

	  #elif defined(USE_SSE2)

		ctmp = (struct complex *)tmp;
		/* Forward-weight multipliers: */
		ctmp->re = 1.0;	ctmp->im = 1.0;	++ctmp;
		ctmp->re = .50;	ctmp->im = 1.0;	++ctmp;
		ctmp->re = 1.0;	ctmp->im = .50;	++ctmp;
		ctmp->re = .50;	ctmp->im = .50;	++ctmp;
		/* Inverse-weight multipliers (only needed for mersenne-mod): */
		ctmp->re = .50;	ctmp->im = .50;	++ctmp;
		ctmp->re = .25;	ctmp->im = .50;	++ctmp;
		ctmp->re = .50;	ctmp->im = .25;	++ctmp;
		ctmp->re = .25;	ctmp->im = .25;	++ctmp;
		/* Forward-base[] multipliers: */
		ctmp->re = base   [0];	ctmp->im = base   [0];	++ctmp;
		ctmp->re = base   [1];	ctmp->im = base   [0];	++ctmp;
		ctmp->re = base   [0];	ctmp->im = base   [1];	++ctmp;
		ctmp->re = base   [1];	ctmp->im = base   [1];	++ctmp;
		/* Inverse-base[] multipliers: */
		ctmp->re = baseinv[0];	ctmp->im = baseinv[0];	++ctmp;
		ctmp->re = baseinv[1];	ctmp->im = baseinv[0];	++ctmp;
		ctmp->re = baseinv[0];	ctmp->im = baseinv[1];	++ctmp;
		ctmp->re = baseinv[1];	ctmp->im = baseinv[1];	++ctmp;
		// In LOACC mode, put wts_mult and their inverses in the first 8 slots below in place of the 1/2-stuff:
		/* wts_mult:*/
		ctmp->re = wts_mult[0];	ctmp->im = wts_mult[0];	++ctmp;
		ctmp->re = wts_mult[1];	ctmp->im = wts_mult[0];	++ctmp;
		ctmp->re = wts_mult[0];	ctmp->im = wts_mult[1];	++ctmp;
		ctmp->re = wts_mult[1];	ctmp->im = wts_mult[1];	++ctmp;
		/* inv_mult:*/
		ctmp->re = inv_mult[0];	ctmp->im = inv_mult[0];	++ctmp;
		ctmp->re = inv_mult[1];	ctmp->im = inv_mult[0];	++ctmp;
		ctmp->re = inv_mult[0];	ctmp->im = inv_mult[1];	++ctmp;
		ctmp->re = inv_mult[1];	ctmp->im = inv_mult[1];	++ctmp;
		nbytes = 24 << L2_SZ_VD;

	  #endif

		// Propagate the above consts to the remaining threads:
		tmp = half_arr;
		tm2 = tmp + cslots_in_local_store;
		for(ithread = 1; ithread < CY_THREADS; ++ithread) {
			memcpy(tm2, tmp, nbytes);
			tmp = tm2;		tm2 += cslots_in_local_store;
		}

		/* Floating-point sign mask used for FABS on packed doubles: */
		sign_mask = sm_ptr;
		for(i = 0; i < RE_IM_STRIDE; ++i) {
			*(sign_mask+i) = (uint64)0x7FFFFFFFFFFFFFFFull;
		}

		// Set up the SIMD-tupled-32-bit-int SSE constants used by the carry macros:
		sse_bw  = sm_ptr + RE_IM_STRIDE;	// (#doubles in a SIMD complex) x 32-bits = RE_IM_STRIDE x 64-bits
		tmp64 = (uint64)bw;
		tmp64 = tmp64 + (tmp64 << 32);
		for(i = 0; i < RE_IM_STRIDE; ++i) {
			*(sse_bw+i) = tmp64;
		}

		sse_sw  = sse_bw + RE_IM_STRIDE;
		tmp64 = (uint64)sw;
		tmp64 = tmp64 + (tmp64 << 32);
		for(i = 0; i < RE_IM_STRIDE; ++i) {
			*(sse_sw+i) = tmp64;
		}

		sse_n   = sse_sw + RE_IM_STRIDE;
		tmp64 = (uint64)n;
		tmp64 = tmp64 + (tmp64 << 32);
		for(i = 0; i < RE_IM_STRIDE; ++i) {
			*(sse_n +i) = tmp64;
		}

		nbytes = 4 << L2_SZ_VD;

	  #ifdef USE_AVX512
	   #ifdef CARRY_16_WAY
		n_minus_sil   = (struct uint32x16*)sse_n + 1;
		n_minus_silp1 = (struct uint32x16*)sse_n + 2;
		sinwt         = (struct uint32x16*)sse_n + 3;
		sinwtm1       = (struct uint32x16*)sse_n + 4;
		nbytes += 256;
	   #else
		n_minus_sil   = (struct uint32x8 *)sse_n + 1;
		n_minus_silp1 = (struct uint32x8 *)sse_n + 2;
		sinwt         = (struct uint32x8 *)sse_n + 3;
		sinwtm1       = (struct uint32x8 *)sse_n + 4;
		nbytes += 128;
	   #endif
	  #elif defined(USE_AVX)
		n_minus_sil   = (struct uint32x4 *)sse_n + 1;
		n_minus_silp1 = (struct uint32x4 *)sse_n + 2;
		sinwt         = (struct uint32x4 *)sse_n + 3;
		sinwtm1       = (struct uint32x4 *)sse_n + 4;
		nbytes += 64;
	  #endif

		// Propagate the above consts to the remaining threads:
		tmp = (vec_dbl *)sm_ptr;
		tm2 = tmp + cslots_in_local_store;
		for(ithread = 1; ithread < CY_THREADS; ++ithread) {
			memcpy(tm2, tmp, nbytes);
			tmp = tm2;		tm2 += cslots_in_local_store;
		}

	// For large radices, array-access to bjmodn means only init base-ptr here:
	  #ifdef USE_AVX
		bjmodn = (int*)(sinwtm1 + RE_IM_STRIDE);
	  #else
		bjmodn = (int*)(sse_n   + RE_IM_STRIDE);
	  #endif

	#endif	// USE_SSE2

		/*   constant index offsets for array load/stores are here.	*/
		pini = NDIVR/CY_THREADS;
		p1 = NDIVR;		p10 = NDIVR<<4;		p100 = NDIVR<<8;		p200 = NDIVR<<9;
		p2 = p1 + p1;	p20 = p10 + p10;	p110 = p100 + p10;		p210 = p200 + p10;
		p3 = p2 + p1;	p30 = p20 + p10;	p120 = p110 + p10;		p220 = p210 + p10;
		p4 = p3 + p1;	p40 = p30 + p10;	p130 = p120 + p10;		p230 = p220 + p10;
		p5 = p4 + p1;	p50 = p40 + p10;	p140 = p130 + p10;		p240 = p230 + p10;
		p6 = p5 + p1;	p60 = p50 + p10;	p150 = p140 + p10;		p250 = p240 + p10;
		p7 = p6 + p1;	p70 = p60 + p10;	p160 = p150 + p10;		p260 = p250 + p10;
		p8 = p7 + p1;	p80 = p70 + p10;	p170 = p160 + p10;		p270 = p260 + p10;
		p9 = p8 + p1;	p90 = p80 + p10;	p180 = p170 + p10;		p280 = p270 + p10;
		pa = p9 + p1;	pa0 = p90 + p10;	p190 = p180 + p10;		p290 = p280 + p10;
		pb = pa + p1;	pb0 = pa0 + p10;	p1a0 = p190 + p10;		p2a0 = p290 + p10;
		pc = pb + p1;	pc0 = pb0 + p10;	p1b0 = p1a0 + p10;		p2b0 = p2a0 + p10;
		pd = pc + p1;	pd0 = pc0 + p10;	p1c0 = p1b0 + p10;		p2c0 = p2b0 + p10;
		pe = pd + p1;	pe0 = pd0 + p10;	p1d0 = p1c0 + p10;		p2d0 = p2c0 + p10;
		pf = pe + p1;	pf0 = pe0 + p10;	p1e0 = p1d0 + p10;		p2e0 = p2d0 + p10;
											p1f0 = p1e0 + p10;		p2f0 = p2e0 + p10;
		p1 += ( (p1 >> DAT_BITS) << PAD_BITS );
		p2 += ( (p2 >> DAT_BITS) << PAD_BITS );
		p3 += ( (p3 >> DAT_BITS) << PAD_BITS );
		p4 += ( (p4 >> DAT_BITS) << PAD_BITS );
		p5 += ( (p5 >> DAT_BITS) << PAD_BITS );
		p6 += ( (p6 >> DAT_BITS) << PAD_BITS );
		p7 += ( (p7 >> DAT_BITS) << PAD_BITS );
		p8 += ( (p8 >> DAT_BITS) << PAD_BITS );
		p9 += ( (p9 >> DAT_BITS) << PAD_BITS );
		pa += ( (pa >> DAT_BITS) << PAD_BITS );
		pb += ( (pb >> DAT_BITS) << PAD_BITS );
		pc += ( (pc >> DAT_BITS) << PAD_BITS );
		pd += ( (pd >> DAT_BITS) << PAD_BITS );
		pe += ( (pe >> DAT_BITS) << PAD_BITS );
		pf += ( (pf >> DAT_BITS) << PAD_BITS );
		p10 += ( (p10 >> DAT_BITS) << PAD_BITS );
		p20 += ( (p20 >> DAT_BITS) << PAD_BITS );
		p30 += ( (p30 >> DAT_BITS) << PAD_BITS );
		p40 += ( (p40 >> DAT_BITS) << PAD_BITS );
		p50 += ( (p50 >> DAT_BITS) << PAD_BITS );
		p60 += ( (p60 >> DAT_BITS) << PAD_BITS );
		p70 += ( (p70 >> DAT_BITS) << PAD_BITS );
		p80 += ( (p80 >> DAT_BITS) << PAD_BITS );
		p90 += ( (p90 >> DAT_BITS) << PAD_BITS );
		pa0 += ( (pa0 >> DAT_BITS) << PAD_BITS );
		pb0 += ( (pb0 >> DAT_BITS) << PAD_BITS );
		pc0 += ( (pc0 >> DAT_BITS) << PAD_BITS );
		pd0 += ( (pd0 >> DAT_BITS) << PAD_BITS );
		pe0 += ( (pe0 >> DAT_BITS) << PAD_BITS );
		pf0 += ( (pf0 >> DAT_BITS) << PAD_BITS );
		p100 += ( (p100 >> DAT_BITS) << PAD_BITS );
		p110 += ( (p110 >> DAT_BITS) << PAD_BITS );
		p120 += ( (p120 >> DAT_BITS) << PAD_BITS );
		p130 += ( (p130 >> DAT_BITS) << PAD_BITS );
		p140 += ( (p140 >> DAT_BITS) << PAD_BITS );
		p150 += ( (p150 >> DAT_BITS) << PAD_BITS );
		p160 += ( (p160 >> DAT_BITS) << PAD_BITS );
		p170 += ( (p170 >> DAT_BITS) << PAD_BITS );
		p180 += ( (p180 >> DAT_BITS) << PAD_BITS );
		p190 += ( (p190 >> DAT_BITS) << PAD_BITS );
		p1a0 += ( (p1a0 >> DAT_BITS) << PAD_BITS );
		p1b0 += ( (p1b0 >> DAT_BITS) << PAD_BITS );
		p1c0 += ( (p1c0 >> DAT_BITS) << PAD_BITS );
		p1d0 += ( (p1d0 >> DAT_BITS) << PAD_BITS );
		p1e0 += ( (p1e0 >> DAT_BITS) << PAD_BITS );
		p1f0 += ( (p1f0 >> DAT_BITS) << PAD_BITS );
		p200 += ( (p200 >> DAT_BITS) << PAD_BITS );
		p210 += ( (p210 >> DAT_BITS) << PAD_BITS );
		p220 += ( (p220 >> DAT_BITS) << PAD_BITS );
		p230 += ( (p230 >> DAT_BITS) << PAD_BITS );
		p240 += ( (p240 >> DAT_BITS) << PAD_BITS );
		p250 += ( (p250 >> DAT_BITS) << PAD_BITS );
		p260 += ( (p260 >> DAT_BITS) << PAD_BITS );
		p270 += ( (p270 >> DAT_BITS) << PAD_BITS );
		p280 += ( (p280 >> DAT_BITS) << PAD_BITS );
		p290 += ( (p290 >> DAT_BITS) << PAD_BITS );
		p2a0 += ( (p2a0 >> DAT_BITS) << PAD_BITS );
		p2b0 += ( (p2b0 >> DAT_BITS) << PAD_BITS );
		p2c0 += ( (p2c0 >> DAT_BITS) << PAD_BITS );
		p2d0 += ( (p2d0 >> DAT_BITS) << PAD_BITS );
		p2e0 += ( (p2e0 >> DAT_BITS) << PAD_BITS );
		p2f0 += ( (p2f0 >> DAT_BITS) << PAD_BITS );
	#ifndef USE_SSE2
		p0123[0] = 0; p0123[1] = p1; p0123[2] = p2; p0123[3] = p3;
	#endif
		poff[     0] =   0; poff[     1] =     p4; poff[     2] =     p8; poff[     3] =     pc;
		poff[0x04+0] = p10; poff[0x04+1] = p10+p4; poff[0x04+2] = p10+p8; poff[0x04+3] = p10+pc;
		poff[0x08+0] = p20; poff[0x08+1] = p20+p4; poff[0x08+2] = p20+p8; poff[0x08+3] = p20+pc;
		poff[0x0c+0] = p30; poff[0x0c+1] = p30+p4; poff[0x0c+2] = p30+p8; poff[0x0c+3] = p30+pc;
		poff[0x10+0] = p40; poff[0x10+1] = p40+p4; poff[0x10+2] = p40+p8; poff[0x10+3] = p40+pc;
		poff[0x14+0] = p50; poff[0x14+1] = p50+p4; poff[0x14+2] = p50+p8; poff[0x14+3] = p50+pc;
		poff[0x18+0] = p60; poff[0x18+1] = p60+p4; poff[0x18+2] = p60+p8; poff[0x18+3] = p60+pc;
		poff[0x1c+0] = p70; poff[0x1c+1] = p70+p4; poff[0x1c+2] = p70+p8; poff[0x1c+3] = p70+pc;
		poff[0x20+0] = p80; poff[0x20+1] = p80+p4; poff[0x20+2] = p80+p8; poff[0x20+3] = p80+pc;
		poff[0x24+0] = p90; poff[0x24+1] = p90+p4; poff[0x24+2] = p90+p8; poff[0x24+3] = p90+pc;
		poff[0x28+0] = pa0; poff[0x28+1] = pa0+p4; poff[0x28+2] = pa0+p8; poff[0x28+3] = pa0+pc;
		poff[0x2c+0] = pb0; poff[0x2c+1] = pb0+p4; poff[0x2c+2] = pb0+p8; poff[0x2c+3] = pb0+pc;
		poff[0x30+0] = pc0; poff[0x30+1] = pc0+p4; poff[0x30+2] = pc0+p8; poff[0x30+3] = pc0+pc;
		poff[0x34+0] = pd0; poff[0x34+1] = pd0+p4; poff[0x34+2] = pd0+p8; poff[0x34+3] = pd0+pc;
		poff[0x38+0] = pe0; poff[0x38+1] = pe0+p4; poff[0x38+2] = pe0+p8; poff[0x38+3] = pe0+pc;
		poff[0x3c+0] = pf0; poff[0x3c+1] = pf0+p4; poff[0x3c+2] = pf0+p8; poff[0x3c+3] = pf0+pc;
		for(l = 0; l < 64; l++) {
			poff[ 64+l] = poff[l] + p100;
			poff[128+l] = poff[l] + p200;
		}

	#ifndef MULTITHREAD
	// Cf. radix768_dit_pass1() for details on the indexing scheme used here:
	// Set dit_offsets_lo for 1st set of radix-256 DIT inputs:
		dit_offsets_lo[0x00] =  0;	dit_offsets_lo[0x10] = pf;
		dit_offsets_lo[0x01] = p1;	dit_offsets_lo[0x11] = pe;
		dit_offsets_lo[0x02] = p3;	dit_offsets_lo[0x12] = pd;
		dit_offsets_lo[0x03] = p2;	dit_offsets_lo[0x13] = pc;
		dit_offsets_lo[0x04] = p7;	dit_offsets_lo[0x14] = pb;
		dit_offsets_lo[0x05] = p6;	dit_offsets_lo[0x15] = pa;
		dit_offsets_lo[0x06] = p5;	dit_offsets_lo[0x16] = p9;
		dit_offsets_lo[0x07] = p4;	dit_offsets_lo[0x17] = p8;
		dit_offsets_lo[0x08] = pf;	dit_offsets_lo[0x18] = p7;
		dit_offsets_lo[0x09] = pe;	dit_offsets_lo[0x19] = p6;
		dit_offsets_lo[0x0a] = pd;	dit_offsets_lo[0x1a] = p5;
		dit_offsets_lo[0x0b] = pc;	dit_offsets_lo[0x1b] = p4;
		dit_offsets_lo[0x0c] = pb;	dit_offsets_lo[0x1c] = p3;
		dit_offsets_lo[0x0d] = pa;	dit_offsets_lo[0x1d] = p2;
		dit_offsets_lo[0x0e] = p9;	dit_offsets_lo[0x1e] = p1;
		dit_offsets_lo[0x0f] = p8;	dit_offsets_lo[0x1f] =  0;

	// Set dit_offsets for 2nd set of radix-256 DIT inputs:
		dit_offsets_lo[0x20] = p5;	dit_offsets_lo[0x30] = p9;
		dit_offsets_lo[0x21] = p4;	dit_offsets_lo[0x31] = p8;
		dit_offsets_lo[0x22] = p6;	dit_offsets_lo[0x32] = pa;
		dit_offsets_lo[0x23] = p7;	dit_offsets_lo[0x33] = pb;
		dit_offsets_lo[0x24] = p1;	dit_offsets_lo[0x34] = pe;
		dit_offsets_lo[0x25] =  0;	dit_offsets_lo[0x35] = pf;
		dit_offsets_lo[0x26] = p2;	dit_offsets_lo[0x36] = pc;
		dit_offsets_lo[0x27] = p3;	dit_offsets_lo[0x37] = pd;
		dit_offsets_lo[0x28] = p9;	dit_offsets_lo[0x38] = p1;
		dit_offsets_lo[0x29] = p8;	dit_offsets_lo[0x39] =  0;
		dit_offsets_lo[0x2a] = pa;	dit_offsets_lo[0x3a] = p2;
		dit_offsets_lo[0x2b] = pb;	dit_offsets_lo[0x3b] = p3;
		dit_offsets_lo[0x2c] = pe;	dit_offsets_lo[0x3c] = p6;
		dit_offsets_lo[0x2d] = pf;	dit_offsets_lo[0x3d] = p7;
		dit_offsets_lo[0x2e] = pc;	dit_offsets_lo[0x3e] = p4;
		dit_offsets_lo[0x2f] = pd;	dit_offsets_lo[0x3f] = p5;

	// Set dit_offsets for 3rd set of radix-256 DIT inputs:
		dit_offsets_lo[0x40] = pa;	dit_offsets_lo[0x50] = p2;
		dit_offsets_lo[0x41] = pb;	dit_offsets_lo[0x51] = p3;
		dit_offsets_lo[0x42] = p8;	dit_offsets_lo[0x52] =  0;
		dit_offsets_lo[0x43] = p9;	dit_offsets_lo[0x53] = p1;
		dit_offsets_lo[0x44] = pc;	dit_offsets_lo[0x54] = p4;
		dit_offsets_lo[0x45] = pd;	dit_offsets_lo[0x55] = p5;
		dit_offsets_lo[0x46] = pf;	dit_offsets_lo[0x56] = p7;
		dit_offsets_lo[0x47] = pe;	dit_offsets_lo[0x57] = p6;
		dit_offsets_lo[0x48] = p2;	dit_offsets_lo[0x58] = pc;
		dit_offsets_lo[0x49] = p3;	dit_offsets_lo[0x59] = pd;
		dit_offsets_lo[0x4a] =  0;	dit_offsets_lo[0x5a] = pf;
		dit_offsets_lo[0x4b] = p1;	dit_offsets_lo[0x5b] = pe;
		dit_offsets_lo[0x4c] = p4;	dit_offsets_lo[0x5c] = p8;
		dit_offsets_lo[0x4d] = p5;	dit_offsets_lo[0x5d] = p9;
		dit_offsets_lo[0x4e] = p7;	dit_offsets_lo[0x5e] = pb;
		dit_offsets_lo[0x4f] = p6;	dit_offsets_lo[0x5f] = pa;

	// ...and one distinct high-part vector for each radix-256 DIT:
		dit_offsets_hi1[0x0] =   0;	dit_offsets_hi2[0x0] = p50;	dit_offsets_hi3[0x0] = pa0;
		dit_offsets_hi1[0x1] = p10;	dit_offsets_hi2[0x1] = p40;	dit_offsets_hi3[0x1] = pb0;
		dit_offsets_hi1[0x2] = p30;	dit_offsets_hi2[0x2] = p60;	dit_offsets_hi3[0x2] = p80;
		dit_offsets_hi1[0x3] = p20;	dit_offsets_hi2[0x3] = p70;	dit_offsets_hi3[0x3] = p90;
		dit_offsets_hi1[0x4] = p70;	dit_offsets_hi2[0x4] = p10;	dit_offsets_hi3[0x4] = pc0;
		dit_offsets_hi1[0x5] = p60;	dit_offsets_hi2[0x5] =   0;	dit_offsets_hi3[0x5] = pd0;
		dit_offsets_hi1[0x6] = p50;	dit_offsets_hi2[0x6] = p20;	dit_offsets_hi3[0x6] = pf0;
		dit_offsets_hi1[0x7] = p40;	dit_offsets_hi2[0x7] = p30;	dit_offsets_hi3[0x7] = pe0;
		dit_offsets_hi1[0x8] = pf0;	dit_offsets_hi2[0x8] = p90;	dit_offsets_hi3[0x8] = p20;
		dit_offsets_hi1[0x9] = pe0;	dit_offsets_hi2[0x9] = p80;	dit_offsets_hi3[0x9] = p30;
		dit_offsets_hi1[0xa] = pd0;	dit_offsets_hi2[0xa] = pa0;	dit_offsets_hi3[0xa] =   0;
		dit_offsets_hi1[0xb] = pc0;	dit_offsets_hi2[0xb] = pb0;	dit_offsets_hi3[0xb] = p10;
		dit_offsets_hi1[0xc] = pb0;	dit_offsets_hi2[0xc] = pe0;	dit_offsets_hi3[0xc] = p40;
		dit_offsets_hi1[0xd] = pa0;	dit_offsets_hi2[0xd] = pf0;	dit_offsets_hi3[0xd] = p50;
		dit_offsets_hi1[0xe] = p90;	dit_offsets_hi2[0xe] = pc0;	dit_offsets_hi3[0xe] = p70;
		dit_offsets_hi1[0xf] = p80;	dit_offsets_hi2[0xf] = pd0;	dit_offsets_hi3[0xf] = p60;

	  #ifndef USE_SSE2
		// Idx offsets w.r.to r-array are const and shared by both sets of radix-256 transforms:
		// low parts in first 16 slots, high parts in next 16:
		t_offsets_lo[0x0] = 0x00<<1;	t_offsets_hi[0x0] = 0x00<<1;
		t_offsets_lo[0x1] = 0x01<<1;	t_offsets_hi[0x1] = 0x10<<1;
		t_offsets_lo[0x2] = 0x02<<1;	t_offsets_hi[0x2] = 0x20<<1;
		t_offsets_lo[0x3] = 0x03<<1;	t_offsets_hi[0x3] = 0x30<<1;
		t_offsets_lo[0x4] = 0x04<<1;	t_offsets_hi[0x4] = 0x40<<1;
		t_offsets_lo[0x5] = 0x05<<1;	t_offsets_hi[0x5] = 0x50<<1;
		t_offsets_lo[0x6] = 0x06<<1;	t_offsets_hi[0x6] = 0x60<<1;
		t_offsets_lo[0x7] = 0x07<<1;	t_offsets_hi[0x7] = 0x70<<1;
		t_offsets_lo[0x8] = 0x08<<1;	t_offsets_hi[0x8] = 0x80<<1;
		t_offsets_lo[0x9] = 0x09<<1;	t_offsets_hi[0x9] = 0x90<<1;
		t_offsets_lo[0xa] = 0x0a<<1;	t_offsets_hi[0xa] = 0xa0<<1;
		t_offsets_lo[0xb] = 0x0b<<1;	t_offsets_hi[0xb] = 0xb0<<1;
		t_offsets_lo[0xc] = 0x0c<<1;	t_offsets_hi[0xc] = 0xc0<<1;
		t_offsets_lo[0xd] = 0x0d<<1;	t_offsets_hi[0xd] = 0xd0<<1;
		t_offsets_lo[0xe] = 0x0e<<1;	t_offsets_hi[0xe] = 0xe0<<1;
		t_offsets_lo[0xf] = 0x0f<<1;	t_offsets_hi[0xf] = 0xf0<<1;
	  #endif

	// Cf. radix768_dif_pass1() for details on the indexing scheme used here:
	// Set dit_offsets_lo for the 4 subvectors shared by the 3 sets of radix-256 DIT inputs:
		dif_offsets_lo[0x00] =  0;	dif_offsets_lo[0x10] = p5;	dif_offsets_lo[0x20] = pa;	dif_offsets_lo[0x30] = pf;
		dif_offsets_lo[0x01] = p1;	dif_offsets_lo[0x11] = p4;	dif_offsets_lo[0x21] = pb;	dif_offsets_lo[0x31] = pe;
		dif_offsets_lo[0x02] = p2;	dif_offsets_lo[0x12] = p7;	dif_offsets_lo[0x22] = p9;	dif_offsets_lo[0x32] = pc;
		dif_offsets_lo[0x03] = p3;	dif_offsets_lo[0x13] = p6;	dif_offsets_lo[0x23] = p8;	dif_offsets_lo[0x33] = pd;
		dif_offsets_lo[0x04] = p5;	dif_offsets_lo[0x14] = p2;	dif_offsets_lo[0x24] = pf;	dif_offsets_lo[0x34] = p9;
		dif_offsets_lo[0x05] = p4;	dif_offsets_lo[0x15] = p3;	dif_offsets_lo[0x25] = pe;	dif_offsets_lo[0x35] = p8;
		dif_offsets_lo[0x06] = p7;	dif_offsets_lo[0x16] = p1;	dif_offsets_lo[0x26] = pc;	dif_offsets_lo[0x36] = pb;
		dif_offsets_lo[0x07] = p6;	dif_offsets_lo[0x17] =  0;	dif_offsets_lo[0x27] = pd;	dif_offsets_lo[0x37] = pa;
		dif_offsets_lo[0x08] = pa;	dif_offsets_lo[0x18] = pf;	dif_offsets_lo[0x28] = p5;	dif_offsets_lo[0x38] = p2;
		dif_offsets_lo[0x09] = pb;	dif_offsets_lo[0x19] = pe;	dif_offsets_lo[0x29] = p4;	dif_offsets_lo[0x39] = p3;
		dif_offsets_lo[0x0a] = p9;	dif_offsets_lo[0x1a] = pc;	dif_offsets_lo[0x2a] = p7;	dif_offsets_lo[0x3a] = p1;
		dif_offsets_lo[0x0b] = p8;	dif_offsets_lo[0x1b] = pd;	dif_offsets_lo[0x2b] = p6;	dif_offsets_lo[0x3b] =  0;
		dif_offsets_lo[0x0c] = pf;	dif_offsets_lo[0x1c] = p9;	dif_offsets_lo[0x2c] = p2;	dif_offsets_lo[0x3c] = p7;
		dif_offsets_lo[0x0d] = pe;	dif_offsets_lo[0x1d] = p8;	dif_offsets_lo[0x2d] = p3;	dif_offsets_lo[0x3d] = p6;
		dif_offsets_lo[0x0e] = pc;	dif_offsets_lo[0x1e] = pb;	dif_offsets_lo[0x2e] = p1;	dif_offsets_lo[0x3e] = p4;
		dif_offsets_lo[0x0f] = pd;	dif_offsets_lo[0x1f] = pa;	dif_offsets_lo[0x2f] =  0;	dif_offsets_lo[0x3f] = p5;

	// ...and one distinct high-part vector for each radix-256 DFT:
		dif_offsets_hi1[0x0] =   0;	dif_offsets_hi2[0x0] = p50;	dif_offsets_hi3[0x0] = pa0;
		dif_offsets_hi1[0x1] = p10;	dif_offsets_hi2[0x1] = p40;	dif_offsets_hi3[0x1] = pb0;
		dif_offsets_hi1[0x2] = p20;	dif_offsets_hi2[0x2] = p70;	dif_offsets_hi3[0x2] = p90;
		dif_offsets_hi1[0x3] = p30;	dif_offsets_hi2[0x3] = p60;	dif_offsets_hi3[0x3] = p80;
		dif_offsets_hi1[0x4] = p50;	dif_offsets_hi2[0x4] = p20;	dif_offsets_hi3[0x4] = pf0;
		dif_offsets_hi1[0x5] = p40;	dif_offsets_hi2[0x5] = p30;	dif_offsets_hi3[0x5] = pe0;
		dif_offsets_hi1[0x6] = p70;	dif_offsets_hi2[0x6] = p10;	dif_offsets_hi3[0x6] = pc0;
		dif_offsets_hi1[0x7] = p60;	dif_offsets_hi2[0x7] =   0;	dif_offsets_hi3[0x7] = pd0;
		dif_offsets_hi1[0x8] = pa0;	dif_offsets_hi2[0x8] = pf0;	dif_offsets_hi3[0x8] = p50;
		dif_offsets_hi1[0x9] = pb0;	dif_offsets_hi2[0x9] = pe0;	dif_offsets_hi3[0x9] = p40;
		dif_offsets_hi1[0xa] = p90;	dif_offsets_hi2[0xa] = pc0;	dif_offsets_hi3[0xa] = p70;
		dif_offsets_hi1[0xb] = p80;	dif_offsets_hi2[0xb] = pd0;	dif_offsets_hi3[0xb] = p60;
		dif_offsets_hi1[0xc] = pf0;	dif_offsets_hi2[0xc] = p90;	dif_offsets_hi3[0xc] = p20;
		dif_offsets_hi1[0xd] = pe0;	dif_offsets_hi2[0xd] = p80;	dif_offsets_hi3[0xd] = p30;
		dif_offsets_hi1[0xe] = pc0;	dif_offsets_hi2[0xe] = pb0;	dif_offsets_hi3[0xe] = p10;
		dif_offsets_hi1[0xf] = pd0;	dif_offsets_hi2[0xf] = pa0;	dif_offsets_hi3[0xf] =   0;

	// DIF Index-high-bits triplets needed for compact-obj-code scheme:
	  #ifdef USE_SSE2
		k = 0;	// In SIMD mode these are 0xtr-offsets w.r.to a local store:
		dif_triplets[k] = 0x2f0; dif_triplets[k+1] = 0x1f0; dif_triplets[k+2] = 0x0f0; k += 3;
		dif_triplets[k] = 0x2e0; dif_triplets[k+1] = 0x1e0; dif_triplets[k+2] = 0x0e0; k += 3;
		dif_triplets[k] = 0x2d0; dif_triplets[k+1] = 0x1d0; dif_triplets[k+2] = 0x0d0; k += 3;
		dif_triplets[k] = 0x2c0; dif_triplets[k+1] = 0x1c0; dif_triplets[k+2] = 0x0c0; k += 3;
		dif_triplets[k] = 0x2b0; dif_triplets[k+1] = 0x1b0; dif_triplets[k+2] = 0x0b0; k += 3;
		dif_triplets[k] = 0x2a0; dif_triplets[k+1] = 0x1a0; dif_triplets[k+2] = 0x0a0; k += 3;
		dif_triplets[k] = 0x290; dif_triplets[k+1] = 0x190; dif_triplets[k+2] = 0x090; k += 3;
		dif_triplets[k] = 0x280; dif_triplets[k+1] = 0x180; dif_triplets[k+2] = 0x080; k += 3;
		dif_triplets[k] = 0x270; dif_triplets[k+1] = 0x170; dif_triplets[k+2] = 0x070; k += 3;
		dif_triplets[k] = 0x260; dif_triplets[k+1] = 0x160; dif_triplets[k+2] = 0x060; k += 3;
		dif_triplets[k] = 0x250; dif_triplets[k+1] = 0x150; dif_triplets[k+2] = 0x050; k += 3;
		dif_triplets[k] = 0x240; dif_triplets[k+1] = 0x140; dif_triplets[k+2] = 0x040; k += 3;
		dif_triplets[k] = 0x230; dif_triplets[k+1] = 0x130; dif_triplets[k+2] = 0x030; k += 3;
		dif_triplets[k] = 0x220; dif_triplets[k+1] = 0x120; dif_triplets[k+2] = 0x020; k += 3;
		dif_triplets[k] = 0x210; dif_triplets[k+1] = 0x110; dif_triplets[k+2] = 0x010; k += 3;
		dif_triplets[k] = 0x200; dif_triplets[k+1] = 0x100; dif_triplets[k+2] = 0x000; k += 3;
		dif_triplets[k] = 0x1f0; dif_triplets[k+1] = 0x0f0; dif_triplets[k+2] = 0x2f0; k += 3;
		dif_triplets[k] = 0x1e0; dif_triplets[k+1] = 0x0e0; dif_triplets[k+2] = 0x2e0; k += 3;
		dif_triplets[k] = 0x1d0; dif_triplets[k+1] = 0x0d0; dif_triplets[k+2] = 0x2d0; k += 3;
		dif_triplets[k] = 0x1c0; dif_triplets[k+1] = 0x0c0; dif_triplets[k+2] = 0x2c0; k += 3;
		dif_triplets[k] = 0x1b0; dif_triplets[k+1] = 0x0b0; dif_triplets[k+2] = 0x2b0; k += 3;
		dif_triplets[k] = 0x1a0; dif_triplets[k+1] = 0x0a0; dif_triplets[k+2] = 0x2a0; k += 3;
		dif_triplets[k] = 0x190; dif_triplets[k+1] = 0x090; dif_triplets[k+2] = 0x290; k += 3;
		dif_triplets[k] = 0x180; dif_triplets[k+1] = 0x080; dif_triplets[k+2] = 0x280; k += 3;
		dif_triplets[k] = 0x170; dif_triplets[k+1] = 0x070; dif_triplets[k+2] = 0x270; k += 3;
		dif_triplets[k] = 0x160; dif_triplets[k+1] = 0x060; dif_triplets[k+2] = 0x260; k += 3;
		dif_triplets[k] = 0x150; dif_triplets[k+1] = 0x050; dif_triplets[k+2] = 0x250; k += 3;
		dif_triplets[k] = 0x140; dif_triplets[k+1] = 0x040; dif_triplets[k+2] = 0x240; k += 3;
		dif_triplets[k] = 0x130; dif_triplets[k+1] = 0x030; dif_triplets[k+2] = 0x230; k += 3;
		dif_triplets[k] = 0x120; dif_triplets[k+1] = 0x020; dif_triplets[k+2] = 0x220; k += 3;
		dif_triplets[k] = 0x110; dif_triplets[k+1] = 0x010; dif_triplets[k+2] = 0x210; k += 3;
		dif_triplets[k] = 0x100; dif_triplets[k+1] = 0x000; dif_triplets[k+2] = 0x200; k += 3;
		dif_triplets[k] = 0x0f0; dif_triplets[k+1] = 0x2f0; dif_triplets[k+2] = 0x1f0; k += 3;
		dif_triplets[k] = 0x0e0; dif_triplets[k+1] = 0x2e0; dif_triplets[k+2] = 0x1e0; k += 3;
		dif_triplets[k] = 0x0d0; dif_triplets[k+1] = 0x2d0; dif_triplets[k+2] = 0x1d0; k += 3;
		dif_triplets[k] = 0x0c0; dif_triplets[k+1] = 0x2c0; dif_triplets[k+2] = 0x1c0; k += 3;
		dif_triplets[k] = 0x0b0; dif_triplets[k+1] = 0x2b0; dif_triplets[k+2] = 0x1b0; k += 3;
		dif_triplets[k] = 0x0a0; dif_triplets[k+1] = 0x2a0; dif_triplets[k+2] = 0x1a0; k += 3;
		dif_triplets[k] = 0x090; dif_triplets[k+1] = 0x290; dif_triplets[k+2] = 0x190; k += 3;
		dif_triplets[k] = 0x080; dif_triplets[k+1] = 0x280; dif_triplets[k+2] = 0x180; k += 3;
		dif_triplets[k] = 0x070; dif_triplets[k+1] = 0x270; dif_triplets[k+2] = 0x170; k += 3;
		dif_triplets[k] = 0x060; dif_triplets[k+1] = 0x260; dif_triplets[k+2] = 0x160; k += 3;
		dif_triplets[k] = 0x050; dif_triplets[k+1] = 0x250; dif_triplets[k+2] = 0x150; k += 3;
		dif_triplets[k] = 0x040; dif_triplets[k+1] = 0x240; dif_triplets[k+2] = 0x140; k += 3;
		dif_triplets[k] = 0x030; dif_triplets[k+1] = 0x230; dif_triplets[k+2] = 0x130; k += 3;
		dif_triplets[k] = 0x020; dif_triplets[k+1] = 0x220; dif_triplets[k+2] = 0x120; k += 3;
		dif_triplets[k] = 0x010; dif_triplets[k+1] = 0x210; dif_triplets[k+2] = 0x110; k += 3;
		dif_triplets[k] = 0x000; dif_triplets[k+1] = 0x200; dif_triplets[k+2] = 0x100;
		// IN SIMD mode need to double all the above to turn from vec_dbl to vec_cmplx ptr offsets:
		for(l = 0; l < 144; l++) {
			dif_triplets[l] <<= 1;
		}
	  #else
		k = 0;
		dif_triplets[k] = p2f0; dif_triplets[k+1] = p1f0; dif_triplets[k+2] = pf0; k += 3;
		dif_triplets[k] = p2e0; dif_triplets[k+1] = p1e0; dif_triplets[k+2] = pe0; k += 3;
		dif_triplets[k] = p2d0; dif_triplets[k+1] = p1d0; dif_triplets[k+2] = pd0; k += 3;
		dif_triplets[k] = p2c0; dif_triplets[k+1] = p1c0; dif_triplets[k+2] = pc0; k += 3;
		dif_triplets[k] = p2b0; dif_triplets[k+1] = p1b0; dif_triplets[k+2] = pb0; k += 3;
		dif_triplets[k] = p2a0; dif_triplets[k+1] = p1a0; dif_triplets[k+2] = pa0; k += 3;
		dif_triplets[k] = p290; dif_triplets[k+1] = p190; dif_triplets[k+2] = p90; k += 3;
		dif_triplets[k] = p280; dif_triplets[k+1] = p180; dif_triplets[k+2] = p80; k += 3;
		dif_triplets[k] = p270; dif_triplets[k+1] = p170; dif_triplets[k+2] = p70; k += 3;
		dif_triplets[k] = p260; dif_triplets[k+1] = p160; dif_triplets[k+2] = p60; k += 3;
		dif_triplets[k] = p250; dif_triplets[k+1] = p150; dif_triplets[k+2] = p50; k += 3;
		dif_triplets[k] = p240; dif_triplets[k+1] = p140; dif_triplets[k+2] = p40; k += 3;
		dif_triplets[k] = p230; dif_triplets[k+1] = p130; dif_triplets[k+2] = p30; k += 3;
		dif_triplets[k] = p220; dif_triplets[k+1] = p120; dif_triplets[k+2] = p20; k += 3;
		dif_triplets[k] = p210; dif_triplets[k+1] = p110; dif_triplets[k+2] = p10; k += 3;
		dif_triplets[k] = p200; dif_triplets[k+1] = p100; dif_triplets[k+2] =   0; k += 3;
		dif_triplets[k] = p1f0; dif_triplets[k+1] = pf0; dif_triplets[k+2] = p2f0; k += 3;
		dif_triplets[k] = p1e0; dif_triplets[k+1] = pe0; dif_triplets[k+2] = p2e0; k += 3;
		dif_triplets[k] = p1d0; dif_triplets[k+1] = pd0; dif_triplets[k+2] = p2d0; k += 3;
		dif_triplets[k] = p1c0; dif_triplets[k+1] = pc0; dif_triplets[k+2] = p2c0; k += 3;
		dif_triplets[k] = p1b0; dif_triplets[k+1] = pb0; dif_triplets[k+2] = p2b0; k += 3;
		dif_triplets[k] = p1a0; dif_triplets[k+1] = pa0; dif_triplets[k+2] = p2a0; k += 3;
		dif_triplets[k] = p190; dif_triplets[k+1] = p90; dif_triplets[k+2] = p290; k += 3;
		dif_triplets[k] = p180; dif_triplets[k+1] = p80; dif_triplets[k+2] = p280; k += 3;
		dif_triplets[k] = p170; dif_triplets[k+1] = p70; dif_triplets[k+2] = p270; k += 3;
		dif_triplets[k] = p160; dif_triplets[k+1] = p60; dif_triplets[k+2] = p260; k += 3;
		dif_triplets[k] = p150; dif_triplets[k+1] = p50; dif_triplets[k+2] = p250; k += 3;
		dif_triplets[k] = p140; dif_triplets[k+1] = p40; dif_triplets[k+2] = p240; k += 3;
		dif_triplets[k] = p130; dif_triplets[k+1] = p30; dif_triplets[k+2] = p230; k += 3;
		dif_triplets[k] = p120; dif_triplets[k+1] = p20; dif_triplets[k+2] = p220; k += 3;
		dif_triplets[k] = p110; dif_triplets[k+1] = p10; dif_triplets[k+2] = p210; k += 3;
		dif_triplets[k] = p100; dif_triplets[k+1] =   0; dif_triplets[k+2] = p200; k += 3;
		dif_triplets[k] = pf0; dif_triplets[k+1] = p2f0; dif_triplets[k+2] = p1f0; k += 3;
		dif_triplets[k] = pe0; dif_triplets[k+1] = p2e0; dif_triplets[k+2] = p1e0; k += 3;
		dif_triplets[k] = pd0; dif_triplets[k+1] = p2d0; dif_triplets[k+2] = p1d0; k += 3;
		dif_triplets[k] = pc0; dif_triplets[k+1] = p2c0; dif_triplets[k+2] = p1c0; k += 3;
		dif_triplets[k] = pb0; dif_triplets[k+1] = p2b0; dif_triplets[k+2] = p1b0; k += 3;
		dif_triplets[k] = pa0; dif_triplets[k+1] = p2a0; dif_triplets[k+2] = p1a0; k += 3;
		dif_triplets[k] = p90; dif_triplets[k+1] = p290; dif_triplets[k+2] = p190; k += 3;
		dif_triplets[k] = p80; dif_triplets[k+1] = p280; dif_triplets[k+2] = p180; k += 3;
		dif_triplets[k] = p70; dif_triplets[k+1] = p270; dif_triplets[k+2] = p170; k += 3;
		dif_triplets[k] = p60; dif_triplets[k+1] = p260; dif_triplets[k+2] = p160; k += 3;
		dif_triplets[k] = p50; dif_triplets[k+1] = p250; dif_triplets[k+2] = p150; k += 3;
		dif_triplets[k] = p40; dif_triplets[k+1] = p240; dif_triplets[k+2] = p140; k += 3;
		dif_triplets[k] = p30; dif_triplets[k+1] = p230; dif_triplets[k+2] = p130; k += 3;
		dif_triplets[k] = p20; dif_triplets[k+1] = p220; dif_triplets[k+2] = p120; k += 3;
		dif_triplets[k] = p10; dif_triplets[k+1] = p210; dif_triplets[k+2] = p110; k += 3;
		dif_triplets[k] =   0; dif_triplets[k+1] = p200; dif_triplets[k+2] = p100;
	  #endif
	// DIT Index-high-bits triplets needed for compact-obj-code scheme:
	  #ifdef USE_SSE2
		k = 0;	// In SIMD mode these are ptr-offsets w.r.to a local store:
		dit_triplets[k] = 0x0f0; dit_triplets[k+1] = 0x1f0; dit_triplets[k+2] = 0x2f0; k += 3;
		dit_triplets[k] = 0x1e0; dit_triplets[k+1] = 0x2e0; dit_triplets[k+2] = 0x0e0; k += 3;
		dit_triplets[k] = 0x2d0; dit_triplets[k+1] = 0x0d0; dit_triplets[k+2] = 0x1d0; k += 3;
		dit_triplets[k] = 0x0c0; dit_triplets[k+1] = 0x1c0; dit_triplets[k+2] = 0x2c0; k += 3;
		dit_triplets[k] = 0x1b0; dit_triplets[k+1] = 0x2b0; dit_triplets[k+2] = 0x0b0; k += 3;
		dit_triplets[k] = 0x2a0; dit_triplets[k+1] = 0x0a0; dit_triplets[k+2] = 0x1a0; k += 3;
		dit_triplets[k] = 0x090; dit_triplets[k+1] = 0x190; dit_triplets[k+2] = 0x290; k += 3;
		dit_triplets[k] = 0x180; dit_triplets[k+1] = 0x280; dit_triplets[k+2] = 0x080; k += 3;
		dit_triplets[k] = 0x270; dit_triplets[k+1] = 0x070; dit_triplets[k+2] = 0x170; k += 3;
		dit_triplets[k] = 0x060; dit_triplets[k+1] = 0x160; dit_triplets[k+2] = 0x260; k += 3;
		dit_triplets[k] = 0x150; dit_triplets[k+1] = 0x250; dit_triplets[k+2] = 0x050; k += 3;
		dit_triplets[k] = 0x240; dit_triplets[k+1] = 0x040; dit_triplets[k+2] = 0x140; k += 3;
		dit_triplets[k] = 0x030; dit_triplets[k+1] = 0x130; dit_triplets[k+2] = 0x230; k += 3;
		dit_triplets[k] = 0x120; dit_triplets[k+1] = 0x220; dit_triplets[k+2] = 0x020; k += 3;
		dit_triplets[k] = 0x210; dit_triplets[k+1] = 0x010; dit_triplets[k+2] = 0x110; k += 3;
		dit_triplets[k] = 0x000; dit_triplets[k+1] = 0x100; dit_triplets[k+2] = 0x200;
		// IN SIMD mode need to double all the above to turn from vec_dbl to vec_cmplx ptr offsets:
		for(l = 0; l < 48; l++) {
			dit_triplets[l] <<= 1;
		}
	  #else
		k = 0;
		dit_triplets[k] =  pf0; dit_triplets[k+1] = p1f0; dit_triplets[k+2] = p2f0; k += 3;
		dit_triplets[k] = p1e0; dit_triplets[k+1] = p2e0; dit_triplets[k+2] =  pe0; k += 3;
		dit_triplets[k] = p2d0; dit_triplets[k+1] =  pd0; dit_triplets[k+2] = p1d0; k += 3;
		dit_triplets[k] =  pc0; dit_triplets[k+1] = p1c0; dit_triplets[k+2] = p2c0; k += 3;
		dit_triplets[k] = p1b0; dit_triplets[k+1] = p2b0; dit_triplets[k+2] =  pb0; k += 3;
		dit_triplets[k] = p2a0; dit_triplets[k+1] =  pa0; dit_triplets[k+2] = p1a0; k += 3;
		dit_triplets[k] =  p90; dit_triplets[k+1] = p190; dit_triplets[k+2] = p290; k += 3;
		dit_triplets[k] = p180; dit_triplets[k+1] = p280; dit_triplets[k+2] =  p80; k += 3;
		dit_triplets[k] = p270; dit_triplets[k+1] =  p70; dit_triplets[k+2] = p170; k += 3;
		dit_triplets[k] =  p60; dit_triplets[k+1] = p160; dit_triplets[k+2] = p260; k += 3;
		dit_triplets[k] = p150; dit_triplets[k+1] = p250; dit_triplets[k+2] =  p50; k += 3;
		dit_triplets[k] = p240; dit_triplets[k+1] =  p40; dit_triplets[k+2] = p140; k += 3;
		dit_triplets[k] =  p30; dit_triplets[k+1] = p130; dit_triplets[k+2] = p230; k += 3;
		dit_triplets[k] = p120; dit_triplets[k+1] = p220; dit_triplets[k+2] =  p20; k += 3;
		dit_triplets[k] = p210; dit_triplets[k+1] =  p10; dit_triplets[k+2] = p110; k += 3;
		dit_triplets[k] =    0; dit_triplets[k+1] = p100; dit_triplets[k+2] = p200;
	  #endif
	#endif	// MULTITHREAD ?

		if(_cy[0])	/* If it's a new exponent of a range test, need to deallocate these. */
		{
			free((void *)_i     ); _i      = 0x0;
			for(i = 0; i < RADIX; i++) {
				free((void *)_bjmodn[i]); _bjmodn[i] = 0x0;
				free((void *)    _cy[i]);     _cy[i] = 0x0;
			}
			free((void *)_jstart ); _jstart  = 0x0;
			free((void *)_jhi    ); _jhi     = 0x0;
			free((void *)_col   ); _col    = 0x0;
			free((void *)_co2   ); _co2    = 0x0;
			free((void *)_co3   ); _co3    = 0x0;
			free((void *)_bjmodnini); _bjmodnini = 0x0;
		}

		ptr_prod = (uint32)0;	/* Store bitmask for allocatable-array ptrs here, check vs 0 after all alloc calls finish */
		j = CY_THREADS*sizeof(int);
		_i       	= (int *)malloc(j);	ptr_prod += (uint32)(_i== 0x0);
		for(i = 0; i < RADIX; i++) {
			_bjmodn[i]	= (int *)malloc(j);	ptr_prod += (uint32)(_bjmodn[i]== 0x0);
		}
		_jstart  	= (int *)malloc(j);	ptr_prod += (uint32)(_jstart  == 0x0);
		_jhi     	= (int *)malloc(j);	ptr_prod += (uint32)(_jhi     == 0x0);
		_col     	= (int *)malloc(j);	ptr_prod += (uint32)(_col     == 0x0);
		_co2     	= (int *)malloc(j);	ptr_prod += (uint32)(_co2     == 0x0);
		_co3     	= (int *)malloc(j);	ptr_prod += (uint32)(_co3     == 0x0);

		j = CY_THREADS*sizeof(double);
		for(i = 0; i < RADIX; i++) {
			_cy[i]	= (double *)malloc(j);	ptr_prod += (uint32)(_cy[i]== 0x0);
		}

		ASSERT(HERE, ptr_prod == 0, "ERROR: unable to allocate one or more auxiliary arrays.");

		/* Create (THREADS + 1) copies of _bjmodnini and use the extra (uppermost) one to store the "master" increment,
		i.e. the one that n2/RADIX-separated FFT outputs need:
		*/
		_bjmodnini = (int *)malloc((CY_THREADS + 1)*sizeof(int));	if(!_bjmodnini){ sprintf(cbuf,"ERROR: unable to allocate array _bjmodnini in %s.\n",func); fprintf(stderr,"%s", cbuf);	ASSERT(HERE, 0,cbuf); }
		_bjmodnini[0] = 0;
		_bjmodnini[1] = 0;

		jhi = NDIVR/CY_THREADS;

		for(j=0; j < jhi; j++)
		{
			_bjmodnini[1] -= sw; _bjmodnini[1] = _bjmodnini[1] + ( (-(int)((uint32)_bjmodnini[1] >> 31)) & n);
		}

		if(CY_THREADS > 1)
		{
			for(ithread = 2; ithread <= CY_THREADS; ithread++)
			{
				_bjmodnini[ithread] = _bjmodnini[ithread-1] + _bjmodnini[1] - n; _bjmodnini[ithread] = _bjmodnini[ithread] + ( (-(int)((uint32)_bjmodnini[ithread] >> 31)) & n);
			}
		}
		/* Check upper element against scalar value, as precomputed in single-thread mode: */
		bjmodnini=0;
		for(j=0; j < jhi*CY_THREADS; j++)
		{
			bjmodnini -= sw; bjmodnini = bjmodnini + ( (-(int)((uint32)bjmodnini >> 31)) & n);
		}
		ASSERT(HERE, _bjmodnini[CY_THREADS] == bjmodnini,"_bjmodnini[CY_THREADS] != bjmodnini");

	#ifdef USE_PTHREAD
		/* Populate the elements of the thread-specific data structs which don't change after init: */
		for(ithread = 0; ithread < CY_THREADS; ithread++)
		{
			tdat[ithread].bjmodnini = _bjmodnini[CY_THREADS];
			tdat[ithread].bjmodn0 = _bjmodnini[ithread];
		#ifdef USE_SSE2
			tdat[ithread].r000 = __r0 + ithread*cslots_in_local_store;
			tdat[ithread].half_arr = (vec_dbl *)((long)tdat[ithread].r000 + ((long)half_arr - (long)r000));
		#else	// In scalar mode use these 2 ptrs to pass the base & baseinv arrays:
			tdat[ithread].r000     = (double *)base;
			tdat[ithread].half_arr = (double *)baseinv;
		#endif	// USE_SSE2
		}
	#endif

		first_entry=FALSE;
	}	/* endif(first_entry) */

	// Jun 2018: If LL test and shift applied, compute target index for data-processing loop.
	// Note that only 1 thread of the carry-processing set will hit the target, but all need the same logic to check for a hit:
	if(MODULUS_TYPE == MODULUS_TYPE_MERSENNE && TEST_TYPE == TEST_TYPE_PRIMALITY) {
		if(RES_SHIFT) {
			itmp64 = shift_word(a, n, p, RES_SHIFT, 0.0);	// Note return value (specifically high 7 bytes thereof) is an unpadded index
			target_idx = (int)(itmp64 >>  8);	// This still needs to be (mod NDIVR)'ed, but first use unmodded form to compute needed DWT weights
			// Compute wt = 2^(target_idx*sw % n)/n and its reciprocal:
			uint32 sw_idx_modn = ((uint64)target_idx*sw) % n;	// N is 32-bit, so only use 64-bit to hold intermediate product
			double target_wtfwd = pow(2.0, sw_idx_modn*0.5*n2inv);	// 0.5*n2inv = 0.5/(n/2) = 1.0/n
			target_set = target_idx*ndivr_inv;	// Which of the [RADIX] independent sub-carry-chains contains the target index?
			target_idx -= target_set*NDIVR;		// Fast computation of target_idx = (target_idx % NDIVR)
			// Now compute the doubles-pointer offset of the target double w.r.to the SIMD s1p00-... data layout:
			tidx_mod_stride = target_idx & (stride-1);	// Stride a power of 2, so can use AND-minus-1 for mod
			target_idx -= tidx_mod_stride;
		//	printf("Iter %d: cy_shift = %d, target_idx,tidx_mod_stride,target_set = %d,%d,%d\n",iter,(itmp64 & 255),target_idx,tidx_mod_stride,target_set);
		#ifdef USE_AVX512
			tidx_mod_stride = br16[tidx_mod_stride];
		#elif defined(USE_AVX)
			tidx_mod_stride = br8[tidx_mod_stride];
		#elif defined(USE_SSE2)
			tidx_mod_stride = br4[tidx_mod_stride];
		#endif
			target_set = (target_set<<(L2_SZ_VD-2)) + tidx_mod_stride;
			target_cy  = target_wtfwd * ((int)-2 << (itmp64 & 255));
		} else {
			target_idx = target_set = 0;
			target_cy = -2.0;
		}
	}

/*...The radix-768 final DIT pass is here.	*/

	/* init carries	*/
	for(ithread = 0; ithread < CY_THREADS; ithread++)
	{
		for(i = 0; i < RADIX; i++) {
			_cy[i][ithread] = 0;
		}
	}
  #if 0	//ndef USE_SSE2	*** v20: Non-SIMD builds now also support shifted-residue
	/* If an LL test, init the subtract-2: */
	if(MODULUS_TYPE == MODULUS_TYPE_MERSENNE && TEST_TYPE == TEST_TYPE_PRIMALITY)
	{
		_cy[0][0] = -2;
	}
  #endif
	*fracmax=0;	/* init max. fractional error	*/
	full_pass = 1;	/* set = 1 for normal carry pass, = 0 for wrapper pass	*/
	scale = n2inv;	// init inverse-weight scale factor = 2/n for normal carry pass, 1 for wrapper pass

for(outer=0; outer <= 1; outer++)
{
	_i[0] = 1;		/* Pointer to the BASE and BASEINV arrays. If n does not divide p, lowest-order digit is always a bigword (_i[0] = 1).	*/

	if(CY_THREADS > 1)
	{
		for(ithread = 1; ithread < CY_THREADS; ithread++)
		{
			_i[ithread] = ((uint32)(sw - _bjmodnini[ithread]) >> 31);
		}
	}

	/*
	Moved this inside the outer-loop, so on cleanup pass can use it to reset _col,_co2,_co3 starting values,
	then simply overwrite it with 1 prior to starting the k-loop.
	*/
	khi = n_div_nwt/CY_THREADS;
	j = _bjmodnini[CY_THREADS];
	// Include 0-thread here ... bjmodn terms all 0 for that, but need jhi computed for all threads:
	for(ithread = 0; ithread < CY_THREADS; ithread++)
	{
		_bjmodn[0][ithread] = _bjmodnini[ithread];
		for(i = 1; i < RADIX; i++) {
			MOD_ADD32(_bjmodn[i-1][ithread], j, n, _bjmodn[i][ithread]);
		}
		_jstart[ithread] = ithread*NDIVR/CY_THREADS;
		if(!full_pass)
			_jhi[ithread] = _jstart[ithread] + jhi_wrap;		/* Cleanup loop assumes carryins propagate at most 4 words up. */
		else
			_jhi[ithread] = _jstart[ithread] + nwt-1;

		_col[ithread] = ithread*(khi*RADIX);			/* col gets incremented by RADIX_VEC[0] on every pass through the k-loop */
		_co2[ithread] = (n>>nwt_bits)-1+RADIX - _col[ithread];	/* co2 gets decremented by RADIX_VEC[0] on every pass through the k-loop */
		_co3[ithread] = _co2[ithread]-RADIX;			/* At the start of each new j-loop, co3=co2-RADIX_VEC[0]	*/
	}

#ifdef USE_PTHREAD
	for(ithread = 0; ithread < CY_THREADS; ++ithread) { tdat[ithread].iter = iter; }
	if(MODULUS_TYPE == MODULUS_TYPE_MERSENNE)
	{
		// Carry-injection location for the shifted-residue -2 addend is only needed for full pass:
		if(full_pass) {
			tdat[0].target_idx = target_idx;
			tdat[0].target_set = target_set;
			tdat[0].target_cy  = target_cy;
		} else {
			tdat[0].target_idx = -1;
			tdat[0].target_set = 0;
			tdat[0].target_cy  = 0;
		}
		// Copy to the remaining threads:
		for(ithread = 1; ithread < CY_THREADS; ++ithread) {
			tdat[ithread].target_idx = tdat[0].target_idx;
			tdat[ithread].target_set = tdat[0].target_set;
			tdat[ithread].target_cy  = tdat[0].target_cy;
		}
	}
#endif
#ifdef USE_SSE2

	tmp = max_err;	VEC_DBL_INIT(tmp, 0.0);
	tm2 = tmp + cslots_in_local_store;
	for(ithread = 1; ithread < CY_THREADS; ++ithread) {
		memcpy(tm2, tmp, SZ_VD);
		tmp = tm2;		tm2 += cslots_in_local_store;
	}

#endif	// USE_PTHREAD

	/* Move this cleanup-pass-specific khi setting here, since need regular-pass khi value for above inits: */
	if(!full_pass)
	{
		khi = 1;
	}

#ifdef USE_PTHREAD
	/* Populate the thread-specific data structs - use the invariant terms as memchecks: */
	for(ithread = 0; ithread < CY_THREADS; ithread++)
	{
		tdat[ithread].iter = iter;
	// int data:
		ASSERT(HERE, tdat[ithread].tid == ithread, "thread-local memcheck fail!");
		ASSERT(HERE, tdat[ithread].ndivr == NDIVR, "thread-local memcheck fail!");

		tdat[ithread].khi    = khi;
		tdat[ithread].i      = _i[ithread];	/* Pointer to the BASE and BASEINV arrays.	*/
		tdat[ithread].jstart = _jstart[ithread];
		tdat[ithread].jhi    = _jhi[ithread];

		tdat[ithread].col = _col[ithread];
		tdat[ithread].co2 = _co2[ithread];
		tdat[ithread].co3 = _co3[ithread];
		ASSERT(HERE, tdat[ithread].sw  == sw, "thread-local memcheck fail!");
		ASSERT(HERE, tdat[ithread].nwt == nwt, "thread-local memcheck fail!");

	// double data:
		tdat[ithread].maxerr = 0.0;
		tdat[ithread].scale = scale;
		tdat[ithread].prp_mult = prp_mult;

	// pointer data:
		tdat[ithread].arrdat = a;			/* Main data array */
		ASSERT(HERE, tdat[ithread].wt0 == wt0, "thread-local memcheck fail!");
		ASSERT(HERE, tdat[ithread].wt1 == wt1, "thread-local memcheck fail!");
		ASSERT(HERE, tdat[ithread].si  == si, "thread-local memcheck fail!");
	#ifdef USE_SSE2
		ASSERT(HERE, tdat[ithread].r000 == __r0 + ithread*cslots_in_local_store, "thread-local memcheck fail!");
		tmp = tdat[ithread].half_arr;
	  #ifdef USE_AVX512	// In AVX-512 mode, use VRNDSCALEPD for rounding and hijack this vector-data slot for the 4 base/baseinv-consts
		ASSERT(HERE, ((tmp-1)->d0 == base[0] && (tmp-1)->d1 == baseinv[1] && (tmp-1)->d2 == wts_mult[1] && (tmp-1)->d3 == inv_mult[0]), "thread-local memcheck failed!");
	  #else
		ASSERT(HERE, ((tmp-1)->d0 == crnd && (tmp-1)->d1 == crnd), "thread-local memcheck failed!");
	  #endif
	  #ifdef USE_AVX512
			/* No-Op */
	  #elif defined(USE_AVX)
		// Grab some elt of base-data [offset by, say, +32] and mpy by its inverse [+16 further]
		dtmp = (tmp+40)->d0 * (tmp+56)->d0;	ASSERT(HERE, fabs(dtmp - 1.0) < EPS, "thread-local memcheck failed!");
		dtmp = (tmp+40)->d1 * (tmp+56)->d1;	ASSERT(HERE, fabs(dtmp - 1.0) < EPS, "thread-local memcheck failed!");
	  #else	// SSE2:
		dtmp = (tmp+10)->d0 * (tmp+14)->d0;	ASSERT(HERE, fabs(dtmp - 1.0) < EPS, "thread-local memcheck failed!");
		dtmp = (tmp+10)->d1 * (tmp+14)->d1;	ASSERT(HERE, fabs(dtmp - 1.0) < EPS, "thread-local memcheck failed!");
	  #endif
	#endif
		/* init carries: */
		for(i = 0; i < RADIX; i++) {
			tdat[ithread].cy[i] = _cy[i][ithread];
		}
	}
#endif

#ifdef USE_PTHREAD

	// If also using main thread to do work units, that task-dispatch occurs after all the threadpool-task launches:
	for(ithread = 0; ithread < pool_work_units; ithread++)
	{
		task_control.data = (void*)(&tdat[ithread]);
		threadpool_add_task(tpool, &task_control, task_is_blocking);

#else

	for(ithread = 0; ithread < CY_THREADS; ithread++)
	{
		if(full_pass) maxerr = 0.0;
	#ifdef USE_SSE2
	//	VEC_DBL_INIT(max_err, 0.0);	*** must do this in conjunction with thread-local-data-copy
	#endif

		i      = _i[ithread];	/* Pointer to the BASE and BASEINV arrays.	*/
		jstart = _jstart[ithread];
		jhi    = _jhi[ithread];

		col = _col[ithread];
		co2 = _co2[ithread];
		co3 = _co3[ithread];

		for(l = 0; l < RADIX; l++) {
			bjmodn[l] = _bjmodn[l][ithread];
		}
		/* init carries	*/
	#ifdef USE_AVX512
		tmp = cy;
		for(l = 0; l < RADIX; l += 8, ++tmp) {
			tmp->d0 = _cy[l  ][ithread];
			tmp->d1 = _cy[l+1][ithread];
			tmp->d2 = _cy[l+2][ithread];
			tmp->d3 = _cy[l+3][ithread];
			tmp->d4 = _cy[l+4][ithread];
			tmp->d5 = _cy[l+5][ithread];
			tmp->d6 = _cy[l+6][ithread];
			tmp->d7 = _cy[l+7][ithread];
		}
	#elif defined(USE_AVX)	// AVX and AVX2 both use 256-bit registers
		tmp = cy;
		for(l = 0; l < RADIX; l += 4, ++tmp) {
			tmp->d0 = _cy[l  ][ithread];
			tmp->d1 = _cy[l+1][ithread];
			tmp->d2 = _cy[l+2][ithread];
			tmp->d3 = _cy[l+3][ithread];
		}
	#elif defined(USE_SSE2)
		tmp = cy;
		for(l = 0; l < RADIX; l += 2, ++tmp) {
			tmp->d0 = _cy[l  ][ithread];
			tmp->d1 = _cy[l+1][ithread];
		}
	#else
		for(l = 0; l < RADIX; l++) {
			cy[l] = _cy[l][ithread];
		}
	#endif

		/********************************************************************************/
		/* This main loop is same for un-and-multithreaded, so stick into a header file */
		/* (can't use a macro because of the #if-enclosed stuff).                       */
		/********************************************************************************/
		#include "radix768_main_carry_loop.h"

	#ifdef USE_AVX512
		tmp = cy;
		for(l = 0; l < RADIX; l += 8, ++tmp) {
			_cy[l  ][ithread] = tmp->d0;
			_cy[l+1][ithread] = tmp->d1;
			_cy[l+2][ithread] = tmp->d2;
			_cy[l+3][ithread] = tmp->d3;
			_cy[l+4][ithread] = tmp->d4;
			_cy[l+5][ithread] = tmp->d5;
			_cy[l+6][ithread] = tmp->d6;
			_cy[l+7][ithread] = tmp->d7;
		}
		if(full_pass) {
			t0 = MAX(max_err->d0,max_err->d1);
			t1 = MAX(max_err->d2,max_err->d3);
			t2 = MAX(max_err->d4,max_err->d5);
			t3 = MAX(max_err->d6,max_err->d7);
			maxerr = MAX( MAX(t0,t1), MAX(t2,t3) );
		}
	#elif defined(USE_AVX)	// AVX and AVX2 both use 256-bit registers
		tmp = cy;
		for(l = 0; l < RADIX; l += 4, ++tmp) {
			_cy[l  ][ithread] = tmp->d0;
			_cy[l+1][ithread] = tmp->d1;
			_cy[l+2][ithread] = tmp->d2;
			_cy[l+3][ithread] = tmp->d3;
		}
		if(full_pass) maxerr = MAX( MAX(max_err->d0,max_err->d1) , MAX(max_err->d2,max_err->d3) );
	#elif defined(USE_SSE2)
		tmp = cy;
		for(l = 0; l < RADIX; l += 2, ++tmp) {
			_cy[l  ][ithread] = tmp->d0;
			_cy[l+1][ithread] = tmp->d1;
		}
		if(full_pass) maxerr = MAX(max_err->d0,max_err->d1);
	#else
		for(l = 0; l < RADIX; l++) {
			_cy[l][ithread] = cy[l];
		}
	#endif

  #endif	// #ifdef USE_PTHREAD

	}	/******* END OF PARALLEL FOR-LOOP ********/

#ifdef USE_PTHREAD	// End of threadpool-based dispatch: Add a small wait-loop to ensure all threads complete

  #if 0//def OS_TYPE_MACOSX

	/*** Main execution thread executes remaining chunks in serial fashion (but in || with the pool threads): ***/
	for(j = 0; j < main_work_units; ++j)
	{
	//	printf("adding main task %d\n",j + pool_work_units);
		ASSERT(HERE, 0x0 == cy768_process_chunk( (void*)(&tdat[j + pool_work_units]) ), "Main-thread task failure!");
	}

  #endif

	struct timespec ns_time;	// We want a sleep interval of 0.1 mSec here...
	ns_time.tv_sec  =      0;	// (time_t)seconds - Don't use this because under OS X it's of type __darwin_time_t, which is long rather than double as under most linux distros
	ns_time.tv_nsec = 100000;	// (long)nanoseconds - Get our desired 0.1 mSec as 10^5 nSec here

	while(tpool && tpool->free_tasks_queue.num_tasks != pool_work_units) {
		ASSERT(HERE, 0 == mlucas_nanosleep(&ns_time), "nanosleep fail!");
	}

	/* Copy the thread-specific output carry data back to shared memory: */
	for(ithread = 0; ithread < CY_THREADS; ithread++)
	{
		if(maxerr < tdat[ithread].maxerr) {
			maxerr = tdat[ithread].maxerr;
		}
		for(l = 0; l < RADIX; l++) {
			_cy[l][ithread] = tdat[ithread].cy[l];
		}
	}
#endif

	if(full_pass) {
	//	printf("Iter = %d, maxerr = %20.15f\n",iter,maxerr);
	} else {
		break;
	}

	/*   Wraparound carry cleanup loop is here:

	The cleanup carries from the end of each length-N/RADIX set of contiguous data into the begining of the next
	can all be neatly processed as follows:

	(1) Invert the forward DIF FFT of the first block of RADIX complex elements in A and unweight;
	(2) Propagate cleanup carries among the real and imaginary parts of the RADIX outputs of (1);
	(3) Reweight and perform a forward DIF FFT on the result of (2);
	(4) If any of the exit carries from (2) are nonzero, advance to the next RADIX elements and repeat (1-4).
	*/
	for(l = 0; l < RADIX; l++) {
		t[l].re = _cy[l][CY_THREADS - 1];
	}
	for(ithread = CY_THREADS - 1; ithread > 0; ithread--)
	{
		for(l = 0; l < RADIX; l++) {
			_cy[l][ithread] = _cy[l][ithread-1];
		}
	}
	_cy[0][0] =+t[RADIX-1].re;	/* ...The wraparound carry is here: */
	for(l = 1; l < RADIX; l++) {
		_cy[l][0] = t[l-1].re;
	}

	full_pass = 0;
	scale = prp_mult = 1;
	j_jhi = jhi_wrap;

	for(ithread = 0; ithread < CY_THREADS; ithread++)
	{
		for(j = ithread*pini; j <= ithread*pini + j_jhi; j++)
		{
			// Generate padded version of j, since prepadding pini is thread-count unsafe:
			j1 = j + ( (j >> DAT_BITS) << PAD_BITS );
			for(l = 0; l < RADIX>>2; l++) {
				jt = j1 + poff[l];
				a[jt   ] *= radix_inv;
				a[jt+p1] *= radix_inv;
				a[jt+p2] *= radix_inv;
				a[jt+p3] *= radix_inv;
			}
		}
	}
}	/* endfor(outer) */

	dtmp = 0;
	for(ithread = 0; ithread < CY_THREADS; ithread++)
	{
		for(l = 0; l < RADIX; l++) {
			dtmp += fabs(_cy[l][ithread]);
		}
		*fracmax = maxerr;
	}
	if(dtmp != 0.0)
	{
		sprintf(cbuf,"ERROR: iter = %10d; nonzero exit carry in %s - input wordsize may be too small.\n",iter,func);
		mlucas_fprint(cbuf,INTERACT);
		err = ERR_CARRY;
		return(err);
	}

	return(0);
}

/***************/

void radix768_dif_pass1(double a[], int n)
{
/*
!...Acronym: DIF = Decimation In Frequency
!
!...Subroutine to perform an initial radix-768 complex DIF FFT pass on the data in the length-N real vector A.
!
!   See the documentation in radix16_dif_pass for further details on storage and indexing.
!   See the documentation in radix3_dif_pass for details on the radix-3 subtransforms.
!   See the documentation in radix768_dif_pass for details on the twiddleless coprime-radix-DFTS setup.
*/
	int j,j1,j2,jp,jt;
	int k,l,l1,l2,k0,k1,k2;
	static int dif_triplets[144];
	// In order to preserve length-2 numeric-index-offset property here, use hex for digit:
	static int NDIVR, first_entry=TRUE,
		p1,p2,p3,p4,p5,p6,p7,p8,p9,pa,pb,pc,pd,pe,pf,
		     p10,p20,p30,p40,p50,p60,p70,p80,p90,pa0,pb0,pc0,pd0,pe0,pf0,
		p100,p110,p120,p130,p140,p150,p160,p170,p180,p190,p1a0,p1b0,p1c0,p1d0,p1e0,p1f0,
		p200,p210,p220,p230,p240,p250,p260,p270,p280,p290,p2a0,p2b0,p2c0,p2d0,p2e0,p2f0;
	const double c3m1 = -1.50000000000000000000, s = 0.86602540378443864675;	// cos(twopi/3)-1, sin(twopi/3)
	static int i_offsets_lo[16], i_offsets_hi[16];
	static int o_offsets_lo[64];	// 4 subsets of 16
	// Bitfields encoding the sequence of the o_offsets_lo subset0-3 vectors to use for each radix-256 DFT's outputs:
	const uint32 o_idx1 = 0xe79e79e4,o_idx2 = 0x79e79e79,o_idx3 = 0x9e79e79e;
	static int o_offsets_hi1[16],o_offsets_hi2[16],o_offsets_hi3[16];
	// Local storage: We must use an array here because scalars have no guarantees about relative address offsets
	// [and even if those are contiguous-as-hoped-for, they may run in reverse]; Make array type (struct complex)
	// to allow us to use the same offset-indexing as in the original radix-32 in-place DFT macros:
	struct complex t[RADIX];
	double t00,t01,t02,t03,t04,t05;

	if(!first_entry && (n/RADIX) != NDIVR)	/* New runlength?	*/
	{
		first_entry=TRUE;
	}

/*...initialize things upon first entry	*/

	if(first_entry)
	{
		first_entry=FALSE;
		NDIVR = n/RADIX;

		/*   constant index offsets for array load/stores are here.	*/
		p1 = NDIVR;		p10 = NDIVR<<4;		p100 = NDIVR<<8;		p200 = NDIVR<<9;
		p2 = p1 + p1;	p20 = p10 + p10;	p110 = p100 + p10;		p210 = p200 + p10;
		p3 = p2 + p1;	p30 = p20 + p10;	p120 = p110 + p10;		p220 = p210 + p10;
		p4 = p3 + p1;	p40 = p30 + p10;	p130 = p120 + p10;		p230 = p220 + p10;
		p5 = p4 + p1;	p50 = p40 + p10;	p140 = p130 + p10;		p240 = p230 + p10;
		p6 = p5 + p1;	p60 = p50 + p10;	p150 = p140 + p10;		p250 = p240 + p10;
		p7 = p6 + p1;	p70 = p60 + p10;	p160 = p150 + p10;		p260 = p250 + p10;
		p8 = p7 + p1;	p80 = p70 + p10;	p170 = p160 + p10;		p270 = p260 + p10;
		p9 = p8 + p1;	p90 = p80 + p10;	p180 = p170 + p10;		p280 = p270 + p10;
		pa = p9 + p1;	pa0 = p90 + p10;	p190 = p180 + p10;		p290 = p280 + p10;
		pb = pa + p1;	pb0 = pa0 + p10;	p1a0 = p190 + p10;		p2a0 = p290 + p10;
		pc = pb + p1;	pc0 = pb0 + p10;	p1b0 = p1a0 + p10;		p2b0 = p2a0 + p10;
		pd = pc + p1;	pd0 = pc0 + p10;	p1c0 = p1b0 + p10;		p2c0 = p2b0 + p10;
		pe = pd + p1;	pe0 = pd0 + p10;	p1d0 = p1c0 + p10;		p2d0 = p2c0 + p10;
		pf = pe + p1;	pf0 = pe0 + p10;	p1e0 = p1d0 + p10;		p2e0 = p2d0 + p10;
											p1f0 = p1e0 + p10;		p2f0 = p2e0 + p10;
		p1 += ( (p1 >> DAT_BITS) << PAD_BITS );
		p2 += ( (p2 >> DAT_BITS) << PAD_BITS );
		p3 += ( (p3 >> DAT_BITS) << PAD_BITS );
		p4 += ( (p4 >> DAT_BITS) << PAD_BITS );
		p5 += ( (p5 >> DAT_BITS) << PAD_BITS );
		p6 += ( (p6 >> DAT_BITS) << PAD_BITS );
		p7 += ( (p7 >> DAT_BITS) << PAD_BITS );
		p8 += ( (p8 >> DAT_BITS) << PAD_BITS );
		p9 += ( (p9 >> DAT_BITS) << PAD_BITS );
		pa += ( (pa >> DAT_BITS) << PAD_BITS );
		pb += ( (pb >> DAT_BITS) << PAD_BITS );
		pc += ( (pc >> DAT_BITS) << PAD_BITS );
		pd += ( (pd >> DAT_BITS) << PAD_BITS );
		pe += ( (pe >> DAT_BITS) << PAD_BITS );
		pf += ( (pf >> DAT_BITS) << PAD_BITS );
		p10 += ( (p10 >> DAT_BITS) << PAD_BITS );
		p20 += ( (p20 >> DAT_BITS) << PAD_BITS );
		p30 += ( (p30 >> DAT_BITS) << PAD_BITS );
		p40 += ( (p40 >> DAT_BITS) << PAD_BITS );
		p50 += ( (p50 >> DAT_BITS) << PAD_BITS );
		p60 += ( (p60 >> DAT_BITS) << PAD_BITS );
		p70 += ( (p70 >> DAT_BITS) << PAD_BITS );
		p80 += ( (p80 >> DAT_BITS) << PAD_BITS );
		p90 += ( (p90 >> DAT_BITS) << PAD_BITS );
		pa0 += ( (pa0 >> DAT_BITS) << PAD_BITS );
		pb0 += ( (pb0 >> DAT_BITS) << PAD_BITS );
		pc0 += ( (pc0 >> DAT_BITS) << PAD_BITS );
		pd0 += ( (pd0 >> DAT_BITS) << PAD_BITS );
		pe0 += ( (pe0 >> DAT_BITS) << PAD_BITS );
		pf0 += ( (pf0 >> DAT_BITS) << PAD_BITS );
		p100 += ( (p100 >> DAT_BITS) << PAD_BITS );
		p110 += ( (p110 >> DAT_BITS) << PAD_BITS );
		p120 += ( (p120 >> DAT_BITS) << PAD_BITS );
		p130 += ( (p130 >> DAT_BITS) << PAD_BITS );
		p140 += ( (p140 >> DAT_BITS) << PAD_BITS );
		p150 += ( (p150 >> DAT_BITS) << PAD_BITS );
		p160 += ( (p160 >> DAT_BITS) << PAD_BITS );
		p170 += ( (p170 >> DAT_BITS) << PAD_BITS );
		p180 += ( (p180 >> DAT_BITS) << PAD_BITS );
		p190 += ( (p190 >> DAT_BITS) << PAD_BITS );
		p1a0 += ( (p1a0 >> DAT_BITS) << PAD_BITS );
		p1b0 += ( (p1b0 >> DAT_BITS) << PAD_BITS );
		p1c0 += ( (p1c0 >> DAT_BITS) << PAD_BITS );
		p1d0 += ( (p1d0 >> DAT_BITS) << PAD_BITS );
		p1e0 += ( (p1e0 >> DAT_BITS) << PAD_BITS );
		p1f0 += ( (p1f0 >> DAT_BITS) << PAD_BITS );
		p200 += ( (p200 >> DAT_BITS) << PAD_BITS );
		p210 += ( (p210 >> DAT_BITS) << PAD_BITS );
		p220 += ( (p220 >> DAT_BITS) << PAD_BITS );
		p230 += ( (p230 >> DAT_BITS) << PAD_BITS );
		p240 += ( (p240 >> DAT_BITS) << PAD_BITS );
		p250 += ( (p250 >> DAT_BITS) << PAD_BITS );
		p260 += ( (p260 >> DAT_BITS) << PAD_BITS );
		p270 += ( (p270 >> DAT_BITS) << PAD_BITS );
		p280 += ( (p280 >> DAT_BITS) << PAD_BITS );
		p290 += ( (p290 >> DAT_BITS) << PAD_BITS );
		p2a0 += ( (p2a0 >> DAT_BITS) << PAD_BITS );
		p2b0 += ( (p2b0 >> DAT_BITS) << PAD_BITS );
		p2c0 += ( (p2c0 >> DAT_BITS) << PAD_BITS );
		p2d0 += ( (p2d0 >> DAT_BITS) << PAD_BITS );
		p2e0 += ( (p2e0 >> DAT_BITS) << PAD_BITS );
		p2f0 += ( (p2f0 >> DAT_BITS) << PAD_BITS );

	// Set array offsets for radix-256 inputs [these are same for all 3 such DFTs].
		// low parts in first 16 slots, high parts in next 16:
		i_offsets_lo[0x0] = 0x00<<1;	i_offsets_hi[0x0] = 0x00<<1;
		i_offsets_lo[0x1] = 0x01<<1;	i_offsets_hi[0x1] = 0x10<<1;
		i_offsets_lo[0x2] = 0x02<<1;	i_offsets_hi[0x2] = 0x20<<1;
		i_offsets_lo[0x3] = 0x03<<1;	i_offsets_hi[0x3] = 0x30<<1;
		i_offsets_lo[0x4] = 0x04<<1;	i_offsets_hi[0x4] = 0x40<<1;
		i_offsets_lo[0x5] = 0x05<<1;	i_offsets_hi[0x5] = 0x50<<1;
		i_offsets_lo[0x6] = 0x06<<1;	i_offsets_hi[0x6] = 0x60<<1;
		i_offsets_lo[0x7] = 0x07<<1;	i_offsets_hi[0x7] = 0x70<<1;
		i_offsets_lo[0x8] = 0x08<<1;	i_offsets_hi[0x8] = 0x80<<1;
		i_offsets_lo[0x9] = 0x09<<1;	i_offsets_hi[0x9] = 0x90<<1;
		i_offsets_lo[0xa] = 0x0a<<1;	i_offsets_hi[0xa] = 0xa0<<1;
		i_offsets_lo[0xb] = 0x0b<<1;	i_offsets_hi[0xb] = 0xb0<<1;
		i_offsets_lo[0xc] = 0x0c<<1;	i_offsets_hi[0xc] = 0xc0<<1;
		i_offsets_lo[0xd] = 0x0d<<1;	i_offsets_hi[0xd] = 0xd0<<1;
		i_offsets_lo[0xe] = 0x0e<<1;	i_offsets_hi[0xe] = 0xe0<<1;
		i_offsets_lo[0xf] = 0x0f<<1;	i_offsets_hi[0xf] = 0xf0<<1;

	// For the radix-256 outputs we need 4 distinct low-part vectors, which go into 4 16-element subsets of a [64]-vec.
	// These get used in the following sequence (encoded as a 32-bit int, 16 subfields of 2 bits each) for each DFT:
	// DFT #1: [0],[1],[2],[3],[1],[2],[3],[1],[2],[3],[1],[2],[3],[1],[2],[3] = 0xe79e79e4
	// DFT #2: [1],[2],[3],[1],[2],[3],[1],[2],[3],[1],[2],[3],[1],[2],[3],[1] = 0x79e79e79
	// DFT #3: [2],[3],[1],[2],[3],[1],[2],[3],[1],[2],[3],[1],[2],[3],[1],[2] = 0x9e79e79e
	// I.e. we start with vec0, use that just once, then cycle through 1,2,3 the rest if the way.
		o_offsets_lo[0x00] =  0;	o_offsets_lo[0x10] = p5;	o_offsets_lo[0x20] = pa;	o_offsets_lo[0x30] = pf;
		o_offsets_lo[0x01] = p1;	o_offsets_lo[0x11] = p4;	o_offsets_lo[0x21] = pb;	o_offsets_lo[0x31] = pe;
		o_offsets_lo[0x02] = p2;	o_offsets_lo[0x12] = p7;	o_offsets_lo[0x22] = p9;	o_offsets_lo[0x32] = pc;
		o_offsets_lo[0x03] = p3;	o_offsets_lo[0x13] = p6;	o_offsets_lo[0x23] = p8;	o_offsets_lo[0x33] = pd;
		o_offsets_lo[0x04] = p5;	o_offsets_lo[0x14] = p2;	o_offsets_lo[0x24] = pf;	o_offsets_lo[0x34] = p9;
		o_offsets_lo[0x05] = p4;	o_offsets_lo[0x15] = p3;	o_offsets_lo[0x25] = pe;	o_offsets_lo[0x35] = p8;
		o_offsets_lo[0x06] = p7;	o_offsets_lo[0x16] = p1;	o_offsets_lo[0x26] = pc;	o_offsets_lo[0x36] = pb;
		o_offsets_lo[0x07] = p6;	o_offsets_lo[0x17] =  0;	o_offsets_lo[0x27] = pd;	o_offsets_lo[0x37] = pa;
		o_offsets_lo[0x08] = pa;	o_offsets_lo[0x18] = pf;	o_offsets_lo[0x28] = p5;	o_offsets_lo[0x38] = p2;
		o_offsets_lo[0x09] = pb;	o_offsets_lo[0x19] = pe;	o_offsets_lo[0x29] = p4;	o_offsets_lo[0x39] = p3;
		o_offsets_lo[0x0a] = p9;	o_offsets_lo[0x1a] = pc;	o_offsets_lo[0x2a] = p7;	o_offsets_lo[0x3a] = p1;
		o_offsets_lo[0x0b] = p8;	o_offsets_lo[0x1b] = pd;	o_offsets_lo[0x2b] = p6;	o_offsets_lo[0x3b] =  0;
		o_offsets_lo[0x0c] = pf;	o_offsets_lo[0x1c] = p9;	o_offsets_lo[0x2c] = p2;	o_offsets_lo[0x3c] = p7;
		o_offsets_lo[0x0d] = pe;	o_offsets_lo[0x1d] = p8;	o_offsets_lo[0x2d] = p3;	o_offsets_lo[0x3d] = p6;
		o_offsets_lo[0x0e] = pc;	o_offsets_lo[0x1e] = pb;	o_offsets_lo[0x2e] = p1;	o_offsets_lo[0x3e] = p4;
		o_offsets_lo[0x0f] = pd;	o_offsets_lo[0x1f] = pa;	o_offsets_lo[0x2f] =  0;	o_offsets_lo[0x3f] = p5;

	// ...and one distinct high-part vector for each radix-256 DFT:
		o_offsets_hi1[0x0] =   0;	o_offsets_hi2[0x0] = p50;	o_offsets_hi3[0x0] = pa0;
		o_offsets_hi1[0x1] = p10;	o_offsets_hi2[0x1] = p40;	o_offsets_hi3[0x1] = pb0;
		o_offsets_hi1[0x2] = p20;	o_offsets_hi2[0x2] = p70;	o_offsets_hi3[0x2] = p90;
		o_offsets_hi1[0x3] = p30;	o_offsets_hi2[0x3] = p60;	o_offsets_hi3[0x3] = p80;
		o_offsets_hi1[0x4] = p50;	o_offsets_hi2[0x4] = p20;	o_offsets_hi3[0x4] = pf0;
		o_offsets_hi1[0x5] = p40;	o_offsets_hi2[0x5] = p30;	o_offsets_hi3[0x5] = pe0;
		o_offsets_hi1[0x6] = p70;	o_offsets_hi2[0x6] = p10;	o_offsets_hi3[0x6] = pc0;
		o_offsets_hi1[0x7] = p60;	o_offsets_hi2[0x7] =   0;	o_offsets_hi3[0x7] = pd0;
		o_offsets_hi1[0x8] = pa0;	o_offsets_hi2[0x8] = pf0;	o_offsets_hi3[0x8] = p50;
		o_offsets_hi1[0x9] = pb0;	o_offsets_hi2[0x9] = pe0;	o_offsets_hi3[0x9] = p40;
		o_offsets_hi1[0xa] = p90;	o_offsets_hi2[0xa] = pc0;	o_offsets_hi3[0xa] = p70;
		o_offsets_hi1[0xb] = p80;	o_offsets_hi2[0xb] = pd0;	o_offsets_hi3[0xb] = p60;
		o_offsets_hi1[0xc] = pf0;	o_offsets_hi2[0xc] = p90;	o_offsets_hi3[0xc] = p20;
		o_offsets_hi1[0xd] = pe0;	o_offsets_hi2[0xd] = p80;	o_offsets_hi3[0xd] = p30;
		o_offsets_hi1[0xe] = pc0;	o_offsets_hi2[0xe] = pb0;	o_offsets_hi3[0xe] = p10;
		o_offsets_hi1[0xf] = pd0;	o_offsets_hi2[0xf] = pa0;	o_offsets_hi3[0xf] =   0;

	// Index-high-bits triplets needed for compact-obj-code scheme:
		k = 0;
		dif_triplets[k] = p2f0; dif_triplets[k+1] = p1f0; dif_triplets[k+2] =  pf0; k += 3;
		dif_triplets[k] = p2e0; dif_triplets[k+1] = p1e0; dif_triplets[k+2] =  pe0; k += 3;
		dif_triplets[k] = p2d0; dif_triplets[k+1] = p1d0; dif_triplets[k+2] =  pd0; k += 3;
		dif_triplets[k] = p2c0; dif_triplets[k+1] = p1c0; dif_triplets[k+2] =  pc0; k += 3;
		dif_triplets[k] = p2b0; dif_triplets[k+1] = p1b0; dif_triplets[k+2] =  pb0; k += 3;
		dif_triplets[k] = p2a0; dif_triplets[k+1] = p1a0; dif_triplets[k+2] =  pa0; k += 3;
		dif_triplets[k] = p290; dif_triplets[k+1] = p190; dif_triplets[k+2] =  p90; k += 3;
		dif_triplets[k] = p280; dif_triplets[k+1] = p180; dif_triplets[k+2] =  p80; k += 3;
		dif_triplets[k] = p270; dif_triplets[k+1] = p170; dif_triplets[k+2] =  p70; k += 3;
		dif_triplets[k] = p260; dif_triplets[k+1] = p160; dif_triplets[k+2] =  p60; k += 3;
		dif_triplets[k] = p250; dif_triplets[k+1] = p150; dif_triplets[k+2] =  p50; k += 3;
		dif_triplets[k] = p240; dif_triplets[k+1] = p140; dif_triplets[k+2] =  p40; k += 3;
		dif_triplets[k] = p230; dif_triplets[k+1] = p130; dif_triplets[k+2] =  p30; k += 3;
		dif_triplets[k] = p220; dif_triplets[k+1] = p120; dif_triplets[k+2] =  p20; k += 3;
		dif_triplets[k] = p210; dif_triplets[k+1] = p110; dif_triplets[k+2] =  p10; k += 3;
		dif_triplets[k] = p200; dif_triplets[k+1] = p100; dif_triplets[k+2] =    0; k += 3;
		dif_triplets[k] = p1f0; dif_triplets[k+1] =  pf0; dif_triplets[k+2] = p2f0; k += 3;
		dif_triplets[k] = p1e0; dif_triplets[k+1] =  pe0; dif_triplets[k+2] = p2e0; k += 3;
		dif_triplets[k] = p1d0; dif_triplets[k+1] =  pd0; dif_triplets[k+2] = p2d0; k += 3;
		dif_triplets[k] = p1c0; dif_triplets[k+1] =  pc0; dif_triplets[k+2] = p2c0; k += 3;
		dif_triplets[k] = p1b0; dif_triplets[k+1] =  pb0; dif_triplets[k+2] = p2b0; k += 3;
		dif_triplets[k] = p1a0; dif_triplets[k+1] =  pa0; dif_triplets[k+2] = p2a0; k += 3;
		dif_triplets[k] = p190; dif_triplets[k+1] =  p90; dif_triplets[k+2] = p290; k += 3;
		dif_triplets[k] = p180; dif_triplets[k+1] =  p80; dif_triplets[k+2] = p280; k += 3;
		dif_triplets[k] = p170; dif_triplets[k+1] =  p70; dif_triplets[k+2] = p270; k += 3;
		dif_triplets[k] = p160; dif_triplets[k+1] =  p60; dif_triplets[k+2] = p260; k += 3;
		dif_triplets[k] = p150; dif_triplets[k+1] =  p50; dif_triplets[k+2] = p250; k += 3;
		dif_triplets[k] = p140; dif_triplets[k+1] =  p40; dif_triplets[k+2] = p240; k += 3;
		dif_triplets[k] = p130; dif_triplets[k+1] =  p30; dif_triplets[k+2] = p230; k += 3;
		dif_triplets[k] = p120; dif_triplets[k+1] =  p20; dif_triplets[k+2] = p220; k += 3;
		dif_triplets[k] = p110; dif_triplets[k+1] =  p10; dif_triplets[k+2] = p210; k += 3;
		dif_triplets[k] = p100; dif_triplets[k+1] =    0; dif_triplets[k+2] = p200; k += 3;
		dif_triplets[k] =  pf0; dif_triplets[k+1] = p2f0; dif_triplets[k+2] = p1f0; k += 3;
		dif_triplets[k] =  pe0; dif_triplets[k+1] = p2e0; dif_triplets[k+2] = p1e0; k += 3;
		dif_triplets[k] =  pd0; dif_triplets[k+1] = p2d0; dif_triplets[k+2] = p1d0; k += 3;
		dif_triplets[k] =  pc0; dif_triplets[k+1] = p2c0; dif_triplets[k+2] = p1c0; k += 3;
		dif_triplets[k] =  pb0; dif_triplets[k+1] = p2b0; dif_triplets[k+2] = p1b0; k += 3;
		dif_triplets[k] =  pa0; dif_triplets[k+1] = p2a0; dif_triplets[k+2] = p1a0; k += 3;
		dif_triplets[k] =  p90; dif_triplets[k+1] = p290; dif_triplets[k+2] = p190; k += 3;
		dif_triplets[k] =  p80; dif_triplets[k+1] = p280; dif_triplets[k+2] = p180; k += 3;
		dif_triplets[k] =  p70; dif_triplets[k+1] = p270; dif_triplets[k+2] = p170; k += 3;
		dif_triplets[k] =  p60; dif_triplets[k+1] = p260; dif_triplets[k+2] = p160; k += 3;
		dif_triplets[k] =  p50; dif_triplets[k+1] = p250; dif_triplets[k+2] = p150; k += 3;
		dif_triplets[k] =  p40; dif_triplets[k+1] = p240; dif_triplets[k+2] = p140; k += 3;
		dif_triplets[k] =  p30; dif_triplets[k+1] = p230; dif_triplets[k+2] = p130; k += 3;
		dif_triplets[k] =  p20; dif_triplets[k+1] = p220; dif_triplets[k+2] = p120; k += 3;
		dif_triplets[k] =  p10; dif_triplets[k+1] = p210; dif_triplets[k+2] = p110; k += 3;
		dif_triplets[k] =    0; dif_triplets[k+1] = p200; dif_triplets[k+2] = p100;

	}

/*...The radix-768 pass is here.	*/

	for(j = 0; j < NDIVR; j += 2)
	{
	#ifdef USE_AVX512
		j1 = (j & mask03) + br16[j&15];
	#elif defined(USE_AVX)
		j1 = (j & mask02) + br8[j&7];
	#elif defined(USE_SSE2)
		j1 = (j & mask01) + br4[j&3];
	#else
		j1 = j;
	#endif
		j1 += ( (j1>> DAT_BITS) << PAD_BITS );	/* padded-array fetch index is here */
		j2 = j1 + RE_IM_STRIDE;

	/*
	Twiddleless version arranges 256 sets of radix-3 DFT inputs as follows: 0 in upper left corner,
	decrement 256 horizontally and 3 vertically, all (mod 768). Break into 4 cols for readability,
	and insert blank rows to reveal 16-macro-calls subgroupings exploited by compact-obj-code scheme below:
		000,200,100 + p0	<*** Wrap this around to end...

		2f0,1f0,0f0 + pd		230,130,030 + pd		170,070,270 + pd		0b0,2b0,1b0 + pd
		2f0,1f0,0f0 + pa		230,130,030 + pa		170,070,270 + pa		0b0,2b0,1b0 + pa
		2f0,1f0,0f0 + p7		230,130,030 + p7		170,070,270 + p7		0b0,2b0,1b0 + p7
		2f0,1f0,0f0 + p4		230,130,030 + p4		170,070,270 + p4		0b0,2b0,1b0 + p4
		2f0,1f0,0f0 + p1		230,130,030 + p1		170,070,270 + p1		0b0,2b0,1b0 + p1
		2e0,1e0,0e0 + pe		220,120,020 + pe		160,060,260 + pe		0a0,2a0,1a0 + pe
		2e0,1e0,0e0 + pb		220,120,020 + pb		160,060,260 + pb		0a0,2a0,1a0 + pb
		2e0,1e0,0e0 + p8		220,120,020 + p8		160,060,260 + p8		0a0,2a0,1a0 + p8
		2e0,1e0,0e0 + p5		220,120,020 + p5		160,060,260 + p5		0a0,2a0,1a0 + p5
		2e0,1e0,0e0 + p2		220,120,020 + p2		160,060,260 + p2		0a0,2a0,1a0 + p2
		2d0,1d0,0d0 + pf		210,110,010 + pf		150,050,250 + pf		090,290,190 + pf
		2d0,1d0,0d0 + pc		210,110,010 + pc		150,050,250 + pc		090,290,190 + pc
		2d0,1d0,0d0 + p9		210,110,010 + p9		150,050,250 + p9		090,290,190 + p9
		2d0,1d0,0d0 + p6		210,110,010 + p6		150,050,250 + p6		090,290,190 + p6
		2d0,1d0,0d0 + p3		210,110,010 + p3		150,050,250 + p3		090,290,190 + p3
		2d0,1d0,0d0 + p0		210,110,010 + p0		150,050,250 + p0		090,290,190 + p0

		2c0,1c0,0c0 + pd		200,100,000 + pd		140,040,240 + pd		080,280,180 + pd
		2c0,1c0,0c0 + pa		200,100,000 + pa		140,040,240 + pa		080,280,180 + pa
		2c0,1c0,0c0 + p7		200,100,000 + p7		140,040,240 + p7		080,280,180 + p7
		2c0,1c0,0c0 + p4		200,100,000 + p4		140,040,240 + p4		080,280,180 + p4
		2c0,1c0,0c0 + p1		200,100,000 + p1		140,040,240 + p1		080,280,180 + p1
		2b0,1b0,0b0 + pe		1f0,0f0,2f0 + pe		130,030,230 + pe		070,270,170 + pe
		2b0,1b0,0b0 + pb		1f0,0f0,2f0 + pb		130,030,230 + pb		070,270,170 + pb
		2b0,1b0,0b0 + p8		1f0,0f0,2f0 + p8		130,030,230 + p8		070,270,170 + p8
		2b0,1b0,0b0 + p5		1f0,0f0,2f0 + p5		130,030,230 + p5		070,270,170 + p5
		2b0,1b0,0b0 + p2		1f0,0f0,2f0 + p2		130,030,230 + p2		070,270,170 + p2
		2a0,1a0,0a0 + pf		1e0,0e0,2e0 + pf		120,020,220 + pf		060,260,160 + pf
		2a0,1a0,0a0 + pc		1e0,0e0,2e0 + pc		120,020,220 + pc		060,260,160 + pc
		2a0,1a0,0a0 + p9		1e0,0e0,2e0 + p9		120,020,220 + p9		060,260,160 + p9
		2a0,1a0,0a0 + p6		1e0,0e0,2e0 + p6		120,020,220 + p6		060,260,160 + p6
		2a0,1a0,0a0 + p3		1e0,0e0,2e0 + p3		120,020,220 + p3		060,260,160 + p3
		2a0,1a0,0a0 + p0		1e0,0e0,2e0 + p0		120,020,220 + p0		060,260,160 + p0

		290,190,090 + pd		1d0,0d0,2d0 + pd		110,010,210 + pd		050,250,150 + pd
		290,190,090 + pa		1d0,0d0,2d0 + pa		110,010,210 + pa		050,250,150 + pa
		290,190,090 + p7		1d0,0d0,2d0 + p7		110,010,210 + p7		050,250,150 + p7
		290,190,090 + p4		1d0,0d0,2d0 + p4		110,010,210 + p4		050,250,150 + p4
		290,190,090 + p1		1d0,0d0,2d0 + p1		110,010,210 + p1		050,250,150 + p1
		280,180,080 + pe		1c0,0c0,2c0 + pe		100,000,200 + pe		040,240,140 + pe
		280,180,080 + pb		1c0,0c0,2c0 + pb		100,000,200 + pb		040,240,140 + pb
		280,180,080 + p8		1c0,0c0,2c0 + p8		100,000,200 + p8		040,240,140 + p8
		280,180,080 + p5		1c0,0c0,2c0 + p5		100,000,200 + p5		040,240,140 + p5
		280,180,080 + p2		1c0,0c0,2c0 + p2		100,000,200 + p2		040,240,140 + p2
		270,170,070 + pf		1b0,0b0,2b0 + pf		0f0,2f0,1f0 + pf		030,230,130 + pf
		270,170,070 + pc		1b0,0b0,2b0 + pc		0f0,2f0,1f0 + pc		030,230,130 + pc
		270,170,070 + p9		1b0,0b0,2b0 + p9		0f0,2f0,1f0 + p9		030,230,130 + p9
		270,170,070 + p6		1b0,0b0,2b0 + p6		0f0,2f0,1f0 + p6		030,230,130 + p6
		270,170,070 + p3		1b0,0b0,2b0 + p3		0f0,2f0,1f0 + p3		030,230,130 + p3
		270,170,070 + p0		1b0,0b0,2b0 + p0		0f0,2f0,1f0 + p0		030,230,130 + p0

		260,160,060 + pd		1a0,0a0,2a0 + pd		0e0,2e0,1e0 + pd		020,220,120 + pd
		260,160,060 + pa		1a0,0a0,2a0 + pa		0e0,2e0,1e0 + pa		020,220,120 + pa
		260,160,060 + p7		1a0,0a0,2a0 + p7		0e0,2e0,1e0 + p7		020,220,120 + p7
		260,160,060 + p4		1a0,0a0,2a0 + p4		0e0,2e0,1e0 + p4		020,220,120 + p4
		260,160,060 + p1		1a0,0a0,2a0 + p1		0e0,2e0,1e0 + p1		020,220,120 + p1
		250,150,050 + pe		190,090,290 + pe		0d0,2d0,1d0 + pe		010,210,110 + pe
		250,150,050 + pb		190,090,290 + pb		0d0,2d0,1d0 + pb		010,210,110 + pb
		250,150,050 + p8		190,090,290 + p8		0d0,2d0,1d0 + p8		010,210,110 + p8
		250,150,050 + p5		190,090,290 + p5		0d0,2d0,1d0 + p5		010,210,110 + p5
		250,150,050 + p2		190,090,290 + p2		0d0,2d0,1d0 + p2		010,210,110 + p2
		240,140,040 + pf		180,080,280 + pf		0c0,2c0,1c0 + pf		000,200,100 + pf
		240,140,040 + pc		180,080,280 + pc		0c0,2c0,1c0 + pc		000,200,100 + pc
		240,140,040 + p9		180,080,280 + p9		0c0,2c0,1c0 + p9		000,200,100 + p9
		240,140,040 + p6		180,080,280 + p6		0c0,2c0,1c0 + p6		000,200,100 + p6
		240,140,040 + p3		180,080,280 + p3		0c0,2c0,1c0 + p3		000,200,100 + p3
		240,140,040 + p0		180,080,280 + p0		0c0,2c0,1c0 + p0		000,200,100 + p0	<*** 0-term wrapped ***
		[cont. in col2]			[cont. in col3]			[cont. in col4]

	To handle the wraparound of the 0-term we just need a bit of mod-256 indexing magic.
	*/
	/*...gather the needed data (768 64-bit complex) and do 256 radix-3 transforms - We want unit-strides in the radix768-DFT macro, so use large output strides here: */
		// Loop-based compact-obj-code impl exploits above index pattern to group interior [sandwiched between single leading
		// and 15 trailing, which also get fused into a final group] macro calls into sets of 16 with neatly cutoff index groupings:
		l = 1; l1 = l+256; l2 = l+512;	// Skip 0-term, which gets saved for wraparound
		for(k = 0; k < 144; k += 3) {
			k0 = dif_triplets[k]; k1 = dif_triplets[k+1]; k2 = dif_triplets[k+2]; k += 3;
			jt = j1 + pd; jp = j2 + pd;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
			jt = j1 + pa; jp = j2 + pa;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
			jt = j1 + p7; jp = j2 + p7;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
			jt = j1 + p4; jp = j2 + p4;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
			jt = j1 + p1; jp = j2 + p1;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
			k0 = dif_triplets[k]; k1 = dif_triplets[k+1]; k2 = dif_triplets[k+2]; k += 3;
			jt = j1 + pe; jp = j2 + pe;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
			jt = j1 + pb; jp = j2 + pb;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
			jt = j1 + p8; jp = j2 + p8;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
			jt = j1 + p5; jp = j2 + p5;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
			jt = j1 + p2; jp = j2 + p2;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
			k0 = dif_triplets[k]; k1 = dif_triplets[k+1]; k2 = dif_triplets[k+2];	// Skip k-incr here since loop control handles this one
			jt = j1 + pf; jp = j2 + pf;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
			jt = j1 + pc; jp = j2 + pc;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
			jt = j1 + p9; jp = j2 + p9;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
			jt = j1 + p6; jp = j2 + p6;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
			jt = j1 + p3; jp = j2 + p3;	RADIX_03_DFT(s,c3m1, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; l &= 0xff; l1 = l+256; l2 = l+512;	// <*** needed for final-loop-pass wraparound of 0-term
										RADIX_03_DFT(s,c3m1, a[j1+k0],a[j2+k0],a[j1+k1],a[j2+k1],a[j1+k2],a[j2+k2], t00,t01,t02,t03,t04,t05, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im); ++l; ++l1; ++l2;
		}

	/*...and now do 3 radix-256 transforms, first assuming in-order output index offsets, then using the
	resulting data-mismatch tables produced by test_fft_radix() to derive the needed output permutation:
	*/
		// NOTE: Due to casting-to-double of inputs temp-array pointer Radix-32 macro doesn't play nice with r-array
		// offsets of form "r+32", so make address-taking explicit and wrapping in () prior to macro code execution:
		//
		// Since i_data are in a local-complex scratch array, need to override any non-unity SIMD-re/im data stride with 1:
		//                               vvv
		RADIX_256_DIF((double *)(t+0x000),1,i_offsets_lo,i_offsets_hi, (a+j1     ),RE_IM_STRIDE,o_offsets_lo,o_idx1,o_offsets_hi1);	/* Inputs in t[ 00- ff] */
		RADIX_256_DIF((double *)(t+0x100),1,i_offsets_lo,i_offsets_hi, (a+j1+p200),RE_IM_STRIDE,o_offsets_lo,o_idx2,o_offsets_hi2);	/* Inputs in t[100-1ff] */
		RADIX_256_DIF((double *)(t+0x200),1,i_offsets_lo,i_offsets_hi, (a+j1+p100),RE_IM_STRIDE,o_offsets_lo,o_idx3,o_offsets_hi3);	/* Inputs in t[200-2ff] */
	}
}

/***************/

void radix768_dit_pass1(double a[], int n)
{
/*
!...Acronym: DIT = Decimation In Time
!
!...Subroutine to perform an initial radix-768 complex DIT FFT pass on the data in the length-N real vector A.
!
!   See the documentation in radix16_dif_pass for further details on storage and indexing.
*/
	int j,j1,j2,jp,jt;
	int k,l,l1,l2,k0,k1,k2;
	static int dit_triplets[48];	// Only need 1/3 as many here as for DIF
	// In order to preserve length-2 numeric-index-offset property here, use hex for digit:
	static int NDIVR, first_entry=TRUE,
		p1,p2,p3,p4,p5,p6,p7,p8,p9,pa,pb,pc,pd,pe,pf,
		     p10,p20,p30,p40,p50,p60,p70,p80,p90,pa0,pb0,pc0,pd0,pe0,pf0,
		p100,p110,p120,p130,p140,p150,p160,p170,p180,p190,p1a0,p1b0,p1c0,p1d0,p1e0,p1f0,
		p200,p210,p220,p230,p240,p250,p260,p270,p280,p290,p2a0,p2b0,p2c0,p2d0,p2e0,p2f0;
	const double c3m1 = -1.50000000000000000000, s = 0.86602540378443864675;	// cos(twopi/3)-1, sin(twopi/3)
	static int o_offsets_lo[16], o_offsets_hi[16];

	static int i_offsets_lo[96];	// 6 subsets of 16
	// Bitfields encoding the sequence of the i_offsets_lo subset0-3 vectors to use for each radix-256 DFT's outputs:
	const uint32 i_idx1 = 0x55555554,i_idx2 = 0x44404040,i_idx3 = 0x54445444;
	static int i_offsets_hi1[16],i_offsets_hi2[16],i_offsets_hi3[16];
	// Local storage: We must use an array here because scalars have no guarantees about relative address offsets
	// [and even if those are contiguous-as-hoped-for, they may run in reverse]; Make array type (struct complex)
	// to allow us to use the same offset-indexing as in the original radix-32 in-place DFT macros:
	struct complex t[RADIX];
	double t00,t01,t02,t03,t04,t05;

	if(!first_entry && (n/RADIX) != NDIVR)	/* New runlength?	*/
	{
		first_entry=TRUE;
	}

/*...initialize things upon first entry	*/

	if(first_entry)
	{
		first_entry=FALSE;
		NDIVR = n/RADIX;

		/*   constant index offsets for array load/stores are here.	*/
		p1 = NDIVR;		p10 = NDIVR<<4;		p100 = NDIVR<<8;		p200 = NDIVR<<9;
		p2 = p1 + p1;	p20 = p10 + p10;	p110 = p100 + p10;		p210 = p200 + p10;
		p3 = p2 + p1;	p30 = p20 + p10;	p120 = p110 + p10;		p220 = p210 + p10;
		p4 = p3 + p1;	p40 = p30 + p10;	p130 = p120 + p10;		p230 = p220 + p10;
		p5 = p4 + p1;	p50 = p40 + p10;	p140 = p130 + p10;		p240 = p230 + p10;
		p6 = p5 + p1;	p60 = p50 + p10;	p150 = p140 + p10;		p250 = p240 + p10;
		p7 = p6 + p1;	p70 = p60 + p10;	p160 = p150 + p10;		p260 = p250 + p10;
		p8 = p7 + p1;	p80 = p70 + p10;	p170 = p160 + p10;		p270 = p260 + p10;
		p9 = p8 + p1;	p90 = p80 + p10;	p180 = p170 + p10;		p280 = p270 + p10;
		pa = p9 + p1;	pa0 = p90 + p10;	p190 = p180 + p10;		p290 = p280 + p10;
		pb = pa + p1;	pb0 = pa0 + p10;	p1a0 = p190 + p10;		p2a0 = p290 + p10;
		pc = pb + p1;	pc0 = pb0 + p10;	p1b0 = p1a0 + p10;		p2b0 = p2a0 + p10;
		pd = pc + p1;	pd0 = pc0 + p10;	p1c0 = p1b0 + p10;		p2c0 = p2b0 + p10;
		pe = pd + p1;	pe0 = pd0 + p10;	p1d0 = p1c0 + p10;		p2d0 = p2c0 + p10;
		pf = pe + p1;	pf0 = pe0 + p10;	p1e0 = p1d0 + p10;		p2e0 = p2d0 + p10;
											p1f0 = p1e0 + p10;		p2f0 = p2e0 + p10;
		p1 += ( (p1 >> DAT_BITS) << PAD_BITS );
		p2 += ( (p2 >> DAT_BITS) << PAD_BITS );
		p3 += ( (p3 >> DAT_BITS) << PAD_BITS );
		p4 += ( (p4 >> DAT_BITS) << PAD_BITS );
		p5 += ( (p5 >> DAT_BITS) << PAD_BITS );
		p6 += ( (p6 >> DAT_BITS) << PAD_BITS );
		p7 += ( (p7 >> DAT_BITS) << PAD_BITS );
		p8 += ( (p8 >> DAT_BITS) << PAD_BITS );
		p9 += ( (p9 >> DAT_BITS) << PAD_BITS );
		pa += ( (pa >> DAT_BITS) << PAD_BITS );
		pb += ( (pb >> DAT_BITS) << PAD_BITS );
		pc += ( (pc >> DAT_BITS) << PAD_BITS );
		pd += ( (pd >> DAT_BITS) << PAD_BITS );
		pe += ( (pe >> DAT_BITS) << PAD_BITS );
		pf += ( (pf >> DAT_BITS) << PAD_BITS );
		p10 += ( (p10 >> DAT_BITS) << PAD_BITS );
		p20 += ( (p20 >> DAT_BITS) << PAD_BITS );
		p30 += ( (p30 >> DAT_BITS) << PAD_BITS );
		p40 += ( (p40 >> DAT_BITS) << PAD_BITS );
		p50 += ( (p50 >> DAT_BITS) << PAD_BITS );
		p60 += ( (p60 >> DAT_BITS) << PAD_BITS );
		p70 += ( (p70 >> DAT_BITS) << PAD_BITS );
		p80 += ( (p80 >> DAT_BITS) << PAD_BITS );
		p90 += ( (p90 >> DAT_BITS) << PAD_BITS );
		pa0 += ( (pa0 >> DAT_BITS) << PAD_BITS );
		pb0 += ( (pb0 >> DAT_BITS) << PAD_BITS );
		pc0 += ( (pc0 >> DAT_BITS) << PAD_BITS );
		pd0 += ( (pd0 >> DAT_BITS) << PAD_BITS );
		pe0 += ( (pe0 >> DAT_BITS) << PAD_BITS );
		pf0 += ( (pf0 >> DAT_BITS) << PAD_BITS );
		p100 += ( (p100 >> DAT_BITS) << PAD_BITS );
		p110 += ( (p110 >> DAT_BITS) << PAD_BITS );
		p120 += ( (p120 >> DAT_BITS) << PAD_BITS );
		p130 += ( (p130 >> DAT_BITS) << PAD_BITS );
		p140 += ( (p140 >> DAT_BITS) << PAD_BITS );
		p150 += ( (p150 >> DAT_BITS) << PAD_BITS );
		p160 += ( (p160 >> DAT_BITS) << PAD_BITS );
		p170 += ( (p170 >> DAT_BITS) << PAD_BITS );
		p180 += ( (p180 >> DAT_BITS) << PAD_BITS );
		p190 += ( (p190 >> DAT_BITS) << PAD_BITS );
		p1a0 += ( (p1a0 >> DAT_BITS) << PAD_BITS );
		p1b0 += ( (p1b0 >> DAT_BITS) << PAD_BITS );
		p1c0 += ( (p1c0 >> DAT_BITS) << PAD_BITS );
		p1d0 += ( (p1d0 >> DAT_BITS) << PAD_BITS );
		p1e0 += ( (p1e0 >> DAT_BITS) << PAD_BITS );
		p1f0 += ( (p1f0 >> DAT_BITS) << PAD_BITS );
		p200 += ( (p200 >> DAT_BITS) << PAD_BITS );
		p210 += ( (p210 >> DAT_BITS) << PAD_BITS );
		p220 += ( (p220 >> DAT_BITS) << PAD_BITS );
		p230 += ( (p230 >> DAT_BITS) << PAD_BITS );
		p240 += ( (p240 >> DAT_BITS) << PAD_BITS );
		p250 += ( (p250 >> DAT_BITS) << PAD_BITS );
		p260 += ( (p260 >> DAT_BITS) << PAD_BITS );
		p270 += ( (p270 >> DAT_BITS) << PAD_BITS );
		p280 += ( (p280 >> DAT_BITS) << PAD_BITS );
		p290 += ( (p290 >> DAT_BITS) << PAD_BITS );
		p2a0 += ( (p2a0 >> DAT_BITS) << PAD_BITS );
		p2b0 += ( (p2b0 >> DAT_BITS) << PAD_BITS );
		p2c0 += ( (p2c0 >> DAT_BITS) << PAD_BITS );
		p2d0 += ( (p2d0 >> DAT_BITS) << PAD_BITS );
		p2e0 += ( (p2e0 >> DAT_BITS) << PAD_BITS );
		p2f0 += ( (p2f0 >> DAT_BITS) << PAD_BITS );

	// Set array offsets for radix-256 outputs [these are same for all 3 such DFTs].
		// low parts in first 16 slots, high parts in next 16:
		o_offsets_lo[0x0] = 0x00<<1;	o_offsets_hi[0x0] = 0x00<<1;
		o_offsets_lo[0x1] = 0x01<<1;	o_offsets_hi[0x1] = 0x10<<1;
		o_offsets_lo[0x2] = 0x02<<1;	o_offsets_hi[0x2] = 0x20<<1;
		o_offsets_lo[0x3] = 0x03<<1;	o_offsets_hi[0x3] = 0x30<<1;
		o_offsets_lo[0x4] = 0x04<<1;	o_offsets_hi[0x4] = 0x40<<1;
		o_offsets_lo[0x5] = 0x05<<1;	o_offsets_hi[0x5] = 0x50<<1;
		o_offsets_lo[0x6] = 0x06<<1;	o_offsets_hi[0x6] = 0x60<<1;
		o_offsets_lo[0x7] = 0x07<<1;	o_offsets_hi[0x7] = 0x70<<1;
		o_offsets_lo[0x8] = 0x08<<1;	o_offsets_hi[0x8] = 0x80<<1;
		o_offsets_lo[0x9] = 0x09<<1;	o_offsets_hi[0x9] = 0x90<<1;
		o_offsets_lo[0xa] = 0x0a<<1;	o_offsets_hi[0xa] = 0xa0<<1;
		o_offsets_lo[0xb] = 0x0b<<1;	o_offsets_hi[0xb] = 0xb0<<1;
		o_offsets_lo[0xc] = 0x0c<<1;	o_offsets_hi[0xc] = 0xc0<<1;
		o_offsets_lo[0xd] = 0x0d<<1;	o_offsets_hi[0xd] = 0xd0<<1;
		o_offsets_lo[0xe] = 0x0e<<1;	o_offsets_hi[0xe] = 0xe0<<1;
		o_offsets_lo[0xf] = 0x0f<<1;	o_offsets_hi[0xf] = 0xf0<<1;

	// For the radix-256 inputs we need 6 distinct low-part vectors, which go into 6 16-element subsets of a [96]-vec.
	// These get used in the following sequence (encoded as a 32-bit int, 16 subfields of 2 bits each) for each DFT.
	// NOTE that the multi-16-vector scheme we devised for radix-256 DIF formally permits just 4 distinct low-part 16-vectors
	// but that assumed that any of the 4 could appear in a given radix-256 DIF. Here we have 6 distinct 16-vectors
	// but each radix-256 DIT uses just 2 of them, thus we can deploy the same scheme, but sending the pointer to the
	// low one of the 16-element vector pair used by the current radix-256 DIF, thus each 2-bit index-offset subfield
	// of our uint32 bitfields take just values 0 and 1, odd-order bits unused:
	// DFT #1:       [0],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1] <<< [left->right  = 0x55555554
	// DFT #2: [2] + [0],[0],[0],[1],[0],[0],[0],[1],[0],[0],[0],[1],[0],[1],[0],[1] <<< in terms of   = 0x44404040
	// DFT #3: [4] + [0],[1],[0],[1],[0],[1],[1],[1],[0],[1],[0],[1],[0],[1],[1],[1] <<< significance] = 0x54445444 .

	// Set i_offsets_lo for 1st set of radix-256 DIT inputs:
		i_offsets_lo[0x00] =  0;	i_offsets_lo[0x10] = pf;
		i_offsets_lo[0x01] = p1;	i_offsets_lo[0x11] = pe;
		i_offsets_lo[0x02] = p3;	i_offsets_lo[0x12] = pd;
		i_offsets_lo[0x03] = p2;	i_offsets_lo[0x13] = pc;
		i_offsets_lo[0x04] = p7;	i_offsets_lo[0x14] = pb;
		i_offsets_lo[0x05] = p6;	i_offsets_lo[0x15] = pa;
		i_offsets_lo[0x06] = p5;	i_offsets_lo[0x16] = p9;
		i_offsets_lo[0x07] = p4;	i_offsets_lo[0x17] = p8;
		i_offsets_lo[0x08] = pf;	i_offsets_lo[0x18] = p7;
		i_offsets_lo[0x09] = pe;	i_offsets_lo[0x19] = p6;
		i_offsets_lo[0x0a] = pd;	i_offsets_lo[0x1a] = p5;
		i_offsets_lo[0x0b] = pc;	i_offsets_lo[0x1b] = p4;
		i_offsets_lo[0x0c] = pb;	i_offsets_lo[0x1c] = p3;
		i_offsets_lo[0x0d] = pa;	i_offsets_lo[0x1d] = p2;
		i_offsets_lo[0x0e] = p9;	i_offsets_lo[0x1e] = p1;
		i_offsets_lo[0x0f] = p8;	i_offsets_lo[0x1f] =  0;

	// Set i_offsets for 2nd set of radix-256 DIT inputs:
		i_offsets_lo[0x20] = p5;	i_offsets_lo[0x30] = p9;
		i_offsets_lo[0x21] = p4;	i_offsets_lo[0x31] = p8;
		i_offsets_lo[0x22] = p6;	i_offsets_lo[0x32] = pa;
		i_offsets_lo[0x23] = p7;	i_offsets_lo[0x33] = pb;
		i_offsets_lo[0x24] = p1;	i_offsets_lo[0x34] = pe;
		i_offsets_lo[0x25] =  0;	i_offsets_lo[0x35] = pf;
		i_offsets_lo[0x26] = p2;	i_offsets_lo[0x36] = pc;
		i_offsets_lo[0x27] = p3;	i_offsets_lo[0x37] = pd;
		i_offsets_lo[0x28] = p9;	i_offsets_lo[0x38] = p1;
		i_offsets_lo[0x29] = p8;	i_offsets_lo[0x39] =  0;
		i_offsets_lo[0x2a] = pa;	i_offsets_lo[0x3a] = p2;
		i_offsets_lo[0x2b] = pb;	i_offsets_lo[0x3b] = p3;
		i_offsets_lo[0x2c] = pe;	i_offsets_lo[0x3c] = p6;
		i_offsets_lo[0x2d] = pf;	i_offsets_lo[0x3d] = p7;
		i_offsets_lo[0x2e] = pc;	i_offsets_lo[0x3e] = p4;
		i_offsets_lo[0x2f] = pd;	i_offsets_lo[0x3f] = p5;

	// Set i_offsets for 3rd set of radix-256 DIT inputs:
		i_offsets_lo[0x40] = pa;	i_offsets_lo[0x50] = p2;
		i_offsets_lo[0x41] = pb;	i_offsets_lo[0x51] = p3;
		i_offsets_lo[0x42] = p8;	i_offsets_lo[0x52] =  0;
		i_offsets_lo[0x43] = p9;	i_offsets_lo[0x53] = p1;
		i_offsets_lo[0x44] = pc;	i_offsets_lo[0x54] = p4;
		i_offsets_lo[0x45] = pd;	i_offsets_lo[0x55] = p5;
		i_offsets_lo[0x46] = pf;	i_offsets_lo[0x56] = p7;
		i_offsets_lo[0x47] = pe;	i_offsets_lo[0x57] = p6;
		i_offsets_lo[0x48] = p2;	i_offsets_lo[0x58] = pc;
		i_offsets_lo[0x49] = p3;	i_offsets_lo[0x59] = pd;
		i_offsets_lo[0x4a] =  0;	i_offsets_lo[0x5a] = pf;
		i_offsets_lo[0x4b] = p1;	i_offsets_lo[0x5b] = pe;
		i_offsets_lo[0x4c] = p4;	i_offsets_lo[0x5c] = p8;
		i_offsets_lo[0x4d] = p5;	i_offsets_lo[0x5d] = p9;
		i_offsets_lo[0x4e] = p7;	i_offsets_lo[0x5e] = pb;
		i_offsets_lo[0x4f] = p6;	i_offsets_lo[0x5f] = pa;

	// ...and one distinct high-part vector for each radix-256 DIT:
		i_offsets_hi1[0x0] =   0;	i_offsets_hi2[0x0] = p50;	i_offsets_hi3[0x0] = pa0;
		i_offsets_hi1[0x1] = p10;	i_offsets_hi2[0x1] = p40;	i_offsets_hi3[0x1] = pb0;
		i_offsets_hi1[0x2] = p30;	i_offsets_hi2[0x2] = p60;	i_offsets_hi3[0x2] = p80;
		i_offsets_hi1[0x3] = p20;	i_offsets_hi2[0x3] = p70;	i_offsets_hi3[0x3] = p90;
		i_offsets_hi1[0x4] = p70;	i_offsets_hi2[0x4] = p10;	i_offsets_hi3[0x4] = pc0;
		i_offsets_hi1[0x5] = p60;	i_offsets_hi2[0x5] =   0;	i_offsets_hi3[0x5] = pd0;
		i_offsets_hi1[0x6] = p50;	i_offsets_hi2[0x6] = p20;	i_offsets_hi3[0x6] = pf0;
		i_offsets_hi1[0x7] = p40;	i_offsets_hi2[0x7] = p30;	i_offsets_hi3[0x7] = pe0;
		i_offsets_hi1[0x8] = pf0;	i_offsets_hi2[0x8] = p90;	i_offsets_hi3[0x8] = p20;
		i_offsets_hi1[0x9] = pe0;	i_offsets_hi2[0x9] = p80;	i_offsets_hi3[0x9] = p30;
		i_offsets_hi1[0xa] = pd0;	i_offsets_hi2[0xa] = pa0;	i_offsets_hi3[0xa] =   0;
		i_offsets_hi1[0xb] = pc0;	i_offsets_hi2[0xb] = pb0;	i_offsets_hi3[0xb] = p10;
		i_offsets_hi1[0xc] = pb0;	i_offsets_hi2[0xc] = pe0;	i_offsets_hi3[0xc] = p40;
		i_offsets_hi1[0xd] = pa0;	i_offsets_hi2[0xd] = pf0;	i_offsets_hi3[0xd] = p50;
		i_offsets_hi1[0xe] = p90;	i_offsets_hi2[0xe] = pc0;	i_offsets_hi3[0xe] = p70;
		i_offsets_hi1[0xf] = p80;	i_offsets_hi2[0xf] = pd0;	i_offsets_hi3[0xf] = p60;

	// Index-high-bits triplets needed for compact-obj-code scheme:
		k = 0;
		dit_triplets[k] =  pf0; dit_triplets[k+1] = p1f0; dit_triplets[k+2] = p2f0; k += 3;
		dit_triplets[k] = p1e0; dit_triplets[k+1] = p2e0; dit_triplets[k+2] =  pe0; k += 3;
		dit_triplets[k] = p2d0; dit_triplets[k+1] =  pd0; dit_triplets[k+2] = p1d0; k += 3;
		dit_triplets[k] =  pc0; dit_triplets[k+1] = p1c0; dit_triplets[k+2] = p2c0; k += 3;
		dit_triplets[k] = p1b0; dit_triplets[k+1] = p2b0; dit_triplets[k+2] =  pb0; k += 3;
		dit_triplets[k] = p2a0; dit_triplets[k+1] =  pa0; dit_triplets[k+2] = p1a0; k += 3;
		dit_triplets[k] =  p90; dit_triplets[k+1] = p190; dit_triplets[k+2] = p290; k += 3;
		dit_triplets[k] = p180; dit_triplets[k+1] = p280; dit_triplets[k+2] =  p80; k += 3;
		dit_triplets[k] = p270; dit_triplets[k+1] =  p70; dit_triplets[k+2] = p170; k += 3;
		dit_triplets[k] =  p60; dit_triplets[k+1] = p160; dit_triplets[k+2] = p260; k += 3;
		dit_triplets[k] = p150; dit_triplets[k+1] = p250; dit_triplets[k+2] =  p50; k += 3;
		dit_triplets[k] = p240; dit_triplets[k+1] =  p40; dit_triplets[k+2] = p140; k += 3;
		dit_triplets[k] =  p30; dit_triplets[k+1] = p130; dit_triplets[k+2] = p230; k += 3;
		dit_triplets[k] = p120; dit_triplets[k+1] = p220; dit_triplets[k+2] =  p20; k += 3;
		dit_triplets[k] = p210; dit_triplets[k+1] =  p10; dit_triplets[k+2] = p110; k += 3;
		dit_triplets[k] =    0; dit_triplets[k+1] = p100; dit_triplets[k+2] = p200;
	}

/*...The radix-768 pass is here.	*/

	for(j = 0; j < NDIVR; j += 2)
	{
	#ifdef USE_AVX512
		j1 = (j & mask03) + br16[j&15];
	#elif defined(USE_AVX)
		j1 = (j & mask02) + br8[j&7];
	#elif defined(USE_SSE2)
		j1 = (j & mask01) + br4[j&3];
	#else
		j1 = j;
	#endif
		j1 += ( (j1>> DAT_BITS) << PAD_BITS );	/* padded-array fetch index is here */
		j2 = j1 + RE_IM_STRIDE;

	/*
	Twiddleless version uses same linear-index-vector-form permutation as in DIF -
	Remember, inputs to DIT are bit-reversed, so using output of test_fft_radix(),
	store the 3 index-offset 256-tets going into the radix-256 DFTs in the i_offset array.

	Radix-3 high-part p-index offsets tabulated below - Break into 4 cols for readability,
	and insert blank rows to reveal 16-macro-calls subgroupings exploited by the compact-obj-code scheme.
	Notice that each 16-triplet set has 3 distinct triplet patterns repeating in "bookend fashion",
	ABCABCABCACBABCA, with the first and last triplet the same [A]. 15 such loop passes means 45 triplets
	which are precomputed, same number as for the DIF, even though the triplet patterns in each loop pass
	differ for the 2 flavors of DFT. But we can cut that in 1/3 because we note that the 3 triplet patterns
	A,B,c within each loop pass are simply the 3 distinct circular-perms of the A-triplet:

		000,100,200 + p0	<*** Wrap this around to end...

		0f0,1f0,2f0 + pf		1b0,2b0,0b0 + pf		270,070,170 + pf		030,130,230 + pf
		1f0,2f0,0f0 + pe		2b0,0b0,1b0 + pe		070,170,270 + pe		130,230,030 + pe
		2f0,0f0,1f0 + pd		0b0,1b0,2b0 + pd		170,270,070 + pd		230,030,130 + pd
		0f0,1f0,2f0 + pc		1b0,2b0,0b0 + pc		270,070,170 + pc		030,130,230 + pc
		1f0,2f0,0f0 + pb		2b0,0b0,1b0 + pb		070,170,270 + pb		130,230,030 + pb
		2f0,0f0,1f0 + pa		0b0,1b0,2b0 + pa		170,270,070 + pa		230,030,130 + pa
		0f0,1f0,2f0 + p9		1b0,2b0,0b0 + p9		270,070,170 + p9		030,130,230 + p9
		1f0,2f0,0f0 + p8		2b0,0b0,1b0 + p8		070,170,270 + p8		130,230,030 + p8
		2f0,0f0,1f0 + p7		0b0,1b0,2b0 + p7		170,270,070 + p7		230,030,130 + p7
		0f0,1f0,2f0 + p6		1b0,2b0,0b0 + p6		270,070,170 + p6		030,130,230 + p6
		1f0,2f0,0f0 + p5		2b0,0b0,1b0 + p5		070,170,270 + p5		130,230,030 + p5
		2f0,0f0,1f0 + p4		0b0,1b0,2b0 + p4		170,270,070 + p4		230,030,130 + p4
		0f0,1f0,2f0 + p3		1b0,2b0,0b0 + p3		270,070,170 + p3		030,130,230 + p3
		1f0,2f0,0f0 + p2		2b0,0b0,1b0 + p2		070,170,270 + p2		130,230,030 + p2
		2f0,0f0,1f0 + p1		0b0,1b0,2b0 + p1		170,270,070 + p1		230,030,130 + p1
		0f0,1f0,2f0 + p0		1b0,2b0,0b0 + p0		270,070,170 + p0		030,130,230 + p0

		1e0,2e0,0e0 + pf		2a0,0a0,1a0 + pf		060,160,260 + pf		120,220,020 + pf
		2e0,0e0,1e0 + pe		0a0,1a0,2a0 + pe		160,260,060 + pe		220,020,120 + pe
		0e0,1e0,2e0 + pd		1a0,2a0,0a0 + pd		260,060,160 + pd		020,120,220 + pd
		1e0,2e0,0e0 + pc		2a0,0a0,1a0 + pc		060,160,260 + pc		120,220,020 + pc
		2e0,0e0,1e0 + pb		0a0,1a0,2a0 + pb		160,260,060 + pb		220,020,120 + pb
		0e0,1e0,2e0 + pa		1a0,2a0,0a0 + pa		260,060,160 + pa		020,120,220 + pa
		1e0,2e0,0e0 + p9		2a0,0a0,1a0 + p9		060,160,260 + p9		120,220,020 + p9
		2e0,0e0,1e0 + p8		0a0,1a0,2a0 + p8		160,260,060 + p8		220,020,120 + p8
		0e0,1e0,2e0 + p7		1a0,2a0,0a0 + p7		260,060,160 + p7		020,120,220 + p7
		1e0,2e0,0e0 + p6		2a0,0a0,1a0 + p6		060,160,260 + p6		120,220,020 + p6
		2e0,0e0,1e0 + p5		0a0,1a0,2a0 + p5		160,260,060 + p5		220,020,120 + p5
		0e0,1e0,2e0 + p4		1a0,2a0,0a0 + p4		260,060,160 + p4		020,120,220 + p4
		1e0,2e0,0e0 + p3		2a0,0a0,1a0 + p3		060,160,260 + p3		120,220,020 + p3
		2e0,0e0,1e0 + p2		0a0,1a0,2a0 + p2		160,260,060 + p2		220,020,120 + p2
		0e0,1e0,2e0 + p1		1a0,2a0,0a0 + p1		260,060,160 + p1		020,120,220 + p1
		1e0,2e0,0e0 + p0		2a0,0a0,1a0 + p0		060,160,260 + p0		120,220,020 + p0

		2d0,0d0,1d0 + pf		090,190,290 + pf		150,250,050 + pf		210,010,110 + pf
		0d0,1d0,2d0 + pe		190,290,090 + pe		250,050,150 + pe		010,110,210 + pe
		1d0,2d0,0d0 + pd		290,090,190 + pd		050,150,250 + pd		110,210,010 + pd
		2d0,0d0,1d0 + pc		090,190,290 + pc		150,250,050 + pc		210,010,110 + pc
		0d0,1d0,2d0 + pb		190,290,090 + pb		250,050,150 + pb		010,110,210 + pb
		1d0,2d0,0d0 + pa		290,090,190 + pa		050,150,250 + pa		110,210,010 + pa
		2d0,0d0,1d0 + p9		090,190,290 + p9		150,250,050 + p9		210,010,110 + p9
		0d0,1d0,2d0 + p8		190,290,090 + p8		250,050,150 + p8		010,110,210 + p8
		1d0,2d0,0d0 + p7		290,090,190 + p7		050,150,250 + p7		110,210,010 + p7
		2d0,0d0,1d0 + p6		090,190,290 + p6		150,250,050 + p6		210,010,110 + p6
		0d0,1d0,2d0 + p5		190,290,090 + p5		250,050,150 + p5		010,110,210 + p5
		1d0,2d0,0d0 + p4		290,090,190 + p4		050,150,250 + p4		110,210,010 + p4
		2d0,0d0,1d0 + p3		090,190,290 + p3		150,250,050 + p3		210,010,110 + p3
		0d0,1d0,2d0 + p2		190,290,090 + p2		250,050,150 + p2		010,110,210 + p2
		1d0,2d0,0d0 + p1		290,090,190 + p1		050,150,250 + p1		110,210,010 + p1
		2d0,0d0,1d0 + p0		090,190,290 + p0		150,250,050 + p0		210,010,110 + p0

		0c0,1c0,2c0 + pf		180,280,080 + pf		240,040,140 + pf		000,100,200 + pf
		1c0,2c0,0c0 + pe		280,080,180 + pe		040,140,240 + pe		100,200,000 + pe
		2c0,0c0,1c0 + pd		080,180,280 + pd		140,240,040 + pd		200,000,100 + pd
		0c0,1c0,2c0 + pc		180,280,080 + pc		240,040,140 + pc		000,100,200 + pc
		1c0,2c0,0c0 + pb		280,080,180 + pb		040,140,240 + pb		100,200,000 + pb
		2c0,0c0,1c0 + pa		080,180,280 + pa		140,240,040 + pa		200,000,100 + pa
		0c0,1c0,2c0 + p9		180,280,080 + p9		240,040,140 + p9		000,100,200 + p9
		1c0,2c0,0c0 + p8		280,080,180 + p8		040,140,240 + p8		100,200,000 + p8
		2c0,0c0,1c0 + p7		080,180,280 + p7		140,240,040 + p7		200,000,100 + p7
		0c0,1c0,2c0 + p6		180,280,080 + p6		240,040,140 + p6		000,100,200 + p6
		1c0,2c0,0c0 + p5		280,080,180 + p5		040,140,240 + p5		100,200,000 + p5
		2c0,0c0,1c0 + p4		080,180,280 + p4		140,240,040 + p4		200,000,100 + p4
		0c0,1c0,2c0 + p3		180,280,080 + p3		240,040,140 + p3		000,100,200 + p3
		1c0,2c0,0c0 + p2		280,080,180 + p2		040,140,240 + p2		100,200,000 + p2
		2c0,0c0,1c0 + p1		080,180,280 + p1		140,240,040 + p1		200,000,100 + p1
		0c0,1c0,2c0 + p0		180,280,080 + p0		240,040,140 + p0		000,100,200 + p0	<*** 0-term wrapped ***
		[cont. in col2]			[cont. in col3]			[cont. in col4]

	To handle the wraparound of the 0-term we just need a bit of mod-256 indexing magic.
	*/
	/*...gather the needed data (768 64-bit complex) and do 3 radix-256 transforms,	*/

		// Since o_data are in a local-complex scratch array, need to override any non-unity SIMD-re/im data stride with 1:
		//                                                                                              vvv
		RADIX_256_DIT((a+j1     ),RE_IM_STRIDE,(int *)(i_offsets_lo+0x00),i_idx1,i_offsets_hi1, (double *)(t+0x000),1,o_offsets_lo,o_offsets_hi);	/* Outputs in t[ 00- ff] */
		RADIX_256_DIT((a+j1+p200),RE_IM_STRIDE,(int *)(i_offsets_lo+0x20),i_idx2,i_offsets_hi2, (double *)(t+0x100),1,o_offsets_lo,o_offsets_hi);	/* Outputs in t[100-1ff] */
		RADIX_256_DIT((a+j1+p100),RE_IM_STRIDE,(int *)(i_offsets_lo+0x40),i_idx3,i_offsets_hi3, (double *)(t+0x200),1,o_offsets_lo,o_offsets_hi);	/* Outputs in t[200-2ff] */

	/*...and now do 256 radix-3 transforms: */
		// Loop-based compact-obj-code impl exploits above index pattern to group interior [sandwiched
		// between single leading and 15 trailing] macro calls into sets of 16 with neatly cutoff index groupings:
		l = 1; l1 = l+256; l2 = l+512;	// Skip 0-term, which gets saved for wraparound
		for(k = 0; k < 48; k += 3) {
			k0 = dit_triplets[k]; k1 = dit_triplets[k+1]; k2 = dit_triplets[k+2];
			jt = j1 + pf; jp = j2 + pf;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2]); ++l; ++l1; ++l2;
			jt = j1 + pe; jp = j2 + pe;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2],a[jt+k0],a[jp+k0]); ++l; ++l1; ++l2;
			jt = j1 + pd; jp = j2 + pd;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k2],a[jp+k2],a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1]); ++l; ++l1; ++l2;
			jt = j1 + pc; jp = j2 + pc;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2]); ++l; ++l1; ++l2;
			jt = j1 + pb; jp = j2 + pb;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2],a[jt+k0],a[jp+k0]); ++l; ++l1; ++l2;
			jt = j1 + pa; jp = j2 + pa;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k2],a[jp+k2],a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1]); ++l; ++l1; ++l2;
			jt = j1 + p9; jp = j2 + p9;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2]); ++l; ++l1; ++l2;
			jt = j1 + p8; jp = j2 + p8;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2],a[jt+k0],a[jp+k0]); ++l; ++l1; ++l2;
			jt = j1 + p7; jp = j2 + p7;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k2],a[jp+k2],a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1]); ++l; ++l1; ++l2;
			jt = j1 + p6; jp = j2 + p6;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2]); ++l; ++l1; ++l2;
			jt = j1 + p5; jp = j2 + p5;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2],a[jt+k0],a[jp+k0]); ++l; ++l1; ++l2;
			jt = j1 + p4; jp = j2 + p4;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k2],a[jp+k2],a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1]); ++l; ++l1; ++l2;
			jt = j1 + p3; jp = j2 + p3;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2]); ++l; ++l1; ++l2;
			jt = j1 + p2; jp = j2 + p2;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k1],a[jp+k1],a[jt+k2],a[jp+k2],a[jt+k0],a[jp+k0]); ++l; ++l1; ++l2;
			jt = j1 + p1; jp = j2 + p1;	RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[jt+k2],a[jp+k2],a[jt+k0],a[jp+k0],a[jt+k1],a[jp+k1]); ++l; l &= 0xff; l1 = l+256; l2 = l+512;	// <*** needed for final-loop-pass wraparound of 0-term
										RADIX_03_DFT(s,c3m1, t[l].re,t[l].im,t[l1].re,t[l1].im,t[l2].re,t[l2].im, t00,t01,t02,t03,t04,t05, a[j1+k0],a[j2+k0],a[j1+k1],a[j2+k1],a[j1+k2],a[j2+k2]); ++l; ++l1; ++l2;
		}
	}
}

/******************** Multithreaded function body - NO STATIC VARS BELOW THIS POINT!: ***************************/

#ifdef USE_PTHREAD

	#ifndef COMPILER_TYPE_GCC
		#error pthreaded carry code requires GCC build!
	#endif

	void*
	cy768_process_chunk(void*targ)	// Thread-arg pointer *must* be cast to void and specialized inside the function
	{
	const char func[] = "radix768_ditN_cy_dif1";
		struct cy_thread_data_t* thread_arg = targ;	// Move to top because scalar-mode carry pointers taken directly from it
	#if defined(USE_FMA)
		const double tan = 0.41421356237309504879;
	#endif
		double *addr;
		const int pfetch_dist = PFETCH_DIST;
		const int stride = (int)RE_IM_STRIDE << 1;	// main-array loop stride = 2*RE_IM_STRIDE
		uint32 p1,p2,p3,p4,p5,p6,p7,p8,p9,pa,pb,pc,pd,pe,pf,
		     p10,p20,p30,p40,p50,p60,p70,p80,p90,pa0,pb0,pc0,pd0,pe0,pf0,
		p100,p110,p120,p130,p140,p150,p160,p170,p180,p190,p1a0,p1b0,p1c0,p1d0,p1e0,p1f0,
		p200,p210,p220,p230,p240,p250,p260,p270,p280,p290,p2a0,p2b0,p2c0,p2d0,p2e0,p2f0;
		int poff[RADIX>>2];
		double wt_re,wt_im, wi_re,wi_im;	// Fermat-mod/LOACC weights stuff, used in both scalar and SIMD mode

		int dif_offsets_lo[64];	// 4 subsets of 16
		// Bitfields encoding the sequence of the dif_offsets_lo subset0-3 vectors to use for each radix-256 DIF's outputs:
		const uint32 dif_idx1 = 0xe79e79e4,dif_idx2 = 0x79e79e79,dif_idx3 = 0x9e79e79e;
		int dif_offsets_hi1[16],dif_offsets_hi2[16],dif_offsets_hi3[16];

		int dit_offsets_lo[96];	// 6 subsets of 16
		// Bitfields encoding the sequence of the dit_offsets_lo subset0-5 vectors to use for each radix-256 DIT's outputs:
		const uint32 dit_idx1 = 0x55555554,dit_idx2 = 0x44404040,dit_idx3 = 0x54445444;
		int dit_offsets_hi1[16],dit_offsets_hi2[16],dit_offsets_hi3[16];

		int dif_triplets[144], dit_triplets[48];

		int incr,j,j1,j2,k,l,l1,l2,k0,k1,k2;
		// incr = Carry-chain wts-multipliers recurrence length, which must divide
		// RADIX/[n-wayness of carry macro], e.g. RADIX/[16|8|4] = 48|96|192 for avx512,avx,sse, respectively:
		const int incr_long = 16,incr_med = 8,incr_short = 4;
	  // Have no specialized HIACC carry macro in USE_AVX512 and ARMv8 SIMD, so use "goes to 11" in LOACC mode via an incr_hiacc = 2:
	  #if defined(USE_AVX512) || defined(USE_ARM_V8_SIMD)
		const int incr_hiacc = 2;
	  #else
		const int incr_hiacc = 0;
	  #endif
		// Allows cy-macro error data to be used to fiddle incr on the fly to a smaller, safer value if necessary
		if(USE_SHORT_CY_CHAIN == 0)
			incr = incr_long;
		else if(USE_SHORT_CY_CHAIN == 1)
			incr = incr_med;
		else if(USE_SHORT_CY_CHAIN == 2)
			incr = incr_short;
		else
			incr = incr_hiacc;

	#ifdef USE_AVX512
		double t0,t1,t2,t3;
	  #ifdef CARRY_16_WAY
		struct uint32x16 *n_minus_sil,*n_minus_silp1,*sinwt,*sinwtm1;
	  #else
		struct uint32x8  *n_minus_sil,*n_minus_silp1,*sinwt,*sinwtm1;
	  #endif
	#elif defined(USE_AVX)
		struct uint32x4 *n_minus_sil,*n_minus_silp1,*sinwt,*sinwtm1;
	#else
		int n_minus_sil,n_minus_silp1,sinwt,sinwtm1;
		double wtl,wtlp1,wtn,wtnm1;	/* Mersenne-mod weights stuff */
	#endif

	#ifdef USE_SSE2

		const double crnd = 3.0*0x4000000*0x2000000;
		double *add0,*add1,*add2,*add3;
		int *bjmodn;	// Alloc mem for this along with other 	SIMD stuff
		vec_dbl *tmp,*tm1,*tm2;	// utility ptrs
		int *itmp,*itm2;			// Pointer into the bjmodn array
		struct complex *ctmp;	// Hybrid AVX-DFT/SSE2-carry scheme used for Mersenne-mod needs a 2-word-double pointer
		vec_dbl *two,*one,*sqrt2,*isrt2, *cc0, *ss0, *cc1, *ss1, *max_err, *sse2_rnd, *half_arr,
			// ptrs to 16 sets of twiddles shared by the 2nd-half DIF and DIT DFT macros:
			*twid0,*twid1,*twid2,*twid3,*twid4,*twid5,*twid6,*twid7,*twid8,*twid9,*twida,*twidb,*twidc,*twidd,*twide,*twidf,
			*r000,*r100,*r200,	// Head of RADIX*vec_cmplx-sized local store #1
			*s1p000,	// Head of RADIX*vec_cmplx-sized local store #2
			*cy;	// Need RADIX/2 slots for sse2 carries, RADIX/4 for avx
		double dtmp;
		uint64 *sign_mask, *sse_bw, *sse_sw, *sse_n;

	#else

		const double	c3m1= -1.50000000000000000000,	/* cos(twopi/3)-1	*/
						s   =  0.86602540378443864675;	/* sin(twopi/3)		*/
		double *base, *baseinv;
		int p0123[4];
		const double one_half[3] = {1.0, 0.5, 0.25};	/* Needed for small-weights-tables scheme */
		int jt,jp,m,m2;
		double wt,wtinv,wtA,wtB,wtC;	/* Mersenne-mod weights stuff */
		int bjmodn[RADIX];	// Thread only carries a base datum here, must alloc a local array for remaining values
		double *cy = thread_arg->cy, temp,frac,
			t00,t01,t02,t03,t04,t05;

		int t_offsets_lo[16], t_offsets_hi[16];
		// Local storage: We must use an array here because scalars have no guarantees about relative address offsets
		// [and even if those are contiguous-as-hoped-for, they may run in reverse]; Make array type (struct complex)
		// to allow us to use the same offset-indexing as in the original radix-32 in-place DFT macros:
		struct complex t[RADIX], *tptr;
		int *itmp;	// Pointer into the bjmodn array

	#endif

	// int data:
		int iter = thread_arg->iter;
		int NDIVR = thread_arg->ndivr;
		int n = NDIVR*RADIX;
		int target_idx = thread_arg->target_idx;
		int target_set = thread_arg->target_set;
		double target_cy  = thread_arg->target_cy;
		int khi    = thread_arg->khi;
		int i      = thread_arg->i;	/* Pointer to the BASE and BASEINV arrays.	*/
		int jstart = thread_arg->jstart;
		int jhi    = thread_arg->jhi;
		int col = thread_arg->col;
		int co2 = thread_arg->co2;
		int co3 = thread_arg->co3;
		int sw  = thread_arg->sw;
		int nwt = thread_arg->nwt;

	// double data:
		double maxerr = thread_arg->maxerr;
		double scale = thread_arg->scale;	int full_pass = scale < 0.5;
		double prp_mult = thread_arg->prp_mult;

	// pointer data:
		double *a = thread_arg->arrdat;
		double *wt0 = thread_arg->wt0;
		double *wt1 = thread_arg->wt1;
		double *wts_mult = thread_arg->wts_mult;	// Const Intra-block wts-multiplier...
		double *inv_mult = thread_arg->inv_mult;	// ...and 2*(its multiplicative inverse).
		ASSERT(HERE,fabs(wts_mult[0]*inv_mult[0] - 1.0) < EPS, "wts_mults fail accuracy check!");
		ASSERT(HERE,fabs(wts_mult[1]*inv_mult[1] - 1.0) < EPS, "wts_mults fail accuracy check!");
		int *si = thread_arg->si;

		/*   constant index offsets for array load/stores are here.	*/
		p1 = NDIVR;		p10 = NDIVR<<4;		p100 = NDIVR<<8;		p200 = NDIVR<<9;
		p2 = p1 + p1;	p20 = p10 + p10;	p110 = p100 + p10;		p210 = p200 + p10;
		p3 = p2 + p1;	p30 = p20 + p10;	p120 = p110 + p10;		p220 = p210 + p10;
		p4 = p3 + p1;	p40 = p30 + p10;	p130 = p120 + p10;		p230 = p220 + p10;
		p5 = p4 + p1;	p50 = p40 + p10;	p140 = p130 + p10;		p240 = p230 + p10;
		p6 = p5 + p1;	p60 = p50 + p10;	p150 = p140 + p10;		p250 = p240 + p10;
		p7 = p6 + p1;	p70 = p60 + p10;	p160 = p150 + p10;		p260 = p250 + p10;
		p8 = p7 + p1;	p80 = p70 + p10;	p170 = p160 + p10;		p270 = p260 + p10;
		p9 = p8 + p1;	p90 = p80 + p10;	p180 = p170 + p10;		p280 = p270 + p10;
		pa = p9 + p1;	pa0 = p90 + p10;	p190 = p180 + p10;		p290 = p280 + p10;
		pb = pa + p1;	pb0 = pa0 + p10;	p1a0 = p190 + p10;		p2a0 = p290 + p10;
		pc = pb + p1;	pc0 = pb0 + p10;	p1b0 = p1a0 + p10;		p2b0 = p2a0 + p10;
		pd = pc + p1;	pd0 = pc0 + p10;	p1c0 = p1b0 + p10;		p2c0 = p2b0 + p10;
		pe = pd + p1;	pe0 = pd0 + p10;	p1d0 = p1c0 + p10;		p2d0 = p2c0 + p10;
		pf = pe + p1;	pf0 = pe0 + p10;	p1e0 = p1d0 + p10;		p2e0 = p2d0 + p10;
											p1f0 = p1e0 + p10;		p2f0 = p2e0 + p10;
		p1 += ( (p1 >> DAT_BITS) << PAD_BITS );
		p2 += ( (p2 >> DAT_BITS) << PAD_BITS );
		p3 += ( (p3 >> DAT_BITS) << PAD_BITS );
		p4 += ( (p4 >> DAT_BITS) << PAD_BITS );
		p5 += ( (p5 >> DAT_BITS) << PAD_BITS );
		p6 += ( (p6 >> DAT_BITS) << PAD_BITS );
		p7 += ( (p7 >> DAT_BITS) << PAD_BITS );
		p8 += ( (p8 >> DAT_BITS) << PAD_BITS );
		p9 += ( (p9 >> DAT_BITS) << PAD_BITS );
		pa += ( (pa >> DAT_BITS) << PAD_BITS );
		pb += ( (pb >> DAT_BITS) << PAD_BITS );
		pc += ( (pc >> DAT_BITS) << PAD_BITS );
		pd += ( (pd >> DAT_BITS) << PAD_BITS );
		pe += ( (pe >> DAT_BITS) << PAD_BITS );
		pf += ( (pf >> DAT_BITS) << PAD_BITS );
		p10 += ( (p10 >> DAT_BITS) << PAD_BITS );
		p20 += ( (p20 >> DAT_BITS) << PAD_BITS );
		p30 += ( (p30 >> DAT_BITS) << PAD_BITS );
		p40 += ( (p40 >> DAT_BITS) << PAD_BITS );
		p50 += ( (p50 >> DAT_BITS) << PAD_BITS );
		p60 += ( (p60 >> DAT_BITS) << PAD_BITS );
		p70 += ( (p70 >> DAT_BITS) << PAD_BITS );
		p80 += ( (p80 >> DAT_BITS) << PAD_BITS );
		p90 += ( (p90 >> DAT_BITS) << PAD_BITS );
		pa0 += ( (pa0 >> DAT_BITS) << PAD_BITS );
		pb0 += ( (pb0 >> DAT_BITS) << PAD_BITS );
		pc0 += ( (pc0 >> DAT_BITS) << PAD_BITS );
		pd0 += ( (pd0 >> DAT_BITS) << PAD_BITS );
		pe0 += ( (pe0 >> DAT_BITS) << PAD_BITS );
		pf0 += ( (pf0 >> DAT_BITS) << PAD_BITS );
		p100 += ( (p100 >> DAT_BITS) << PAD_BITS );
		p110 += ( (p110 >> DAT_BITS) << PAD_BITS );
		p120 += ( (p120 >> DAT_BITS) << PAD_BITS );
		p130 += ( (p130 >> DAT_BITS) << PAD_BITS );
		p140 += ( (p140 >> DAT_BITS) << PAD_BITS );
		p150 += ( (p150 >> DAT_BITS) << PAD_BITS );
		p160 += ( (p160 >> DAT_BITS) << PAD_BITS );
		p170 += ( (p170 >> DAT_BITS) << PAD_BITS );
		p180 += ( (p180 >> DAT_BITS) << PAD_BITS );
		p190 += ( (p190 >> DAT_BITS) << PAD_BITS );
		p1a0 += ( (p1a0 >> DAT_BITS) << PAD_BITS );
		p1b0 += ( (p1b0 >> DAT_BITS) << PAD_BITS );
		p1c0 += ( (p1c0 >> DAT_BITS) << PAD_BITS );
		p1d0 += ( (p1d0 >> DAT_BITS) << PAD_BITS );
		p1e0 += ( (p1e0 >> DAT_BITS) << PAD_BITS );
		p1f0 += ( (p1f0 >> DAT_BITS) << PAD_BITS );
		p200 += ( (p200 >> DAT_BITS) << PAD_BITS );
		p210 += ( (p210 >> DAT_BITS) << PAD_BITS );
		p220 += ( (p220 >> DAT_BITS) << PAD_BITS );
		p230 += ( (p230 >> DAT_BITS) << PAD_BITS );
		p240 += ( (p240 >> DAT_BITS) << PAD_BITS );
		p250 += ( (p250 >> DAT_BITS) << PAD_BITS );
		p260 += ( (p260 >> DAT_BITS) << PAD_BITS );
		p270 += ( (p270 >> DAT_BITS) << PAD_BITS );
		p280 += ( (p280 >> DAT_BITS) << PAD_BITS );
		p290 += ( (p290 >> DAT_BITS) << PAD_BITS );
		p2a0 += ( (p2a0 >> DAT_BITS) << PAD_BITS );
		p2b0 += ( (p2b0 >> DAT_BITS) << PAD_BITS );
		p2c0 += ( (p2c0 >> DAT_BITS) << PAD_BITS );
		p2d0 += ( (p2d0 >> DAT_BITS) << PAD_BITS );
		p2e0 += ( (p2e0 >> DAT_BITS) << PAD_BITS );
		p2f0 += ( (p2f0 >> DAT_BITS) << PAD_BITS );
	#ifndef USE_SSE2
		p0123[0] = 0; p0123[1] = p1; p0123[2] = p2; p0123[3] = p3;
	#endif
		poff[     0] =   0; poff[     1] =     p4; poff[     2] =     p8; poff[     3] =     pc;
		poff[0x04+0] = p10; poff[0x04+1] = p10+p4; poff[0x04+2] = p10+p8; poff[0x04+3] = p10+pc;
		poff[0x08+0] = p20; poff[0x08+1] = p20+p4; poff[0x08+2] = p20+p8; poff[0x08+3] = p20+pc;
		poff[0x0c+0] = p30; poff[0x0c+1] = p30+p4; poff[0x0c+2] = p30+p8; poff[0x0c+3] = p30+pc;
		poff[0x10+0] = p40; poff[0x10+1] = p40+p4; poff[0x10+2] = p40+p8; poff[0x10+3] = p40+pc;
		poff[0x14+0] = p50; poff[0x14+1] = p50+p4; poff[0x14+2] = p50+p8; poff[0x14+3] = p50+pc;
		poff[0x18+0] = p60; poff[0x18+1] = p60+p4; poff[0x18+2] = p60+p8; poff[0x18+3] = p60+pc;
		poff[0x1c+0] = p70; poff[0x1c+1] = p70+p4; poff[0x1c+2] = p70+p8; poff[0x1c+3] = p70+pc;
		poff[0x20+0] = p80; poff[0x20+1] = p80+p4; poff[0x20+2] = p80+p8; poff[0x20+3] = p80+pc;
		poff[0x24+0] = p90; poff[0x24+1] = p90+p4; poff[0x24+2] = p90+p8; poff[0x24+3] = p90+pc;
		poff[0x28+0] = pa0; poff[0x28+1] = pa0+p4; poff[0x28+2] = pa0+p8; poff[0x28+3] = pa0+pc;
		poff[0x2c+0] = pb0; poff[0x2c+1] = pb0+p4; poff[0x2c+2] = pb0+p8; poff[0x2c+3] = pb0+pc;
		poff[0x30+0] = pc0; poff[0x30+1] = pc0+p4; poff[0x30+2] = pc0+p8; poff[0x30+3] = pc0+pc;
		poff[0x34+0] = pd0; poff[0x34+1] = pd0+p4; poff[0x34+2] = pd0+p8; poff[0x34+3] = pd0+pc;
		poff[0x38+0] = pe0; poff[0x38+1] = pe0+p4; poff[0x38+2] = pe0+p8; poff[0x38+3] = pe0+pc;
		poff[0x3c+0] = pf0; poff[0x3c+1] = pf0+p4; poff[0x3c+2] = pf0+p8; poff[0x3c+3] = pf0+pc;
		for(l = 0; l < 64; l++) {
			poff[ 64+l] = poff[l] + p100;
			poff[128+l] = poff[l] + p200;
		}

	// Cf. radix768_dit_pass1() for details on the indexing scheme used here:
	// Set dit_offsets_lo for 1st set of radix-256 DIT inputs:
		dit_offsets_lo[0x00] =  0;	dit_offsets_lo[0x10] = pf;
		dit_offsets_lo[0x01] = p1;	dit_offsets_lo[0x11] = pe;
		dit_offsets_lo[0x02] = p3;	dit_offsets_lo[0x12] = pd;
		dit_offsets_lo[0x03] = p2;	dit_offsets_lo[0x13] = pc;
		dit_offsets_lo[0x04] = p7;	dit_offsets_lo[0x14] = pb;
		dit_offsets_lo[0x05] = p6;	dit_offsets_lo[0x15] = pa;
		dit_offsets_lo[0x06] = p5;	dit_offsets_lo[0x16] = p9;
		dit_offsets_lo[0x07] = p4;	dit_offsets_lo[0x17] = p8;
		dit_offsets_lo[0x08] = pf;	dit_offsets_lo[0x18] = p7;
		dit_offsets_lo[0x09] = pe;	dit_offsets_lo[0x19] = p6;
		dit_offsets_lo[0x0a] = pd;	dit_offsets_lo[0x1a] = p5;
		dit_offsets_lo[0x0b] = pc;	dit_offsets_lo[0x1b] = p4;
		dit_offsets_lo[0x0c] = pb;	dit_offsets_lo[0x1c] = p3;
		dit_offsets_lo[0x0d] = pa;	dit_offsets_lo[0x1d] = p2;
		dit_offsets_lo[0x0e] = p9;	dit_offsets_lo[0x1e] = p1;
		dit_offsets_lo[0x0f] = p8;	dit_offsets_lo[0x1f] =  0;

	// Set dit_offsets for 2nd set of radix-256 DIT inputs:
		dit_offsets_lo[0x20] = p5;	dit_offsets_lo[0x30] = p9;
		dit_offsets_lo[0x21] = p4;	dit_offsets_lo[0x31] = p8;
		dit_offsets_lo[0x22] = p6;	dit_offsets_lo[0x32] = pa;
		dit_offsets_lo[0x23] = p7;	dit_offsets_lo[0x33] = pb;
		dit_offsets_lo[0x24] = p1;	dit_offsets_lo[0x34] = pe;
		dit_offsets_lo[0x25] =  0;	dit_offsets_lo[0x35] = pf;
		dit_offsets_lo[0x26] = p2;	dit_offsets_lo[0x36] = pc;
		dit_offsets_lo[0x27] = p3;	dit_offsets_lo[0x37] = pd;
		dit_offsets_lo[0x28] = p9;	dit_offsets_lo[0x38] = p1;
		dit_offsets_lo[0x29] = p8;	dit_offsets_lo[0x39] =  0;
		dit_offsets_lo[0x2a] = pa;	dit_offsets_lo[0x3a] = p2;
		dit_offsets_lo[0x2b] = pb;	dit_offsets_lo[0x3b] = p3;
		dit_offsets_lo[0x2c] = pe;	dit_offsets_lo[0x3c] = p6;
		dit_offsets_lo[0x2d] = pf;	dit_offsets_lo[0x3d] = p7;
		dit_offsets_lo[0x2e] = pc;	dit_offsets_lo[0x3e] = p4;
		dit_offsets_lo[0x2f] = pd;	dit_offsets_lo[0x3f] = p5;

	// Set dit_offsets for 3rd set of radix-256 DIT inputs:
		dit_offsets_lo[0x40] = pa;	dit_offsets_lo[0x50] = p2;
		dit_offsets_lo[0x41] = pb;	dit_offsets_lo[0x51] = p3;
		dit_offsets_lo[0x42] = p8;	dit_offsets_lo[0x52] =  0;
		dit_offsets_lo[0x43] = p9;	dit_offsets_lo[0x53] = p1;
		dit_offsets_lo[0x44] = pc;	dit_offsets_lo[0x54] = p4;
		dit_offsets_lo[0x45] = pd;	dit_offsets_lo[0x55] = p5;
		dit_offsets_lo[0x46] = pf;	dit_offsets_lo[0x56] = p7;
		dit_offsets_lo[0x47] = pe;	dit_offsets_lo[0x57] = p6;
		dit_offsets_lo[0x48] = p2;	dit_offsets_lo[0x58] = pc;
		dit_offsets_lo[0x49] = p3;	dit_offsets_lo[0x59] = pd;
		dit_offsets_lo[0x4a] =  0;	dit_offsets_lo[0x5a] = pf;
		dit_offsets_lo[0x4b] = p1;	dit_offsets_lo[0x5b] = pe;
		dit_offsets_lo[0x4c] = p4;	dit_offsets_lo[0x5c] = p8;
		dit_offsets_lo[0x4d] = p5;	dit_offsets_lo[0x5d] = p9;
		dit_offsets_lo[0x4e] = p7;	dit_offsets_lo[0x5e] = pb;
		dit_offsets_lo[0x4f] = p6;	dit_offsets_lo[0x5f] = pa;

	// ...and one distinct high-part vector for each radix-256 DIT:
		dit_offsets_hi1[0x0] =   0;	dit_offsets_hi2[0x0] = p50;	dit_offsets_hi3[0x0] = pa0;
		dit_offsets_hi1[0x1] = p10;	dit_offsets_hi2[0x1] = p40;	dit_offsets_hi3[0x1] = pb0;
		dit_offsets_hi1[0x2] = p30;	dit_offsets_hi2[0x2] = p60;	dit_offsets_hi3[0x2] = p80;
		dit_offsets_hi1[0x3] = p20;	dit_offsets_hi2[0x3] = p70;	dit_offsets_hi3[0x3] = p90;
		dit_offsets_hi1[0x4] = p70;	dit_offsets_hi2[0x4] = p10;	dit_offsets_hi3[0x4] = pc0;
		dit_offsets_hi1[0x5] = p60;	dit_offsets_hi2[0x5] =   0;	dit_offsets_hi3[0x5] = pd0;
		dit_offsets_hi1[0x6] = p50;	dit_offsets_hi2[0x6] = p20;	dit_offsets_hi3[0x6] = pf0;
		dit_offsets_hi1[0x7] = p40;	dit_offsets_hi2[0x7] = p30;	dit_offsets_hi3[0x7] = pe0;
		dit_offsets_hi1[0x8] = pf0;	dit_offsets_hi2[0x8] = p90;	dit_offsets_hi3[0x8] = p20;
		dit_offsets_hi1[0x9] = pe0;	dit_offsets_hi2[0x9] = p80;	dit_offsets_hi3[0x9] = p30;
		dit_offsets_hi1[0xa] = pd0;	dit_offsets_hi2[0xa] = pa0;	dit_offsets_hi3[0xa] =   0;
		dit_offsets_hi1[0xb] = pc0;	dit_offsets_hi2[0xb] = pb0;	dit_offsets_hi3[0xb] = p10;
		dit_offsets_hi1[0xc] = pb0;	dit_offsets_hi2[0xc] = pe0;	dit_offsets_hi3[0xc] = p40;
		dit_offsets_hi1[0xd] = pa0;	dit_offsets_hi2[0xd] = pf0;	dit_offsets_hi3[0xd] = p50;
		dit_offsets_hi1[0xe] = p90;	dit_offsets_hi2[0xe] = pc0;	dit_offsets_hi3[0xe] = p70;
		dit_offsets_hi1[0xf] = p80;	dit_offsets_hi2[0xf] = pd0;	dit_offsets_hi3[0xf] = p60;

	  #ifndef USE_SSE2
		// Idx offsets w.r.to r-array are const and shared by both sets of radix-256 transforms:
		// low parts in first 16 slots, high parts in next 16:
		t_offsets_lo[0x0] = 0x00<<1;	t_offsets_hi[0x0] = 0x00<<1;
		t_offsets_lo[0x1] = 0x01<<1;	t_offsets_hi[0x1] = 0x10<<1;
		t_offsets_lo[0x2] = 0x02<<1;	t_offsets_hi[0x2] = 0x20<<1;
		t_offsets_lo[0x3] = 0x03<<1;	t_offsets_hi[0x3] = 0x30<<1;
		t_offsets_lo[0x4] = 0x04<<1;	t_offsets_hi[0x4] = 0x40<<1;
		t_offsets_lo[0x5] = 0x05<<1;	t_offsets_hi[0x5] = 0x50<<1;
		t_offsets_lo[0x6] = 0x06<<1;	t_offsets_hi[0x6] = 0x60<<1;
		t_offsets_lo[0x7] = 0x07<<1;	t_offsets_hi[0x7] = 0x70<<1;
		t_offsets_lo[0x8] = 0x08<<1;	t_offsets_hi[0x8] = 0x80<<1;
		t_offsets_lo[0x9] = 0x09<<1;	t_offsets_hi[0x9] = 0x90<<1;
		t_offsets_lo[0xa] = 0x0a<<1;	t_offsets_hi[0xa] = 0xa0<<1;
		t_offsets_lo[0xb] = 0x0b<<1;	t_offsets_hi[0xb] = 0xb0<<1;
		t_offsets_lo[0xc] = 0x0c<<1;	t_offsets_hi[0xc] = 0xc0<<1;
		t_offsets_lo[0xd] = 0x0d<<1;	t_offsets_hi[0xd] = 0xd0<<1;
		t_offsets_lo[0xe] = 0x0e<<1;	t_offsets_hi[0xe] = 0xe0<<1;
		t_offsets_lo[0xf] = 0x0f<<1;	t_offsets_hi[0xf] = 0xf0<<1;
	  #endif

	// Cf. radix768_dif_pass1() for details on the indexing scheme used here:
	// Set dit_offsets_lo for the 4 subvectors shared by the 3 sets of radix-256 DIT inputs:
		dif_offsets_lo[0x00] =  0;	dif_offsets_lo[0x10] = p5;	dif_offsets_lo[0x20] = pa;	dif_offsets_lo[0x30] = pf;
		dif_offsets_lo[0x01] = p1;	dif_offsets_lo[0x11] = p4;	dif_offsets_lo[0x21] = pb;	dif_offsets_lo[0x31] = pe;
		dif_offsets_lo[0x02] = p2;	dif_offsets_lo[0x12] = p7;	dif_offsets_lo[0x22] = p9;	dif_offsets_lo[0x32] = pc;
		dif_offsets_lo[0x03] = p3;	dif_offsets_lo[0x13] = p6;	dif_offsets_lo[0x23] = p8;	dif_offsets_lo[0x33] = pd;
		dif_offsets_lo[0x04] = p5;	dif_offsets_lo[0x14] = p2;	dif_offsets_lo[0x24] = pf;	dif_offsets_lo[0x34] = p9;
		dif_offsets_lo[0x05] = p4;	dif_offsets_lo[0x15] = p3;	dif_offsets_lo[0x25] = pe;	dif_offsets_lo[0x35] = p8;
		dif_offsets_lo[0x06] = p7;	dif_offsets_lo[0x16] = p1;	dif_offsets_lo[0x26] = pc;	dif_offsets_lo[0x36] = pb;
		dif_offsets_lo[0x07] = p6;	dif_offsets_lo[0x17] =  0;	dif_offsets_lo[0x27] = pd;	dif_offsets_lo[0x37] = pa;
		dif_offsets_lo[0x08] = pa;	dif_offsets_lo[0x18] = pf;	dif_offsets_lo[0x28] = p5;	dif_offsets_lo[0x38] = p2;
		dif_offsets_lo[0x09] = pb;	dif_offsets_lo[0x19] = pe;	dif_offsets_lo[0x29] = p4;	dif_offsets_lo[0x39] = p3;
		dif_offsets_lo[0x0a] = p9;	dif_offsets_lo[0x1a] = pc;	dif_offsets_lo[0x2a] = p7;	dif_offsets_lo[0x3a] = p1;
		dif_offsets_lo[0x0b] = p8;	dif_offsets_lo[0x1b] = pd;	dif_offsets_lo[0x2b] = p6;	dif_offsets_lo[0x3b] =  0;
		dif_offsets_lo[0x0c] = pf;	dif_offsets_lo[0x1c] = p9;	dif_offsets_lo[0x2c] = p2;	dif_offsets_lo[0x3c] = p7;
		dif_offsets_lo[0x0d] = pe;	dif_offsets_lo[0x1d] = p8;	dif_offsets_lo[0x2d] = p3;	dif_offsets_lo[0x3d] = p6;
		dif_offsets_lo[0x0e] = pc;	dif_offsets_lo[0x1e] = pb;	dif_offsets_lo[0x2e] = p1;	dif_offsets_lo[0x3e] = p4;
		dif_offsets_lo[0x0f] = pd;	dif_offsets_lo[0x1f] = pa;	dif_offsets_lo[0x2f] =  0;	dif_offsets_lo[0x3f] = p5;

	// ...and one distinct high-part vector for each radix-256 DFT:
		dif_offsets_hi1[0x0] =   0;	dif_offsets_hi2[0x0] = p50;	dif_offsets_hi3[0x0] = pa0;
		dif_offsets_hi1[0x1] = p10;	dif_offsets_hi2[0x1] = p40;	dif_offsets_hi3[0x1] = pb0;
		dif_offsets_hi1[0x2] = p20;	dif_offsets_hi2[0x2] = p70;	dif_offsets_hi3[0x2] = p90;
		dif_offsets_hi1[0x3] = p30;	dif_offsets_hi2[0x3] = p60;	dif_offsets_hi3[0x3] = p80;
		dif_offsets_hi1[0x4] = p50;	dif_offsets_hi2[0x4] = p20;	dif_offsets_hi3[0x4] = pf0;
		dif_offsets_hi1[0x5] = p40;	dif_offsets_hi2[0x5] = p30;	dif_offsets_hi3[0x5] = pe0;
		dif_offsets_hi1[0x6] = p70;	dif_offsets_hi2[0x6] = p10;	dif_offsets_hi3[0x6] = pc0;
		dif_offsets_hi1[0x7] = p60;	dif_offsets_hi2[0x7] =   0;	dif_offsets_hi3[0x7] = pd0;
		dif_offsets_hi1[0x8] = pa0;	dif_offsets_hi2[0x8] = pf0;	dif_offsets_hi3[0x8] = p50;
		dif_offsets_hi1[0x9] = pb0;	dif_offsets_hi2[0x9] = pe0;	dif_offsets_hi3[0x9] = p40;
		dif_offsets_hi1[0xa] = p90;	dif_offsets_hi2[0xa] = pc0;	dif_offsets_hi3[0xa] = p70;
		dif_offsets_hi1[0xb] = p80;	dif_offsets_hi2[0xb] = pd0;	dif_offsets_hi3[0xb] = p60;
		dif_offsets_hi1[0xc] = pf0;	dif_offsets_hi2[0xc] = p90;	dif_offsets_hi3[0xc] = p20;
		dif_offsets_hi1[0xd] = pe0;	dif_offsets_hi2[0xd] = p80;	dif_offsets_hi3[0xd] = p30;
		dif_offsets_hi1[0xe] = pc0;	dif_offsets_hi2[0xe] = pb0;	dif_offsets_hi3[0xe] = p10;
		dif_offsets_hi1[0xf] = pd0;	dif_offsets_hi2[0xf] = pa0;	dif_offsets_hi3[0xf] =   0;

	// DIF Index-high-bits triplets needed for compact-obj-code scheme:
	#ifdef USE_SSE2
		k = 0;	// In SIMD mode these are 0xtr-offsets w.r.to a local store:
		dif_triplets[k] = 0x2f0; dif_triplets[k+1] = 0x1f0; dif_triplets[k+2] = 0x0f0; k += 3;
		dif_triplets[k] = 0x2e0; dif_triplets[k+1] = 0x1e0; dif_triplets[k+2] = 0x0e0; k += 3;
		dif_triplets[k] = 0x2d0; dif_triplets[k+1] = 0x1d0; dif_triplets[k+2] = 0x0d0; k += 3;
		dif_triplets[k] = 0x2c0; dif_triplets[k+1] = 0x1c0; dif_triplets[k+2] = 0x0c0; k += 3;
		dif_triplets[k] = 0x2b0; dif_triplets[k+1] = 0x1b0; dif_triplets[k+2] = 0x0b0; k += 3;
		dif_triplets[k] = 0x2a0; dif_triplets[k+1] = 0x1a0; dif_triplets[k+2] = 0x0a0; k += 3;
		dif_triplets[k] = 0x290; dif_triplets[k+1] = 0x190; dif_triplets[k+2] = 0x090; k += 3;
		dif_triplets[k] = 0x280; dif_triplets[k+1] = 0x180; dif_triplets[k+2] = 0x080; k += 3;
		dif_triplets[k] = 0x270; dif_triplets[k+1] = 0x170; dif_triplets[k+2] = 0x070; k += 3;
		dif_triplets[k] = 0x260; dif_triplets[k+1] = 0x160; dif_triplets[k+2] = 0x060; k += 3;
		dif_triplets[k] = 0x250; dif_triplets[k+1] = 0x150; dif_triplets[k+2] = 0x050; k += 3;
		dif_triplets[k] = 0x240; dif_triplets[k+1] = 0x140; dif_triplets[k+2] = 0x040; k += 3;
		dif_triplets[k] = 0x230; dif_triplets[k+1] = 0x130; dif_triplets[k+2] = 0x030; k += 3;
		dif_triplets[k] = 0x220; dif_triplets[k+1] = 0x120; dif_triplets[k+2] = 0x020; k += 3;
		dif_triplets[k] = 0x210; dif_triplets[k+1] = 0x110; dif_triplets[k+2] = 0x010; k += 3;
		dif_triplets[k] = 0x200; dif_triplets[k+1] = 0x100; dif_triplets[k+2] = 0x000; k += 3;
		dif_triplets[k] = 0x1f0; dif_triplets[k+1] = 0x0f0; dif_triplets[k+2] = 0x2f0; k += 3;
		dif_triplets[k] = 0x1e0; dif_triplets[k+1] = 0x0e0; dif_triplets[k+2] = 0x2e0; k += 3;
		dif_triplets[k] = 0x1d0; dif_triplets[k+1] = 0x0d0; dif_triplets[k+2] = 0x2d0; k += 3;
		dif_triplets[k] = 0x1c0; dif_triplets[k+1] = 0x0c0; dif_triplets[k+2] = 0x2c0; k += 3;
		dif_triplets[k] = 0x1b0; dif_triplets[k+1] = 0x0b0; dif_triplets[k+2] = 0x2b0; k += 3;
		dif_triplets[k] = 0x1a0; dif_triplets[k+1] = 0x0a0; dif_triplets[k+2] = 0x2a0; k += 3;
		dif_triplets[k] = 0x190; dif_triplets[k+1] = 0x090; dif_triplets[k+2] = 0x290; k += 3;
		dif_triplets[k] = 0x180; dif_triplets[k+1] = 0x080; dif_triplets[k+2] = 0x280; k += 3;
		dif_triplets[k] = 0x170; dif_triplets[k+1] = 0x070; dif_triplets[k+2] = 0x270; k += 3;
		dif_triplets[k] = 0x160; dif_triplets[k+1] = 0x060; dif_triplets[k+2] = 0x260; k += 3;
		dif_triplets[k] = 0x150; dif_triplets[k+1] = 0x050; dif_triplets[k+2] = 0x250; k += 3;
		dif_triplets[k] = 0x140; dif_triplets[k+1] = 0x040; dif_triplets[k+2] = 0x240; k += 3;
		dif_triplets[k] = 0x130; dif_triplets[k+1] = 0x030; dif_triplets[k+2] = 0x230; k += 3;
		dif_triplets[k] = 0x120; dif_triplets[k+1] = 0x020; dif_triplets[k+2] = 0x220; k += 3;
		dif_triplets[k] = 0x110; dif_triplets[k+1] = 0x010; dif_triplets[k+2] = 0x210; k += 3;
		dif_triplets[k] = 0x100; dif_triplets[k+1] = 0x000; dif_triplets[k+2] = 0x200; k += 3;
		dif_triplets[k] = 0x0f0; dif_triplets[k+1] = 0x2f0; dif_triplets[k+2] = 0x1f0; k += 3;
		dif_triplets[k] = 0x0e0; dif_triplets[k+1] = 0x2e0; dif_triplets[k+2] = 0x1e0; k += 3;
		dif_triplets[k] = 0x0d0; dif_triplets[k+1] = 0x2d0; dif_triplets[k+2] = 0x1d0; k += 3;
		dif_triplets[k] = 0x0c0; dif_triplets[k+1] = 0x2c0; dif_triplets[k+2] = 0x1c0; k += 3;
		dif_triplets[k] = 0x0b0; dif_triplets[k+1] = 0x2b0; dif_triplets[k+2] = 0x1b0; k += 3;
		dif_triplets[k] = 0x0a0; dif_triplets[k+1] = 0x2a0; dif_triplets[k+2] = 0x1a0; k += 3;
		dif_triplets[k] = 0x090; dif_triplets[k+1] = 0x290; dif_triplets[k+2] = 0x190; k += 3;
		dif_triplets[k] = 0x080; dif_triplets[k+1] = 0x280; dif_triplets[k+2] = 0x180; k += 3;
		dif_triplets[k] = 0x070; dif_triplets[k+1] = 0x270; dif_triplets[k+2] = 0x170; k += 3;
		dif_triplets[k] = 0x060; dif_triplets[k+1] = 0x260; dif_triplets[k+2] = 0x160; k += 3;
		dif_triplets[k] = 0x050; dif_triplets[k+1] = 0x250; dif_triplets[k+2] = 0x150; k += 3;
		dif_triplets[k] = 0x040; dif_triplets[k+1] = 0x240; dif_triplets[k+2] = 0x140; k += 3;
		dif_triplets[k] = 0x030; dif_triplets[k+1] = 0x230; dif_triplets[k+2] = 0x130; k += 3;
		dif_triplets[k] = 0x020; dif_triplets[k+1] = 0x220; dif_triplets[k+2] = 0x120; k += 3;
		dif_triplets[k] = 0x010; dif_triplets[k+1] = 0x210; dif_triplets[k+2] = 0x110; k += 3;
		dif_triplets[k] = 0x000; dif_triplets[k+1] = 0x200; dif_triplets[k+2] = 0x100;
		// IN SIMD mode need to double all the above to turn from vec_dbl to vec_cmplx ptr offsets:
		for(l = 0; l < 144; l++) {
			dif_triplets[l] <<= 1;
		}
	#else
		k = 0;
		dif_triplets[k] = p2f0; dif_triplets[k+1] = p1f0; dif_triplets[k+2] = pf0; k += 3;
		dif_triplets[k] = p2e0; dif_triplets[k+1] = p1e0; dif_triplets[k+2] = pe0; k += 3;
		dif_triplets[k] = p2d0; dif_triplets[k+1] = p1d0; dif_triplets[k+2] = pd0; k += 3;
		dif_triplets[k] = p2c0; dif_triplets[k+1] = p1c0; dif_triplets[k+2] = pc0; k += 3;
		dif_triplets[k] = p2b0; dif_triplets[k+1] = p1b0; dif_triplets[k+2] = pb0; k += 3;
		dif_triplets[k] = p2a0; dif_triplets[k+1] = p1a0; dif_triplets[k+2] = pa0; k += 3;
		dif_triplets[k] = p290; dif_triplets[k+1] = p190; dif_triplets[k+2] = p90; k += 3;
		dif_triplets[k] = p280; dif_triplets[k+1] = p180; dif_triplets[k+2] = p80; k += 3;
		dif_triplets[k] = p270; dif_triplets[k+1] = p170; dif_triplets[k+2] = p70; k += 3;
		dif_triplets[k] = p260; dif_triplets[k+1] = p160; dif_triplets[k+2] = p60; k += 3;
		dif_triplets[k] = p250; dif_triplets[k+1] = p150; dif_triplets[k+2] = p50; k += 3;
		dif_triplets[k] = p240; dif_triplets[k+1] = p140; dif_triplets[k+2] = p40; k += 3;
		dif_triplets[k] = p230; dif_triplets[k+1] = p130; dif_triplets[k+2] = p30; k += 3;
		dif_triplets[k] = p220; dif_triplets[k+1] = p120; dif_triplets[k+2] = p20; k += 3;
		dif_triplets[k] = p210; dif_triplets[k+1] = p110; dif_triplets[k+2] = p10; k += 3;
		dif_triplets[k] = p200; dif_triplets[k+1] = p100; dif_triplets[k+2] =   0; k += 3;
		dif_triplets[k] = p1f0; dif_triplets[k+1] = pf0; dif_triplets[k+2] = p2f0; k += 3;
		dif_triplets[k] = p1e0; dif_triplets[k+1] = pe0; dif_triplets[k+2] = p2e0; k += 3;
		dif_triplets[k] = p1d0; dif_triplets[k+1] = pd0; dif_triplets[k+2] = p2d0; k += 3;
		dif_triplets[k] = p1c0; dif_triplets[k+1] = pc0; dif_triplets[k+2] = p2c0; k += 3;
		dif_triplets[k] = p1b0; dif_triplets[k+1] = pb0; dif_triplets[k+2] = p2b0; k += 3;
		dif_triplets[k] = p1a0; dif_triplets[k+1] = pa0; dif_triplets[k+2] = p2a0; k += 3;
		dif_triplets[k] = p190; dif_triplets[k+1] = p90; dif_triplets[k+2] = p290; k += 3;
		dif_triplets[k] = p180; dif_triplets[k+1] = p80; dif_triplets[k+2] = p280; k += 3;
		dif_triplets[k] = p170; dif_triplets[k+1] = p70; dif_triplets[k+2] = p270; k += 3;
		dif_triplets[k] = p160; dif_triplets[k+1] = p60; dif_triplets[k+2] = p260; k += 3;
		dif_triplets[k] = p150; dif_triplets[k+1] = p50; dif_triplets[k+2] = p250; k += 3;
		dif_triplets[k] = p140; dif_triplets[k+1] = p40; dif_triplets[k+2] = p240; k += 3;
		dif_triplets[k] = p130; dif_triplets[k+1] = p30; dif_triplets[k+2] = p230; k += 3;
		dif_triplets[k] = p120; dif_triplets[k+1] = p20; dif_triplets[k+2] = p220; k += 3;
		dif_triplets[k] = p110; dif_triplets[k+1] = p10; dif_triplets[k+2] = p210; k += 3;
		dif_triplets[k] = p100; dif_triplets[k+1] =   0; dif_triplets[k+2] = p200; k += 3;
		dif_triplets[k] = pf0; dif_triplets[k+1] = p2f0; dif_triplets[k+2] = p1f0; k += 3;
		dif_triplets[k] = pe0; dif_triplets[k+1] = p2e0; dif_triplets[k+2] = p1e0; k += 3;
		dif_triplets[k] = pd0; dif_triplets[k+1] = p2d0; dif_triplets[k+2] = p1d0; k += 3;
		dif_triplets[k] = pc0; dif_triplets[k+1] = p2c0; dif_triplets[k+2] = p1c0; k += 3;
		dif_triplets[k] = pb0; dif_triplets[k+1] = p2b0; dif_triplets[k+2] = p1b0; k += 3;
		dif_triplets[k] = pa0; dif_triplets[k+1] = p2a0; dif_triplets[k+2] = p1a0; k += 3;
		dif_triplets[k] = p90; dif_triplets[k+1] = p290; dif_triplets[k+2] = p190; k += 3;
		dif_triplets[k] = p80; dif_triplets[k+1] = p280; dif_triplets[k+2] = p180; k += 3;
		dif_triplets[k] = p70; dif_triplets[k+1] = p270; dif_triplets[k+2] = p170; k += 3;
		dif_triplets[k] = p60; dif_triplets[k+1] = p260; dif_triplets[k+2] = p160; k += 3;
		dif_triplets[k] = p50; dif_triplets[k+1] = p250; dif_triplets[k+2] = p150; k += 3;
		dif_triplets[k] = p40; dif_triplets[k+1] = p240; dif_triplets[k+2] = p140; k += 3;
		dif_triplets[k] = p30; dif_triplets[k+1] = p230; dif_triplets[k+2] = p130; k += 3;
		dif_triplets[k] = p20; dif_triplets[k+1] = p220; dif_triplets[k+2] = p120; k += 3;
		dif_triplets[k] = p10; dif_triplets[k+1] = p210; dif_triplets[k+2] = p110; k += 3;
		dif_triplets[k] =   0; dif_triplets[k+1] = p200; dif_triplets[k+2] = p100;
	#endif
	// DIT Index-high-bits triplets needed for compact-obj-code scheme:
	#ifdef USE_SSE2
		k = 0;	// In SIMD mode these are ptr-offsets w.r.to a local store:
		dit_triplets[k] = 0x0f0; dit_triplets[k+1] = 0x1f0; dit_triplets[k+2] = 0x2f0; k += 3;
		dit_triplets[k] = 0x1e0; dit_triplets[k+1] = 0x2e0; dit_triplets[k+2] = 0x0e0; k += 3;
		dit_triplets[k] = 0x2d0; dit_triplets[k+1] = 0x0d0; dit_triplets[k+2] = 0x1d0; k += 3;
		dit_triplets[k] = 0x0c0; dit_triplets[k+1] = 0x1c0; dit_triplets[k+2] = 0x2c0; k += 3;
		dit_triplets[k] = 0x1b0; dit_triplets[k+1] = 0x2b0; dit_triplets[k+2] = 0x0b0; k += 3;
		dit_triplets[k] = 0x2a0; dit_triplets[k+1] = 0x0a0; dit_triplets[k+2] = 0x1a0; k += 3;
		dit_triplets[k] = 0x090; dit_triplets[k+1] = 0x190; dit_triplets[k+2] = 0x290; k += 3;
		dit_triplets[k] = 0x180; dit_triplets[k+1] = 0x280; dit_triplets[k+2] = 0x080; k += 3;
		dit_triplets[k] = 0x270; dit_triplets[k+1] = 0x070; dit_triplets[k+2] = 0x170; k += 3;
		dit_triplets[k] = 0x060; dit_triplets[k+1] = 0x160; dit_triplets[k+2] = 0x260; k += 3;
		dit_triplets[k] = 0x150; dit_triplets[k+1] = 0x250; dit_triplets[k+2] = 0x050; k += 3;
		dit_triplets[k] = 0x240; dit_triplets[k+1] = 0x040; dit_triplets[k+2] = 0x140; k += 3;
		dit_triplets[k] = 0x030; dit_triplets[k+1] = 0x130; dit_triplets[k+2] = 0x230; k += 3;
		dit_triplets[k] = 0x120; dit_triplets[k+1] = 0x220; dit_triplets[k+2] = 0x020; k += 3;
		dit_triplets[k] = 0x210; dit_triplets[k+1] = 0x010; dit_triplets[k+2] = 0x110; k += 3;
		dit_triplets[k] = 0x000; dit_triplets[k+1] = 0x100; dit_triplets[k+2] = 0x200;
		// IN SIMD mode need to double all the above to turn from vec_dbl to vec_cmplx ptr offsets:
		for(l = 0; l < 48; l++) {
			dit_triplets[l] <<= 1;
		}
	#else
		k = 0;
		dit_triplets[k] =  pf0; dit_triplets[k+1] = p1f0; dit_triplets[k+2] = p2f0; k += 3;
		dit_triplets[k] = p1e0; dit_triplets[k+1] = p2e0; dit_triplets[k+2] =  pe0; k += 3;
		dit_triplets[k] = p2d0; dit_triplets[k+1] =  pd0; dit_triplets[k+2] = p1d0; k += 3;
		dit_triplets[k] =  pc0; dit_triplets[k+1] = p1c0; dit_triplets[k+2] = p2c0; k += 3;
		dit_triplets[k] = p1b0; dit_triplets[k+1] = p2b0; dit_triplets[k+2] =  pb0; k += 3;
		dit_triplets[k] = p2a0; dit_triplets[k+1] =  pa0; dit_triplets[k+2] = p1a0; k += 3;
		dit_triplets[k] =  p90; dit_triplets[k+1] = p190; dit_triplets[k+2] = p290; k += 3;
		dit_triplets[k] = p180; dit_triplets[k+1] = p280; dit_triplets[k+2] =  p80; k += 3;
		dit_triplets[k] = p270; dit_triplets[k+1] =  p70; dit_triplets[k+2] = p170; k += 3;
		dit_triplets[k] =  p60; dit_triplets[k+1] = p160; dit_triplets[k+2] = p260; k += 3;
		dit_triplets[k] = p150; dit_triplets[k+1] = p250; dit_triplets[k+2] =  p50; k += 3;
		dit_triplets[k] = p240; dit_triplets[k+1] =  p40; dit_triplets[k+2] = p140; k += 3;
		dit_triplets[k] =  p30; dit_triplets[k+1] = p130; dit_triplets[k+2] = p230; k += 3;
		dit_triplets[k] = p120; dit_triplets[k+1] = p220; dit_triplets[k+2] =  p20; k += 3;
		dit_triplets[k] = p210; dit_triplets[k+1] =  p10; dit_triplets[k+2] = p110; k += 3;
		dit_triplets[k] =    0; dit_triplets[k+1] = p100; dit_triplets[k+2] = p200;
	#endif

	#ifdef USE_SSE2
		tmp = r000 = thread_arg->r000;
		r100 = tmp + 0x200;
		r200 = tmp + 0x400;
		tmp += 0x600;	s1p000 = tmp;
		tmp += 0x600;	// r000 += 0xc00
		two     = tmp + 0;	// AVX+ versions of radix-8,16,32 twiddleless-DFT macros need consts [2,1,sqrt2,isrt2] quartet laid out thusly
		one     = tmp + 1;
		sqrt2   = tmp + 2;
		isrt2   = tmp + 3;
		cc0		= tmp + 4;
		ss0		= tmp + 5;
		cc1		= tmp + 6;
		ss1		= tmp + 7;
		tmp += 0x08;	// sc_ptr += 0xc08
		// ptrs to 15 sets (30 vec_dbl data each) of non-unity twiddles shared by the 2nd-half DIF and DIT DFT macros:
		twid0  = tmp + 0x00;
		twid1  = tmp + 0x1e;
		twid2  = tmp + 0x3c;
		twid3  = tmp + 0x5a;
		twid4  = tmp + 0x78;
		twid5  = tmp + 0x96;
		twid6  = tmp + 0xb4;
		twid7  = tmp + 0xd2;
		twid8  = tmp + 0xf0;
		twid9  = tmp + 0x10e;
		twida  = tmp + 0x12c;
		twidb  = tmp + 0x14a;
		twidc  = tmp + 0x168;
		twidd  = tmp + 0x186;
		twide  = tmp + 0x1a4;
		twidf  = tmp + 0x1c2;
		tmp += 0x1e0;	// += 15*30 => sc_ptr += 0xde8
	  #ifdef USE_AVX512
		cy = tmp;		tmp += 0x60;	// RADIX/8 vec_dbl slots for carry sub-array
		max_err = tmp + 0x00;
		sse2_rnd= tmp + 0x01;
		half_arr= tmp + 0x02;
	  #elif defined(USE_AVX)
		cy = tmp;		tmp += 0xc0;	// RADIX/4 vec_dbl slots for carry sub-array
		max_err = tmp + 0x00;
		sse2_rnd= tmp + 0x01;	// += 0xc0 + 2 => sc_ptr += 0xeaa
		// This is where the value of half_arr_offset comes from
		half_arr= tmp + 0x02;	/* This table needs 68 vec_dbl for Mersenne-mod, and 3.5*RADIX[avx] | RADIX[sse2] for Fermat-mod */
	  #else
		cy = tmp;		tmp += 0x180;	// RADIX/2 vec_dbl slots for carry sub-array
		max_err = tmp + 0x00;
		sse2_rnd= tmp + 0x01;	// += 0x180 + 2 => sc_ptr += 0xf6a
		// This is where the value of half_arr_offset comes from
		half_arr= tmp + 0x02;	/* This table needs 20 x 16 bytes for Mersenne-mod, 2 for Fermat-mod */
	  #endif

		ASSERT(HERE, (r000 == thread_arg->r000), "thread-local memcheck failed!");
		ASSERT(HERE, (half_arr == thread_arg->half_arr), "thread-local memcheck failed!");
	  #ifndef USE_AVX512	// In AVX-512 mode, use VRNDSCALEPD for rounding and hijack this vector-data slot for the 4 base/baseinv-consts:
		ASSERT(HERE, (sse2_rnd->d0 == crnd && sse2_rnd->d1 == crnd), "thread-local memcheck failed!");
	  #endif
		tmp = half_arr;
	  #ifdef USE_AVX512
		/* No-Op */
	  #elif defined(USE_AVX)
		// Grab some elt of base-data [offset by, say, +32] and mpy by its inverse [+16 further]
		dtmp = (tmp+40)->d0 * (tmp+56)->d0;	ASSERT(HERE, fabs(dtmp - 1.0) < EPS, "thread-local memcheck failed!");
		dtmp = (tmp+40)->d1 * (tmp+56)->d1;	ASSERT(HERE, fabs(dtmp - 1.0) < EPS, "thread-local memcheck failed!");
	  #else	// SSE2:
		dtmp = (tmp+10)->d0 * (tmp+14)->d0;	ASSERT(HERE, fabs(dtmp - 1.0) < EPS, "thread-local memcheck failed!");
		dtmp = (tmp+10)->d1 * (tmp+14)->d1;	ASSERT(HERE, fabs(dtmp - 1.0) < EPS, "thread-local memcheck failed!");
	  #endif

		VEC_DBL_INIT(max_err, 0.0);

		sign_mask = (uint64*)(r000 + radix768_creals_in_local_store);
		sse_bw  = sign_mask + RE_IM_STRIDE;	// (  #doubles in a SIMD complex) x 32-bits = RE_IM_STRIDE x 64-bits
		sse_sw  = sse_bw    + RE_IM_STRIDE;
		sse_n   = sse_sw    + RE_IM_STRIDE;

	  #ifdef USE_AVX512
	   #ifdef CARRY_16_WAY
		n_minus_sil   = (struct uint32x16*)sse_n + 1;
		n_minus_silp1 = (struct uint32x16*)sse_n + 2;
		sinwt         = (struct uint32x16*)sse_n + 3;
		sinwtm1       = (struct uint32x16*)sse_n + 4;
	   #else
		n_minus_sil   = (struct uint32x8 *)sse_n + 1;
		n_minus_silp1 = (struct uint32x8 *)sse_n + 2;
		sinwt         = (struct uint32x8 *)sse_n + 3;
		sinwtm1       = (struct uint32x8 *)sse_n + 4;
	   #endif
	  #elif defined(USE_AVX)
		n_minus_sil   = (struct uint32x4 *)sse_n + 1;
		n_minus_silp1 = (struct uint32x4 *)sse_n + 2;
		sinwt         = (struct uint32x4 *)sse_n + 3;
		sinwtm1       = (struct uint32x4 *)sse_n + 4;
	  #endif
	  #ifdef USE_AVX
		bjmodn = (int*)(sinwtm1 + RE_IM_STRIDE);
	  #else
		bjmodn = (int*)(sse_n + RE_IM_STRIDE);
	  #endif

	#else

		// In scalar mode use these 2 ptrs to pass the base & baseinv arrays:
		base    = (double *)thread_arg->r000    ;
		baseinv = (double *)thread_arg->half_arr;

	#endif	// USE_SSE2 ?

		/* Init DWT-indices: */
		uint32 bjmodnini = thread_arg->bjmodnini;
		bjmodn[0] = thread_arg->bjmodn0;
		for(l = 1; l < RADIX; l++) {	// must use e.g. l for loop idx here as i is used for dwt indexing
			MOD_ADD32(bjmodn[l-1], bjmodnini, n, bjmodn[l]);
		}

		/* init carries	*/
		addr = thread_arg->cy;
	#ifdef USE_AVX512
		tmp = cy;
		for(l = 0; l < RADIX; l += 8, ++tmp) {
			tmp->d0 = *(addr+l  );
			tmp->d1 = *(addr+l+1);
			tmp->d2 = *(addr+l+2);
			tmp->d3 = *(addr+l+3);
			tmp->d4 = *(addr+l+4);
			tmp->d5 = *(addr+l+5);
			tmp->d6 = *(addr+l+6);
			tmp->d7 = *(addr+l+7);
		}
	#elif defined(USE_AVX)
		tmp = cy;
		for(l = 0; l < RADIX; l += 4, ++tmp) {
			tmp->d0 = *(addr+l  );
			tmp->d1 = *(addr+l+1);
			tmp->d2 = *(addr+l+2);
			tmp->d3 = *(addr+l+3);
		}
	#elif defined(USE_SSE2)
		tmp = cy;
		for(l = 0; l < RADIX; l += 2, ++tmp) {
			tmp->d0 = *(addr+l  );
			tmp->d1 = *(addr+l+1);
		}
	#elif 0	// No_op in scalar case, since carry pattern matches that of thread data
		for(l = 0; l < RADIX; l++) {
			cy[l] = *(addr+l);
		}
	#endif

		/********************************************************************************/
		/* This main loop is same for un-and-multithreaded, so stick into a header file */
		/* (can't use a macro because of the #if-enclosed stuff).                       */
		/********************************************************************************/
		#include "radix768_main_carry_loop.h"

		/* At end of each thread-processed work chunk, dump the
		carryouts into their non-thread-private array slots:
		*/
		addr = thread_arg->cy;
	#ifdef USE_AVX512
		tmp = cy;
		for(l = 0; l < RADIX; l += 8, ++tmp) {
			*(addr+l  ) = tmp->d0;
			*(addr+l+1) = tmp->d1;
			*(addr+l+2) = tmp->d2;
			*(addr+l+3) = tmp->d3;
			*(addr+l+4) = tmp->d4;
			*(addr+l+5) = tmp->d5;
			*(addr+l+6) = tmp->d6;
			*(addr+l+7) = tmp->d7;
		}
		t0 = MAX(max_err->d0,max_err->d1);
		t1 = MAX(max_err->d2,max_err->d3);
		t2 = MAX(max_err->d4,max_err->d5);
		t3 = MAX(max_err->d6,max_err->d7);
		maxerr = MAX( MAX(t0,t1), MAX(t2,t3) );
	#elif defined(USE_AVX)
		tmp = cy;
		for(l = 0; l < RADIX; l += 4, ++tmp) {
			*(addr+l  ) = tmp->d0;
			*(addr+l+1) = tmp->d1;
			*(addr+l+2) = tmp->d2;
			*(addr+l+3) = tmp->d3;
		}
		maxerr = MAX( MAX(max_err->d0,max_err->d1) , MAX(max_err->d2,max_err->d3) );
	#elif defined(USE_SSE2)
		tmp = cy;
		for(l = 0; l < RADIX; l += 2, ++tmp) {
			*(addr+l  ) = tmp->d0;
			*(addr+l+1) = tmp->d1;
		}
		maxerr = MAX(max_err->d0,max_err->d1);
	#elif 0	// No_op in scalar case, since carry pattern matches that of thread data
		for(l = 0; l < RADIX; l++) {
			*(addr+l) = cy[l];
		}
	#endif

		/* Since will lose separate maxerr values when threads are merged, save them after each pass. */
		if(thread_arg->maxerr < maxerr)
		{
			thread_arg->maxerr = maxerr;
		}

		return 0x0;
	}
#endif

#undef RADIX
#undef PFETCH_DIST