1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
// $Id: mmdb_math_fft.cpp $
// =================================================================
//
// CCP4 Coordinate Library: support of coordinate-related
// functionality in protein crystallography applications.
//
// Copyright (C) Eugene Krissinel 2005-2013.
//
// This library is free software: you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License version 3, modified in accordance with the provisions
// of the license to address the requirements of UK law.
//
// You should have received a copy of the modified GNU Lesser
// General Public License along with this library. If not, copies
// may be downloaded from http://www.ccp4.ac.uk/ccp4license.php
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// =================================================================
//
// 12.09.13 <-- Date of Last Modification.
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// -----------------------------------------------------------------
//
// **** Module : FFT <implementation>
// ~~~~~~~~~
// **** Functions: mmdb::math::FFT
// ~~~~~~~~~ mmdb::math::RealFFT
// mmdb::math::TwoFFT
// mmdb::math::Convolve
// mmdb::math::mConvolve
//
// (C) E.Krissinel 2005-2013
//
// =================================================================
//
#include <math.h>
#include "mmdb_math_fft.h"
namespace mmdb {
namespace math {
void FFT ( rvector data, int nn, bool Forward ) {
// Replaces data[1:2*nn] by its discrete Fourier transform,
// if Forward is true; or replaces data[1:2*nn] by nn times its
// inverse discrete Fourier transform if Forward is false.
// On call,
// data[i], i=1,3,5 ... nn-1 are real parts of function,
// data[i], i=2,4,6 ... nn are imaginary parts.
// nn MUST be an integer power of 2 (this is not checked for!).
// User should allocate data with GetVectorMemory and deallocate
// it with FreeVectorMemory to assure correct managing of indices
// 1..2*nn (not 0..2*nn-1).
// On return,
// data[i], i=1,3,5 ... nn-1 are real parts, and
// data[i], i=2,4,6 ... nn are imaginary parts of positive part
// of spectra, with frequences
// 0,1/(nn*D),2/(nn*D) ... (nn/2-1)/(nn*D);
// data[nn+1] and data[nn+2] are real and imaginary parts for
// the frequances +/-1/(2*D)
// data[i], i=nn+3,nn+5,nn+7 ... 2*nn-1 are real parts, and
// data[i], i=nn+4,nn+6,nn+8 ... 2*nn are imaginary parts of
// negative part of the spectra with frequences
// -(nn/2-1)/(nn*D), -(nn/2-2)/(nn*D), -1/(nn*D)
//
int i,istep,j,m,mmax,n;
realtype tempi,tempr;
long double theta,wi,wpi,wpr,wr,wtemp; // this should be of
// maximal precision
n = 2*nn;
j = 1;
for (i=1;i<=n;i+=2) {
if (j>i) {
tempr = data[j];
tempi = data[j+1];
data[j] = data[i];
data[j+1] = data[i+1];
data[i] = tempr;
data[i+1] = tempi;
}
m = n/2;
while ((m>=2) && (j>m)) {
j -= m;
m /= 2;
}
j += m;
}
mmax = 2;
while (n>mmax) {
istep = 2*mmax;
theta = 2.0*Pi/mmax;
if (!Forward) theta = -theta;
wpr = sin(0.5*theta);
wpr = -2.0*wpr*wpr;
wpi = sin(theta);
wr = 1.0;
wi = 0.0;
for (m=1;m<=mmax;m+=2) {
for (i=m;i<=n;i+=istep) {
j = i + mmax;
tempr = wr*data[j] - wi*data[j+1];
tempi = wr*data[j+1] + wi*data[j];
data[j] = data[i] - tempr;
data[j+1] = data[i+1] - tempi;
data[i] = data[i] + tempr;
data[i+1] = data[i+1] + tempi;
}
wtemp = wr;
wr = wr*wpr - wi*wpi + wr;
wi = wi*wpr + wtemp*wpi + wi;
}
mmax = istep;
}
}
void RealFFT ( rvector data, int n, bool Forward ) {
// Calculates the Fourier transform of a set of n real-valued data
// points. Replaces this data (which is stored in array data[1:n])
// by the positive frequency half of its complex Fourier transform.
// The real-valued first and last components of the complex transform
// are returned as elements data[1] and data[2], respectively.
// n MUST be a power of 2. This routine also calculates the
// inverse transform of a complex data array if it is the transform
// of real data (Result in this case must be multiplied by 2/n).
// Array data should be allocated with GetVectorMemory.
//
int i,i1,i2,i3,i4,n2p3;
realtype c1,c2,h1i,h1r,h2i,h2r;
long double theta,wi,wpi,wpr,wr,wtemp;
theta = 2.0*Pi/n;
c1 = 0.5;
if (Forward) {
c2 = -0.5;
FFT ( data,n/2,true );
} else {
c2 = 0.5;
theta = -theta;
}
wpr = sin(0.5*theta);
wpr = -2.0*wpr*wpr;
wpi = sin(theta);
wr = 1.0 + wpr;
wi = wpi;
n2p3 = n + 3;
for (i=2;i<=n/4;i++) {
i1 = 2*i - 1;
i2 = i1 + 1;
i3 = n2p3 - i2;
i4 = i3 + 1;
h1r = c1*(data[i1] + data[i3]);
h1i = c1*(data[i2] - data[i4]);
h2r = -c2*(data[i2] + data[i4]);
h2i = c2*(data[i1] - data[i3]);
data[i1] = h1r + wr*h2r - wi*h2i;
data[i2] = h1i + wr*h2i + wi*h2r;
data[i3] = h1r - wr*h2r + wi*h2i;
data[i4] = -h1i + wr*h2i + wi*h2r;
wtemp = wr;
wr = wr*wpr - wi*wpi + wr;
wi = wi*wpr + wtemp*wpi + wi;
}
if (Forward) {
h1r = data[1];
data[1] = h1r + data[2];
data[2] = h1r - data[2];
} else {
h1r = data[1];
data[1] = c1*(h1r+data[2]);
data[2] = c1*(h1r-data[2]);
FFT ( data,n/2,false );
}
}
void TwoFFT ( rvector data1, rvector data2,
rvector fft1, rvector fft2, int n ) {
// Given two real input arrays data1[1:n] and data2[1:n],
// this routine calls FFT and returns two "complex" output
// arrays fft1[1:2*n] and fft2[1:2*n] (2*i-1 ith real,
// 2*i ith imaginary), which contain the discrete Fourier
// transforms of the respective data arrays. n MUST be
// an integer power of 2.
int i,j,n2, bj,bn;
realtype h1r,h1i,h2r,h2i;
i = 1;
for (j=1;j<=n;j++) {
fft1[i++] = data1[j];
fft1[i++] = data2[j];
}
FFT ( fft1,n,true );
fft2[1] = fft1[2]; fft2[2] = 0.0;
fft1[2] = 0.0;
n2 = n + 2;
for (j=2;j<=n/2+1;j++) {
bj = 2*j-1; bn = 2*(n2-j)-1;
h1r = 0.5*(fft1[bj] + fft1[bn]);
h1i = 0.5*(fft1[bj+1] - fft1[bn+1]);
h2r = 0.5*(fft1[bj+1] + fft1[bn+1]);
h2i = 0.5*(fft1[bn] - fft1[bj]);
fft1[bj] = h1r; fft1[bj+1] = h1i;
fft1[bn] = h1r; fft1[bn+1] = -h1i;
fft2[bj] = h2r; fft2[bj+1] = h2i;
fft2[bn] = h2r; fft2[bn+1] = -h2i;
}
}
void Convolve ( rvector data, int n, rvector respns, int m,
rvector ans, bool Conv ) {
// Convolves or Deconvolves a real data set data[1:n] (including
// any user-supplied zero padding) with a response function
// respns[1..n], stored in wrap-around order in a real array of
// length m<n (m should be an odd (3,5,7...) integer). Wrap-around
// order means that the first half of the array contains the impulse
// response function at positive times, while the second half of
// the array contains the impulse response function at negative
// times, counting down from the highest element respns[m]. On
// input Conv=true for convolution, false for deconvolution.
// The answer is returned in the first n component of ans.
// However, ans must be supplied in the calling program with
// length at least 2*n, for consistency with TwoFFT. n MUST
// be an integer power of 2.
//
int i,no2,rp,ip;
rvector fft;
realtype B,D;
GetVectorMemory ( fft,2*n,1 );
for (i=1;i<=(m-1)/2;i++)
respns[n+1-i] = respns[m+1-i];
for (i=(m+3)/2;i<=n-(m-1)/2;i++)
respns[i] = 0.0;
TwoFFT ( data,respns,fft,ans,n );
no2 = n/2;
rp = 1; // pointer to real part
ip = 2; // pointer to imaginary part
for (i=1;i<=no2+1;i++) {
if (Conv) {
B = (fft[rp]*ans[rp] - fft[ip]*ans[ip])/no2;
ans[ip] = (fft[ip]*ans[rp] + fft[rp]*ans[ip])/no2;
ans[rp] = B;
} else {
D = (ans[rp]*ans[rp] + ans[ip]*ans[ip])*no2;
if (D==0.0) {
// poor deconvolve at zero response
ans[rp] = 0.0;
ans[ip] = 0.0;
} else {
B = (fft[rp]*ans[rp] + fft[ip]*ans[ip])/D;
ans[ip] = (fft[ip]*ans[rp] - fft[rp]*ans[ip])/D;
ans[rp] = B;
}
}
rp += 2;
ip += 2;
}
ans[2] = ans[2*no2+1];
FreeVectorMemory ( fft,1 );
RealFFT ( ans,n,false );
}
void mConvolve ( rvector data, int n, int m ) {
//
// Replaces array data[0..n-1] with the result of m recursive
// convolutions (m>1) defined as
//
// data_m = data (*) data_{m-1}
//
// where data_m is the result of mth convolution, data_0=data.
// The definition of the convolution is
//
// [a (*) b]_i = Sum_j { a_j * b_{i-j} }
//
// On input, data[] is considered as containing the signal
// sampled at both positive and negative times in the wrap-around
// order, that is
//
// data[i], 0<=i<n/2 signal sampled at times dt*i
// data[i], n/2<=i<n signal sampled at times -dt*(n-i)
//
// and the same wrap-around order is used to interprete the output
// data. This means that if only m positive sampling times are
// used, the length of data must be at least n=2*m, the rest being
// padded with zeroes.
//
// The number of sampling nodes n *must* be an integer power of
// two, i.e. 2,4,8,16 ... .
//
realtype R,G,phi,B,m2,n2,d1;
int i,m1;
if (m<1) return;
RealFFT ( data-1,n,true );
m1 = m+1;
m2 = m1/2.0;
n2 = 2.0/n;
d1 = data[1];
for (i=0;i<=n;i+=2) {
if (i<n) {
R = data[i];
if (i>1) G = data[i+1];
else G = 0.0;
} else {
R = d1;
G = 0.0;
}
phi = atan2(G,R) * m1;
B = pow(R*R+G*G,m2);
R = B*cos(phi);
G = B*sin(phi);
if (i<n) {
data[i] = R*n2;
data[i+1] = G*n2;
} else
data[1] = R*n2;
}
RealFFT ( data-1,n,false );
}
} // namespace math
} // namespace mmdb
|