1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
|
# -------------------------------------------------------------------------
# Copyright (C) 2005-2012 Martin Strohalm <www.mmass.org>
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# Complete text of GNU GPL can be found in the file LICENSE.TXT in the
# main directory of the program.
# -------------------------------------------------------------------------
# load libs
import copy
import math
import numpy
import time
# load stopper
from mod_stopper import CHECK_FORCE_QUIT
# load blocks
import blocks
# load objects
import obj_compound
import obj_peak
import obj_peaklist
# load modules
import mod_basics
import mod_signal
# BASIC CONSTANTS
# ---------------
ISOTOPE_DISTANCE = 1.00287
AVERAGE_AMINO = {'C':4.9384, 'H':7.7583, 'N':1.3577, 'O':1.4773, 'S':0.0417}
AVERAGE_BASE = {'C':9.75, 'H':12.25, 'N':3.75, 'O':6, 'P':1}
# PEAK PICKING FUNCTIONS
# ----------------------
def labelpoint(signal, mz, baseline=None):
"""Return labeled peak at given x-value.
signal (numpy array) - signal data points
mz (float) - x-value to label
baseline (numpy array) - signal baseline
"""
# check signal type
if not isinstance(signal, numpy.ndarray):
raise TypeError, "Signal must be NumPy array!"
# check baseline type
if baseline != None and not isinstance(baseline, numpy.ndarray):
raise TypeError, "Baseline must be NumPy array!"
# check signal data
if len(signal) == 0:
return None
# check m/z value
if mz <= 0:
return None
# get peak intensity
ai = mod_signal.intensity(signal, mz)
if not ai:
return None
# get peak baseline and s/n
base = 0.0
sn = None
if baseline == None:
base, noise = mod_signal.noise(signal, x=mz)
if noise:
sn = (ai - base) / noise
else:
idx = mod_signal.locate(baseline, mz)
if (idx > 0) and (idx < len(baseline)):
base = mod_signal.interpolate( (baseline[idx-1][0], baseline[idx-1][1]), (baseline[idx][0], baseline[idx][1]), x=mz)
noise = mod_signal.interpolate( (baseline[idx-1][0], baseline[idx-1][2]), (baseline[idx][0], baseline[idx][2]), x=mz)
if noise:
sn = (ai - base) / noise
# check peak intensity
if ai <= base:
return None
# get peak fwhm
height = base + (ai - base) * 0.5
fwhm = mod_signal.width(signal, mz, height)
# make peak object
peak = obj_peak.peak(mz=mz, ai=ai, base=base, sn=sn, fwhm=fwhm)
return peak
# ----
def labelpeak(signal, mz=None, minX=None, maxX=None, pickingHeight=0.75, baseline=None):
"""Return labeled peak in given m/z range.
signal (numpy array) - signal data points
mz (float) - x-value to label
minX (float) - x-range start
maxX (float) - x-range end
pickingHeight (float) - centroiding height
baseline (numpy array) - signal baseline
"""
# check signal type
if not isinstance(signal, numpy.ndarray):
raise TypeError, "Signal must be NumPy array!"
# check baseline type
if baseline != None and not isinstance(baseline, numpy.ndarray):
raise TypeError, "Baseline must be NumPy array!"
# check m/z value or range
if mz == None and minX == None and maxX == None:
raise TypeError, "m/z value or range must be specified!"
# check signal data
if len(signal) == 0:
return None
# check m/z value
if mz != None:
minX = mz
if minX <= 0:
return False
# get index of given m/z or range maximum
if mz != None:
imax = mod_signal.locate(signal, mz)
else:
i1 = mod_signal.locate(signal, minX)
i2 = mod_signal.locate(signal, maxX)
imax = i1
if i1 != i2:
imax += mod_signal.basepeak(signal[i1:i2])
if (imax == 0) or (imax == len(signal)):
return None
# get centroid height
h = signal[imax][1] * pickingHeight
if baseline != None:
idx = mod_signal.locate(baseline, signal[imax][0])
if (idx > 0) and (idx < len(baseline)):
base = mod_signal.interpolate( (baseline[idx-1][0], baseline[idx-1][1]), (baseline[idx][0], baseline[idx][1]), x=signal[imax][0])
h = ((signal[imax][1] - base) * pickingHeight) + base
# get centroid
ileft = imax-1
while (ileft > 0) and (signal[ileft][1] > h):
ileft -= 1
iright = imax
while (iright < len(signal)-1) and (signal[iright][1] > h):
iright += 1
leftMZ = mod_signal.interpolate(signal[ileft], signal[ileft+1], y=h)
rightMZ = mod_signal.interpolate(signal[iright-1], signal[iright], y=h)
# check range
if mz == None and (leftMZ < minX or rightMZ > maxX) and (leftMZ != rightMZ):
return None
# label peak in the newly found selection
if mz != None and leftMZ != rightMZ:
peak = labelpeak(
signal = signal,
minX = leftMZ,
maxX = rightMZ,
pickingHeight = pickingHeight,
baseline = baseline
)
# label current point
else:
peak = labelpoint(
signal = signal,
mz = ((leftMZ + rightMZ)/2.),
baseline = baseline
)
return peak
# ----
def labelscan(signal, minX=None, maxX=None, pickingHeight=0.75, absThreshold=0., relThreshold=0., snThreshold=0., baseline=None):
"""Return centroided peaklist for given data points.
signal (numpy array) - signal data points
minX (float) - x-range start
maxX (float) - x-range end
pickingHeight (float) - centroiding height
absThreshold (float) - absolute intensity threshold
relThreshold (float) - relative intensity threshold
snThreshold (float) - signal to noise threshold
baseline (numpy array) - signal baseline
"""
# check signal type
if not isinstance(signal, numpy.ndarray):
raise TypeError, "Signal must be NumPy array!"
# check baseline type
if baseline != None and not isinstance(baseline, numpy.ndarray):
raise TypeError, "Baseline must be NumPy array!"
# crop data
if minX != None and maxX != None:
i1 = mod_signal.locate(signal, minX)
i2 = mod_signal.locate(signal, maxX)
signal = signal[i1:i2]
# check data points
if len(signal) == 0:
return obj_peaklist.peaklist([])
# get local maxima
buff = []
basepeak = mod_signal.basepeak(signal)
threshold = max(signal[basepeak][1] * relThreshold, absThreshold)
for peak in mod_signal.maxima(signal):
if peak[1] >= threshold:
buff.append( [peak[0], peak[1], 0., None, None] ) # mz, ai, base, sn, fwhm
CHECK_FORCE_QUIT()
# get peaks baseline and s/n
basepeak = 0.0
if baseline != None:
for peak in buff:
idx = mod_signal.locate(baseline, peak[0])
if (idx > 0) and (idx < len(baseline)):
p1 = baseline[idx-1]
p2 = baseline[idx]
peak[2] = mod_signal.interpolate( (p1[0], p1[1]), (p2[0], p2[1]), x=peak[0])
noise = mod_signal.interpolate( (p1[0], p1[2]), (p2[0], p2[2]), x=peak[0])
intens = peak[1] - peak[2]
if noise:
peak[3] = intens / noise
if intens > basepeak:
basepeak = intens
CHECK_FORCE_QUIT()
# remove peaks bellow threshold
threshold = max(basepeak * relThreshold, absThreshold)
candidates = []
for peak in buff:
if peak[0] > 0 and (peak[1] - peak[2]) >= threshold and (not peak[3] or peak[3] >= snThreshold):
candidates.append(peak)
# make centroides
if pickingHeight < 1.:
buff = []
previous = None
for peak in candidates:
CHECK_FORCE_QUIT()
# calc peak height
h = ((peak[1]-peak[2]) * pickingHeight) + peak[2]
# get centroid indexes
idx = mod_signal.locate(signal, peak[0])
if (idx == 0) or (idx == len(signal)):
continue
ileft = idx-1
while (ileft > 0) and (signal[ileft][1] > h):
ileft -= 1
iright = idx
while (iright < len(signal)-1) and (signal[iright][1] > h):
iright += 1
# calculate peak mz
leftMZ = mod_signal.interpolate(signal[ileft], signal[ileft+1], y=h)
rightMZ = mod_signal.interpolate(signal[iright-1], signal[iright], y=h)
peak[0] = (leftMZ + rightMZ)/2.
# get peak intensity
intens = mod_signal.intensity(signal, peak[0])
if intens and intens <= peak[1]:
peak[1] = intens
else:
continue
# try to group with previous peak
if previous != None and leftMZ < previous:
if peak[1] > buff[-1][1]:
buff[-1] = peak
previous = rightMZ
else:
buff.append(peak)
previous = rightMZ
# store as candidates
candidates = buff
CHECK_FORCE_QUIT()
# get peaks baseline and s/n
basepeak = 0.0
if baseline != None:
for peak in candidates:
idx = mod_signal.locate(baseline, peak[0])
if (idx > 0) and (idx < len(baseline)):
p1 = baseline[idx-1]
p2 = baseline[idx]
peak[2] = mod_signal.interpolate( (p1[0], p1[1]), (p2[0], p2[1]), x=peak[0])
noise = mod_signal.interpolate( (p1[0], p1[2]), (p2[0], p2[2]), x=peak[0])
intens = peak[1] - peak[2]
if noise:
peak[3] = intens / noise
if intens > basepeak:
basepeak = intens
CHECK_FORCE_QUIT()
# remove peaks bellow threshold and calculate fwhm
threshold = max(basepeak * relThreshold, absThreshold)
centroides = []
for peak in candidates:
if peak[0] > 0 and (peak[1] - peak[2]) >= threshold and (not peak[3] or peak[3] >= snThreshold):
peak[4] = mod_signal.width(signal, peak[0], (peak[2] + ((peak[1] - peak[2]) * 0.5)))
centroides.append(obj_peak.peak(mz=peak[0], ai=peak[1], base=peak[2], sn=peak[3], fwhm=peak[4]))
# return peaklist object
return obj_peaklist.peaklist(centroides)
# ----
def envcentroid(isotopes, pickingHeight=0.5, intensity='maximum'):
"""Calculate envelope centroid for given isotopes.
isotopes (mspy.peaklist or list of mspy.peak) envelope isotopes
pickingHeight (float) - centroiding height
intensity (maximum | sum | average) envelope intensity type
"""
# check isotopes
if len(isotopes) == 0:
return None
elif len(isotopes) == 1:
return isotopes[0]
# check peaklist object
if not isinstance(isotopes, obj_peaklist.peaklist):
isotopes = obj_peaklist.peaklist(isotopes)
# get sums
sumMZ = 0.
sumIntensity = 0.
for isotope in isotopes:
sumMZ += isotope.mz * isotope.intensity
sumIntensity += isotope.intensity
# get average m/z
mz = sumMZ / sumIntensity
# get ai, base and sn
base = isotopes.basepeak.base
sn = isotopes.basepeak.sn
fwhm = isotopes.basepeak.fwhm
if intensity == 'sum':
ai = base + sumIntensity
elif intensity == 'average':
ai = base + sumIntensity / len(isotopes)
else:
ai = isotopes.basepeak.ai
if isotopes.basepeak.sn:
sn = (ai - base) * isotopes.basepeak.sn / (isotopes.basepeak.ai - base)
# get envelope width
minInt = isotopes.basepeak.intensity * pickingHeight
i1 = None
i2 = None
for x, isotope in enumerate(isotopes):
if isotope.intensity >= minInt:
i2 = x
if i1 == None:
i1 = x
mz1 = isotopes[i1].mz
mz2 = isotopes[i2].mz
if i1 != 0:
mz1 = mod_signal.interpolate((isotopes[i1-1].mz, isotopes[i1-1].ai), (isotopes[i1].mz, isotopes[i1].ai), y=minInt)
if i2 < len(isotopes)-1:
mz2 = mod_signal.interpolate((isotopes[i2].mz, isotopes[i2].ai), (isotopes[i2+1].mz, isotopes[i2+1].ai), y=minInt)
if mz1 != mz2:
fwhm = abs(mz2 - mz1)
# make peak
peak = obj_peak.peak(mz=mz, ai=ai, base=base, sn=sn, fwhm=fwhm)
return peak
# ----
def envmono(isotopes, charge, intensity='maximum'):
"""Calculate envelope centroid for given isotopes.
isotopes (mspy.peaklist or list of mspy.peak) - envelope isotopes
charge (int) - peak charge
intensity (maximum | sum | average) - envelope intensity type
"""
# check isotopes
if len(isotopes) == 0:
return None
# check peaklist object
if not isinstance(isotopes, obj_peaklist.peaklist):
isotopes = obj_peaklist.peaklist(isotopes)
# calc averagine
avFormula = averagine(isotopes.basepeak.mz, charge=charge, composition=AVERAGE_AMINO)
avPattern = avFormula.pattern(fwhm=0.1, threshold=0.001, charge=charge)
avPattern = obj_peaklist.peaklist(avPattern)
# get envelope centroid
points = numpy.array([(p.mz, p.intensity) for p in isotopes])
centroid = labelpeak(points, mz=isotopes.basepeak.mz, pickingHeight=0.8)
if not centroid:
centroid = isotopes.basepeak
# get averagine centroid
points = numpy.array([(p.mz, p.intensity) for p in avPattern])
avCentroid = labelpeak(points, mz=avPattern.basepeak.mz, pickingHeight=0.8)
if not avCentroid:
avCentroid = avPattern.basepeak
# align profiles and get monoisotopic mass
shift = centroid.mz - avCentroid.mz
errors = [(abs(p.mz - avPattern.basepeak.mz - shift), p.mz) for p in isotopes]
mz = min(errors)[1] - (avPattern.basepeak.mz - avFormula.mz(charge)[0])
# sum intensities
sumIntensity = 0
for isotope in isotopes:
sumIntensity += isotope.intensity
# get ai, base and sn
base = isotopes.basepeak.base
sn = isotopes.basepeak.sn
fwhm = isotopes.basepeak.fwhm
if intensity == 'sum':
ai = base + sumIntensity
elif intensity == 'average':
ai = base + sumIntensity / len(isotopes)
else:
ai = isotopes.basepeak.ai
if isotopes.basepeak.sn:
sn = (ai - base) * isotopes.basepeak.sn / (isotopes.basepeak.ai - base)
# make peak
peak = obj_peak.peak(mz=mz, ai=ai, base=base, sn=sn, fwhm=fwhm, isotope=0)
return peak
# ----
def deisotope(peaklist, maxCharge=1, mzTolerance=0.15, intTolerance=0.5, isotopeShift=0.0):
"""Isotopes determination and calculation of peaks charge.
peaklist (mspy.peaklist) - peaklist to process
maxCharge (float) - max charge to be searched
mzTolerance (float) - absolute m/z tolerance for isotopes distance
intTolerance (float) - relative intensity tolerance for isotopes and model (in %/100)
isotopeShift (float) - isotope distance correction (neutral mass) (for HDX etc.)
"""
# check peaklist
if not isinstance(peaklist, obj_peaklist.peaklist):
raise TypeError, "Peak list must be mspy.peaklist object!"
# clear previous results
for peak in peaklist:
peak.setcharge(None)
peak.setisotope(None)
# get charges
if maxCharge < 0:
charges = [-x for x in range(1, abs(maxCharge)+1)]
else:
charges = [x for x in range(1, maxCharge+1)]
charges.reverse()
# walk in a peaklist
maxIndex = len(peaklist)
for x, parent in enumerate(peaklist):
CHECK_FORCE_QUIT()
# skip assigned peaks
if parent.isotope != None:
continue
# try all charge states
for z in charges:
cluster = [parent]
# search for next isotope within m/z tolerance
difference = (ISOTOPE_DISTANCE + isotopeShift)/abs(z)
y = 1
while x+y < maxIndex:
mzError = (peaklist[x+y].mz - cluster[-1].mz - difference)
if abs(mzError) <= mzTolerance:
cluster.append(peaklist[x+y])
elif mzError > mzTolerance:
break
y += 1
# no isotope found
if len(cluster) == 1:
continue
# get theoretical isotopic pattern
mass = min(15000, int( mod_basics.mz( parent.mz, 0, z))) / 200
pattern = patternLookupTable[mass]
# check minimal number of isotopes in the cluster
limit = 0
for p in pattern:
if p >= 0.33:
limit += 1
if len(cluster) < limit and abs(z) > 1:
continue
# check peak intensities in cluster
valid = True
isotope = 1
limit = min(len(pattern), len(cluster))
while (isotope < limit):
# calc theoretical intensity from previous peak and current error
intTheoretical = (cluster[isotope-1].intensity / pattern[isotope-1]) * pattern[isotope]
intError = cluster[isotope].intensity - intTheoretical
# intensity in tolerance
if abs(intError) <= (intTheoretical * intTolerance):
cluster[isotope].setisotope(isotope)
cluster[isotope].setcharge(z)
# intensity is higher (overlap)
elif intError > 0:
pass
# intensity is lower and first isotope is checked (nonsense)
elif (intError < 0 and isotope == 1):
valid = False
break
# try next peak
isotope += 1
# cluster is OK, set parent peak and skip other charges
if valid:
parent.setisotope(0)
parent.setcharge(z)
break
# ----
def deconvolute(peaklist, massType=0):
"""Recalculate peaklist to singly charged.
peaklist (mspy.peaklist) - peak list to deconvolute
massType (0 or 1) - mass type used for m/z re-calculation, 0 = monoisotopic, 1 = average
"""
# recalculate peaks
buff = []
for peak in copy.deepcopy(peaklist):
CHECK_FORCE_QUIT()
# uncharged peak
if not peak.charge:
continue
# charge is correct
elif abs(peak.charge) == 1:
buff.append(peak)
# recalculate peak
else:
# set fwhm
if peak.fwhm:
newFwhm = abs(peak.fwhm*peak.charge)
peak.setfwhm(newFwhm)
# set m/z and charge
if peak.charge < 0:
newMz = mod_basics.mz(mass=peak.mz, charge=-1, currentCharge=peak.charge, massType=massType)
peak.setmz(newMz)
peak.setcharge(-1)
else:
newMz = mod_basics.mz(mass=peak.mz, charge=1, currentCharge=peak.charge, massType=massType)
peak.setmz(newMz)
peak.setcharge(1)
# store peak
buff.append(peak)
# remove baseline
if buff:
for peak in buff:
peak.setsn(None)
peak.setai(peak.intensity)
peak.setbase(0.)
# update peaklist
peaklist = obj_peaklist.peaklist(buff)
return peaklist
# ----
# PATTERN LOOKUP TABLE
# --------------------
def averagine(mz, charge=0, composition=AVERAGE_AMINO):
"""Calculate average formula for given mass and building block composition.
mz (float) - peak m/z
charge (int) - peak charge
composition (dict) - building block composition
"""
# get average mass of block
blockMass = 0.
for element in composition:
blockMass += blocks.elements[element].mass[1] * composition[element]
# get block count
neutralMass = mod_basics.mz(mz, charge=0, currentCharge=charge, massType=1)
count = max(1, neutralMass / blockMass)
# make formula
formula = ''
for element in composition:
formula += '%s%d' % (element, int(composition[element]*count))
formula = obj_compound.compound(formula)
# add some hydrogens to reach the mass
hydrogens = int(round((neutralMass - formula.mass(1)) / blocks.elements['H'].mass[1]))
hydrogens = max(hydrogens, -1*formula.count('H'))
formula += 'H%d' % hydrogens
return formula
# ----
def _gentable(highmass, step=200, composition=AVERAGE_AMINO, table='tuple'):
"""Print pattern lookup table."""
for mass in range(0, highmass, step):
formula = averagine(mass, charge=0, composition=composition)
pattern = ''
for mz, abundance in formula.pattern(fwhm=0.1, threshold=0.001):
pattern += '%.3f, ' % abundance
if table == 'tuple':
print '(%s), #%d' % (pattern[:-2], mass)
elif table == 'dict':
print '%d: (%s),' % (mass, pattern[:-2])
# ----
# pattern lookup table for amino building block
patternLookupTable = (
(1.000, 0.059, 0.003), #0
(1.000, 0.122, 0.013), #200
(1.000, 0.241, 0.040, 0.005), #400
(1.000, 0.303, 0.059, 0.008), #600
(1.000, 0.426, 0.109, 0.020, 0.003), #800
(1.000, 0.533, 0.166, 0.038, 0.006), #1000
(1.000, 0.655, 0.244, 0.066, 0.014, 0.002), #1200
(1.000, 0.786, 0.388, 0.143, 0.042, 0.009, 0.001), #1400
(1.000, 0.845, 0.441, 0.171, 0.053, 0.013, 0.002), #1600
(1.000, 0.967, 0.557, 0.236, 0.080, 0.021, 0.005), #1800
(0.921, 1.000, 0.630, 0.291, 0.107, 0.032, 0.007, 0.001), #2000
(0.828, 1.000, 0.687, 0.343, 0.136, 0.044, 0.011, 0.002), #2200
(0.752, 1.000, 0.744, 0.400, 0.171, 0.060, 0.017, 0.004), #2400
(0.720, 1.000, 0.772, 0.428, 0.188, 0.068, 0.020, 0.005), #2600
(0.667, 1.000, 0.825, 0.487, 0.228, 0.088, 0.028, 0.007), #2800
(0.616, 1.000, 0.884, 0.556, 0.276, 0.113, 0.039, 0.010, 0.002), #3000
(0.574, 1.000, 0.941, 0.628, 0.330, 0.143, 0.052, 0.015, 0.003), #3200
(0.536, 0.999, 1.000, 0.706, 0.392, 0.179, 0.069, 0.022, 0.005), #3400
(0.506, 0.972, 1.000, 0.725, 0.412, 0.193, 0.077, 0.025, 0.006), #3600
(0.449, 0.919, 1.000, 0.764, 0.457, 0.226, 0.094, 0.033, 0.009, 0.001), #3800
(0.392, 0.853, 1.000, 0.831, 0.543, 0.295, 0.136, 0.053, 0.017, 0.004), #4000
(0.353, 0.812, 1.000, 0.869, 0.593, 0.336, 0.162, 0.067, 0.023, 0.006), #4200
(0.321, 0.776, 1.000, 0.907, 0.644, 0.379, 0.190, 0.082, 0.030, 0.009), #4400
(0.308, 0.760, 1.000, 0.924, 0.669, 0.401, 0.205, 0.090, 0.033, 0.011, 0.001), #4600
(0.282, 0.729, 1.000, 0.962, 0.723, 0.451, 0.239, 0.110, 0.042, 0.014, 0.003), #4800
(0.258, 0.699, 1.000, 1.000, 0.780, 0.504, 0.277, 0.132, 0.053, 0.018, 0.004), #5000
(0.228, 0.645, 0.962, 1.000, 0.809, 0.542, 0.308, 0.153, 0.065, 0.023, 0.007), #5200
(0.203, 0.598, 0.927, 1.000, 0.839, 0.581, 0.343, 0.176, 0.078, 0.029, 0.010), #5400
(0.192, 0.577, 0.911, 1.000, 0.854, 0.602, 0.361, 0.189, 0.086, 0.033, 0.011), #5600
(0.171, 0.536, 0.880, 1.000, 0.884, 0.644, 0.399, 0.216, 0.102, 0.040, 0.014, 0.003), #5800
(0.154, 0.501, 0.851, 1.000, 0.912, 0.686, 0.439, 0.244, 0.120, 0.050, 0.018, 0.004), #6000
(0.139, 0.468, 0.823, 1.000, 0.942, 0.730, 0.482, 0.278, 0.141, 0.062, 0.023, 0.007), #6200
(0.126, 0.441, 0.799, 1.000, 0.969, 0.772, 0.524, 0.310, 0.162, 0.073, 0.028, 0.009), #6400
(0.121, 0.427, 0.787, 1.000, 0.983, 0.794, 0.547, 0.328, 0.174, 0.080, 0.031, 0.011), #6600
(0.104, 0.381, 0.732, 0.971, 1.000, 0.848, 0.614, 0.390, 0.219, 0.109, 0.045, 0.016, 0.004), #6800
(0.092, 0.349, 0.691, 0.944, 1.000, 0.872, 0.648, 0.422, 0.244, 0.125, 0.054, 0.020, 0.006), #7000
(0.082, 0.321, 0.654, 0.919, 1.000, 0.894, 0.682, 0.456, 0.270, 0.143, 0.063, 0.024, 0.008), #7200
(0.073, 0.296, 0.620, 0.895, 1.000, 0.917, 0.718, 0.492, 0.299, 0.162, 0.077, 0.030, 0.011), #7400
(0.069, 0.284, 0.604, 0.884, 1.000, 0.929, 0.735, 0.509, 0.313, 0.172, 0.084, 0.033, 0.012), #7600
(0.062, 0.262, 0.573, 0.861, 1.000, 0.952, 0.772, 0.548, 0.345, 0.195, 0.098, 0.040, 0.015, 0.003), #7800
(0.056, 0.243, 0.544, 0.839, 1.000, 0.976, 0.811, 0.589, 0.380, 0.220, 0.114, 0.049, 0.019, 0.005), #8000
(0.051, 0.227, 0.521, 0.821, 1.000, 0.997, 0.846, 0.628, 0.413, 0.244, 0.130, 0.058, 0.022, 0.007), #8200
(0.045, 0.206, 0.486, 0.786, 0.980, 1.000, 0.869, 0.660, 0.444, 0.268, 0.147, 0.070, 0.027, 0.010), #8400
(0.042, 0.196, 0.468, 0.767, 0.968, 1.000, 0.879, 0.676, 0.460, 0.281, 0.156, 0.075, 0.030, 0.011), #8600
(0.038, 0.179, 0.437, 0.733, 0.947, 1.000, 0.899, 0.705, 0.491, 0.307, 0.173, 0.086, 0.036, 0.013, 0.002), #8800
(0.033, 0.163, 0.408, 0.701, 0.926, 1.000, 0.919, 0.736, 0.524, 0.335, 0.193, 0.099, 0.043, 0.016, 0.004), #9000
(0.030, 0.149, 0.382, 0.670, 0.906, 1.000, 0.938, 0.768, 0.558, 0.364, 0.215, 0.113, 0.051, 0.020, 0.006), #9200
(0.026, 0.132, 0.348, 0.629, 0.877, 1.000, 0.971, 0.823, 0.620, 0.420, 0.258, 0.143, 0.069, 0.028, 0.010), #9400
(0.024, 0.126, 0.337, 0.616, 0.868, 1.000, 0.981, 0.839, 0.638, 0.437, 0.271, 0.153, 0.074, 0.031, 0.011), #9600
(0.022, 0.116, 0.317, 0.592, 0.851, 1.000, 1.000, 0.872, 0.676, 0.472, 0.298, 0.172, 0.087, 0.037, 0.014, 0.002), #9800
(0.020, 0.106, 0.294, 0.561, 0.822, 0.983, 1.000, 0.888, 0.700, 0.498, 0.320, 0.188, 0.099, 0.043, 0.017, 0.004), #10000
(0.017, 0.096, 0.272, 0.529, 0.790, 0.965, 1.000, 0.905, 0.727, 0.526, 0.346, 0.207, 0.113, 0.050, 0.020, 0.006), #10200
(0.015, 0.087, 0.251, 0.499, 0.761, 0.946, 1.000, 0.922, 0.755, 0.556, 0.373, 0.227, 0.126, 0.061, 0.024, 0.008), #10400
(0.014, 0.083, 0.242, 0.486, 0.747, 0.937, 1.000, 0.930, 0.768, 0.570, 0.385, 0.237, 0.134, 0.065, 0.026, 0.009), #10600
(0.013, 0.075, 0.225, 0.459, 0.720, 0.920, 1.000, 0.947, 0.796, 0.602, 0.415, 0.260, 0.149, 0.075, 0.032, 0.012, 0.001), #10800
(0.012, 0.069, 0.208, 0.435, 0.695, 0.904, 1.000, 0.963, 0.824, 0.633, 0.443, 0.284, 0.165, 0.085, 0.037, 0.015, 0.002), #11000
(0.010, 0.063, 0.194, 0.412, 0.669, 0.888, 1.000, 0.980, 0.852, 0.667, 0.475, 0.309, 0.184, 0.098, 0.044, 0.018, 0.005), #11200
(0.009, 0.057, 0.180, 0.391, 0.646, 0.872, 1.000, 0.997, 0.882, 0.702, 0.509, 0.336, 0.204, 0.113, 0.052, 0.021, 0.006), #11400
(0.009, 0.054, 0.173, 0.379, 0.631, 0.861, 0.995, 1.000, 0.892, 0.717, 0.523, 0.350, 0.214, 0.119, 0.057, 0.023, 0.008), #11600
(0.008, 0.049, 0.160, 0.355, 0.602, 0.834, 0.980, 1.000, 0.906, 0.739, 0.548, 0.373, 0.231, 0.132, 0.066, 0.026, 0.010), #11800
(0.007, 0.042, 0.141, 0.321, 0.557, 0.791, 0.953, 1.000, 0.931, 0.781, 0.596, 0.417, 0.268, 0.158, 0.082, 0.037, 0.014, 0.002), #12000
(0.006, 0.038, 0.130, 0.301, 0.531, 0.767, 0.939, 1.000, 0.945, 0.805, 0.624, 0.443, 0.289, 0.174, 0.093, 0.043, 0.017, 0.004), #12200
(0.005, 0.035, 0.120, 0.283, 0.507, 0.744, 0.925, 1.000, 0.960, 0.830, 0.653, 0.470, 0.312, 0.191, 0.106, 0.051, 0.020, 0.006), #12400
(0.005, 0.033, 0.115, 0.274, 0.495, 0.732, 0.918, 1.000, 0.967, 0.842, 0.668, 0.485, 0.324, 0.200, 0.112, 0.054, 0.023, 0.007), #12600
(0.004, 0.030, 0.107, 0.257, 0.472, 0.710, 0.904, 1.000, 0.982, 0.868, 0.699, 0.515, 0.351, 0.219, 0.126, 0.063, 0.027, 0.010), #12800
(0.004, 0.027, 0.098, 0.242, 0.450, 0.689, 0.890, 1.000, 0.997, 0.894, 0.731, 0.547, 0.378, 0.241, 0.141, 0.072, 0.032, 0.012, 0.002), #13000
(0.003, 0.025, 0.090, 0.224, 0.426, 0.661, 0.867, 0.989, 1.000, 0.911, 0.756, 0.574, 0.402, 0.260, 0.155, 0.082, 0.037, 0.014, 0.003), #13200
(0.003, 0.022, 0.082, 0.208, 0.402, 0.633, 0.843, 0.975, 1.000, 0.925, 0.777, 0.598, 0.425, 0.279, 0.169, 0.092, 0.043, 0.017, 0.005), #13400
(0.003, 0.021, 0.079, 0.202, 0.392, 0.621, 0.833, 0.969, 1.000, 0.930, 0.786, 0.609, 0.435, 0.288, 0.176, 0.097, 0.046, 0.018, 0.006), #13600
(0.003, 0.019, 0.073, 0.188, 0.370, 0.595, 0.810, 0.955, 1.000, 0.943, 0.808, 0.634, 0.460, 0.309, 0.191, 0.108, 0.053, 0.022, 0.007), #13800
(0.002, 0.017, 0.067, 0.175, 0.350, 0.570, 0.787, 0.942, 1.000, 0.956, 0.831, 0.662, 0.487, 0.331, 0.209, 0.121, 0.062, 0.026, 0.010), #14000
(0.002, 0.016, 0.061, 0.163, 0.330, 0.547, 0.765, 0.929, 1.000, 0.968, 0.855, 0.690, 0.515, 0.356, 0.227, 0.135, 0.070, 0.031, 0.012, 0.002), #14200
(0.002, 0.014, 0.056, 0.151, 0.312, 0.524, 0.743, 0.916, 1.000, 0.982, 0.878, 0.718, 0.544, 0.382, 0.247, 0.149, 0.079, 0.037, 0.014, 0.003), #14400
(0.002, 0.013, 0.054, 0.146, 0.304, 0.514, 0.733, 0.909, 1.000, 0.989, 0.890, 0.733, 0.559, 0.395, 0.257, 0.156, 0.084, 0.039, 0.016, 0.004), #14600
(0.001, 0.012, 0.047, 0.131, 0.276, 0.478, 0.697, 0.881, 0.989, 1.000, 0.920, 0.777, 0.605, 0.437, 0.292, 0.182, 0.102, 0.051, 0.022, 0.007), #14800
(0.001, 0.010, 0.043, 0.121, 0.259, 0.454, 0.671, 0.859, 0.977, 1.000, 0.932, 0.797, 0.629, 0.460, 0.312, 0.197, 0.114, 0.058, 0.025, 0.008, 0.001), #15000
)
|