1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
|
// $Id: mmdb_math_linalg.cpp $
// =================================================================
//
// CCP4 Coordinate Library: support of coordinate-related
// functionality in protein crystallography applications.
//
// Copyright (C) Eugene Krissinel 2000-2013.
//
// This library is free software: you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License version 3, modified in accordance with the provisions
// of the license to address the requirements of UK law.
//
// You should have received a copy of the modified GNU Lesser
// General Public License along with this library. If not, copies
// may be downloaded from http://www.ccp4.ac.uk/ccp4license.php
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// =================================================================
//
// 12.09.13 <-- Date of Last Modification.
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// -----------------------------------------------------------------
//
// **** Module : LinAlg <implementation>
// ~~~~~~~~~
// **** Project : MMDB ( MacroMolecular Data Base )
// ~~~~~~~~~
//
// (C) E.Krissinel 2000-2013
//
// =================================================================
//
//
#include <stdio.h>
#include <math.h>
#include "mmdb_math_linalg.h"
namespace mmdb {
namespace math {
// ========================== Jacobi =============================
void Jacobi ( int N, // dimension of the matrix
rmatrix A, // matrix to diagonalize; the lower
// triangle, except the diagonal,
// will remain unchanged
rmatrix T, // eigenvectors placed as columns
rvector Eigen, // vector of eigenvalues, orderd
// by increasing
rvector Aik, // working array
int & Signal // 0 <=> Ok, ItMax <=> iteration limit
// exchausted.
) {
// Diagonalization of symmetric matrices by the method of Jacobi.
// Key variables:
// ItMax - the maximum available number of iterations
// Eps1 - is used in SNA and CSA calculations
// Eps2 - is the level of the elimination of the
// non-diagonal matrix elements
// Eps3 - the criterion to stop the iterations.
// The iterations stop if (1-Sigma1/Sigma2)<=Eps3
// where Sigma1 is the dekart norm of the eigenvalues
// at the preceding iteration and Sigma2 is
// the same for the current iteration.
realtype Eps1,Eps2,Eps3;
realtype Sigma1,Sigma2,OffDsq, SPQ,CSA,SNA,Q,P, HoldIK,HoldKI;
int ItMax;
int i,j,k,Iter;
Eps1 = 6.0e-9;
Eps2 = 9.0e-12;
Eps3 = 1.0e-8;
ItMax = 9999;
Signal = 0;
if (N<=1) {
T[1][1] = 1.0;
Eigen[1] = A[1][1];
return;
}
for (i=1;i<=N;i++) {
for (j=1;j<=N;j++)
T[i][j] = 0.0;
T[i][i] = 1.0;
Eigen[i] = A[i][i];
}
Sigma1 = 0.0;
OffDsq = 0.0;
// Sigma1 is the Dekart measure of the diagonal elements
// OffDsq is the Dekart measure of the non-diagonal elements
for (i=1;i<=N;i++) {
Sigma1 += A[i][i]*A[i][i];
if (i<N)
for (j=i+1;j<=N;j++)
OffDsq += A[i][j]*A[i][j];
}
if (OffDsq<Eps2*Eps2) return;
// S = OffDsq*2.0+Sigma1;
Iter = 1;
HoldIK = 1.0;
while ((Iter<=ItMax) && (HoldIK>Eps3)) {
for (i=1;i<N;i++)
for (j=i+1;j<=N;j++) {
Q = fabs(A[i][i]-A[j][j]);
if ((Q<=Eps1) || (fabs(A[i][j])>Eps2)) {
if (Q>Eps1) {
P = 2.0*A[i][j]*(Q/(A[i][i]-A[j][j]));
SPQ = sqrt(P*P+Q*Q);
CSA = sqrt((1.0+Q/SPQ)/2.0);
SNA = P/(SPQ*CSA*2.0);
} else {
CSA = sqrt(0.5);
SNA = CSA;
}
for (k=1;k<=N;k++) {
HoldKI = T[k][i];
T[k][i] = HoldKI*CSA + T[k][j]*SNA;
T[k][j] = HoldKI*SNA - T[k][j]*CSA;
}
for (k=i;k<=N;k++)
if (k<=j) {
Aik[k] = A[i][k];
A[i][k] = CSA*Aik[k] + SNA*A[k][j];
if (k==j) {
A[j][k] = SNA*Aik[k] - CSA*A[j][k];
Aik[j] = SNA*Aik[i] - CSA*Aik[j];
}
} else {
HoldIK = A[i][k];
A[i][k] = CSA*HoldIK + SNA*A[j][k];
A[j][k] = SNA*HoldIK - CSA*A[j][k];
}
for (k=1;k<=j;k++)
if (k>i)
A[k][j] = SNA*Aik[k] - CSA*A[k][j];
else {
HoldKI = A[k][i];
A[k][i] = CSA*HoldKI + SNA*A[k][j];
A[k][j] = SNA*HoldKI - CSA*A[k][j];
}
}
}
Sigma2 = 0.0;
for (i=1;i<=N;i++) {
Eigen[i] = A[i][i];
Sigma2 += Eigen[i]*Eigen[i];
}
HoldIK = fabs(1.0-Sigma1/Sigma2);
Sigma1 = Sigma2;
Iter++;
}
if (Iter>ItMax) Signal = ItMax;
for (i=1;i<=N;i++) {
k = i;
for (j=i;j<=N;j++)
if (Eigen[j]<Eigen[k]) k = j;
if (k!=i) {
P = Eigen[k];
Eigen[k] = Eigen[i];
Eigen[i] = P;
for (j=1;j<=N;j++) {
P = T[j][k];
T[j][k] = T[j][i];
T[j][i] = P;
}
}
}
}
// -----------------------------------------------------
void PbCholDecomp ( int N,
rvector HDiag,
realtype MaxOff,
realtype MachEps,
rmatrix L,
realtype & MaxAdd ) {
// A5.5.2 : Perturbed Cholesky Decomposition
// Part of the modular software system from
// the appendix of the book "Numerical Methods for Unconstrained
// Optimization and Nonlinear Equations" by Dennis & Schnabel 1983.
int i,j,k;
realtype MinL,MinL2,S,MinLjj,MaxOffl, BB;
MaxOffl = MaxOff;
MinL = sqrt(sqrt(MachEps))*MaxOffl;
if (MaxOffl==0.0) {
for (i=1;i<=N;i++) {
BB = fabs(HDiag[i]);
if (BB>MaxOffl) MaxOffl = BB;
}
MaxOffl = sqrt(MaxOffl);
}
MinL2 = sqrt(MachEps)*MaxOffl;
MaxAdd = 0.0;
for (j=1;j<=N;j++) {
S = 0.0;
if (j>1)
for (i=1;i<j;i++)
S += L[j][i]*L[j][i];
L[j][j] = HDiag[j] - S;
MinLjj = 0.0;
if (j<N)
for (i=j+1;i<=N;i++) {
S = 0.0;
if (j>1)
for (k=1;k<j;k++)
S += L[i][k]*L[j][k];
L[i][j] = L[j][i] - S;
BB = fabs(L[i][j]);
if (BB>MinLjj) MinLjj = BB;
}
BB = MinLjj/MaxOffl;
if (BB>MinL) MinLjj = BB;
else MinLjj = MinL;
if (L[j][j]>MinLjj*MinLjj) L[j][j] = sqrt(L[j][j]);
else {
if (MinL2>MinLjj) MinLjj = MinL2;
BB = MinLjj*MinLjj-L[j][j];
if (BB>MaxAdd) MaxAdd = BB;
L[j][j] = MinLjj;
}
if (j<N)
for (i=j+1;i<=N;i++)
L[i][j] /= L[j][j];
}
}
// -----------------------------------------------------
void LSolve ( int N, rmatrix L, rvector B, rvector Y ) {
// A3.2.3a : Cholesky's L - Solution of
// L*Y = B ( given B )
int i,j;
Y[1] = B[1]/L[1][1];
if (N>1)
for (i=2;i<=N;i++) {
Y[i] = B[i];
for (j=1;j<i;j++)
Y[i] -= L[i][j]*Y[j];
Y[i] /= L[i][i];
}
}
// -----------------------------------------------------
void LTSolve ( int N, rmatrix L, rvector Y, rvector X ) {
// A3.2.3b : Cholesky's LT - Solution of
// LT*X = Y ( given Y )
int i,j;
X[N] = Y[N]/L[N][N];
if (N>1)
for (i=N-1;i>=1;i--) {
X[i] = Y[i];
for (j=i+1;j<=N;j++)
X[i] -= L[j][i]*X[j];
X[i] /= L[i][i];
}
}
// -----------------------------------------------------
void ChSolve ( int N, rmatrix L, rvector G, rvector S ) {
// A3.2.3 : Solution of the equation L*LT*S = G
// by the Cholesky's method
//int i;
LSolve ( N,L,G,S );
LTSolve ( N,L,S,S );
// for (i=1;i<=N;i++)
// S[i] = -S[i];
}
// ----------------------------------------------------
void FastInverse ( int N, rmatrix A, ivector J0,
//#D realtype & Det,
int & Signal ) {
//
// 17.01.91 <-- Last Date of Modification.
// ----------------------------
//
// ================================================
//
// Fast Inversion of the matrix A
// by the method of GAUSS - JOIRDAN .
//
// ------------------------------------------------
//
// Input parameters are :
//
// N - dimension of the matrix
// A - the matrix [1..N][1..N] to be inverted.
//
// ------------------------------------------------
//
// J0 - integer vector [1..N] for temporal storage
//
//
// ------------------------------------------------
//
// Output parameters are :
//
// A - the inverted matrix
// Signal - the error key :
// = 0 <=> O'K
// else
// degeneration was found, and
// the rang of matrix is Signal-1.
//
// Variable Det may return the determinant
// of matrix A. To obtain it, remove all comments
// of form //#D .
//
// ------------------------------------------------
//
// Key Variables are :
//
// Eps - is the level for the degeneration
// detection. Keep in mind, that
// this routine does not norm the
// matrix given, and thus Eps1
// is the ABSOLUTE value.
//
// ================================================
//
realtype Eps = 1.0e-16;
int i,j,k,i0;
realtype A0,B;
rvector Ai,Ai0;
Signal = 0;
if (N<=1) {
if (fabs(A[1][1])<Eps) {
Signal = 1;
return;
}
A[1][1] = 1.0/A[1][1];
//#D Det = A[1][1];
return;
}
if (N==2) {
A0 = A[1][1];
B = A0*A[2][2] - A[1][2]*A[2][1];
//#D Det = B;
if (fabs(B)<Eps) {
Signal = 1;
return;
}
A[1][1] = A[2][2]/B;
A[2][2] = A0/B;
B = -B;
A[1][2] /= B;
A[2][1] /= B;
return;
}
for (i=1;i<=N;i++) {
// 1. Finding of the leading element ( in A0 );
// i0 is the number of the leading string
A0 = 0.0;
i0 = 0;
for (j=i;j<=N;j++) {
if (fabs(A[j][i])>A0) {
A0 = fabs(A[j][i]);
i0 = j;
}
}
if (A0<Eps) {
Signal = i; // Degeneration is found here
return;
}
// 2. Swapping the string
J0[i] = i0;
B = 1.0/A[i0][i];
Ai = A[i0];
Ai0 = A[i];
A[i] = Ai;
A[i0] = Ai0;
for (j=1;j<=N;j++)
Ai[j] = Ai[j]*B;
Ai[i] = B;
// 3. Substracting the strings
for (j=1;j<=N;j++)
if (i!=j) {
Ai0 = A[j];
B = Ai0[i];
Ai0[i] = 0.0;
for (k=1;k<=N;k++)
Ai0[k] = Ai0[k] - B*Ai[k];
}
//#D Det = Det/Ai[i];
}
// 4. Back Swapping the columns
for (i=N;i>=1;i--) {
j = J0[i];
if (j!=i) {
//#D Det = -Det;
for (k=1;k<=N;k++) {
B = A[k][i];
A[k][i] = A[k][j];
A[k][j] = B;
}
}
}
return;
} // End of the procedure FastInverse
// ----------------------------------------------------
realtype Sign ( realtype A, realtype B ) {
if (B>=0.0) return A;
else return -A;
}
realtype SrX2Y2 ( realtype X, realtype Y ) {
realtype Ax,Ay;
Ax = fabs(X);
Ay = fabs(Y);
if (Ay>Ax) return Ay*sqrt((X*X)/(Y*Y)+1.0);
if (Ay==Ax) return Ax*sqrt(2.0);
return Ax*sqrt((Y*Y)/(X*X)+1.0);
}
// ----------------------------------------------------
void SVD ( int NA, int M, int N,
rmatrix A, rmatrix U, rmatrix V,
rvector W, rvector RV1,
bool MatU, bool MatV,
int & RetCode ) {
//
// 13.12.01 <-- Last Modification Date
// ------------------------
//
// ================================================
//
// The Singular Value Decomposition
// of the matrix A by the algorithm from
// G.Forsait, M.Malkolm, K.Mouler. Numerical
// methods of mathematical calculations
// M., Mir, 1980.
//
// Matrix A is represented as
//
// A = U * W * VT
//
// ------------------------------------------------
//
// All dimensions are indexed from 1 on.
//
// ------------------------------------------------
//
// Input parameters:
//
// NA - number of lines in A. NA may be
// equal to M or N only. If NA=M
// then usual SVD will be made. If MA=N
// then matrix A is transposed before
// the decomposition, and the meaning of
// output parameters U and V is
// swapped (U accepts VT and VT accepts U).
// In other words, matrix A has physical
// dimension of M x N , same as U and V;
// however the logical dimension of it
// remains that of N x M .
// M - number of lines in U
// N - number of columns in U,V and length
// of W,RV1 . Always provide M >= N !
// A - matrix [1..M][1..N] or [1..N][1..M]
// to be decomposed. The matrix does not
// change, and it may coincide with U or
// V, if NA=M (in which case A does change)
// MatU - compute U , if set True
// MatV - compute V , if set True
// RV1 - temporary array [1..N].
// U - should be always supplied as an array of
// [1..M][1..N], M>=N .
// V - should be suuplied as an array of
// [1..N][1..N] if MatV is True .
//
// ------------------------------------------------
//
// Output parameters are :
//
// W - N non-ordered singular values,
// if RetCode=0. If RetCode<>0, the
// RetCode+1 ... N -th values are still
// valid
// U - matrix of right singular vectors
// (arranged in columns), corresponding
// to the singular values in W, if
// RetCode=0 and MatU is True. If MatU
// is False, U is still used as a
// temporary array. If RetCode<>0 then
// the RetCode+1 ... N -th vectors
// are valid
// V - matrix of left singular vectors
// (arranged in columns), corresponding
// to the singular values in W, if
// RetCode=0 and MatV is True. If MatV
// is False, V is not used and may be set
// to NULL. If RetCode<>0 then the
// RetCode+1 ... N -th vectors are valid
// RetCode - the error key :
// = 0 <=> O'K
// else
// = k, if the k-th singular value
// was not computed after 30 iterations.
//
// ------------------------------------------------
//
// Key Variables are :
//
// ItnLimit - the limit for iterations
//
// This routine does not use any machine-dependent
// constants.
//
// ================================================
//
//
int ItnLimit=300;
int i,j,k,l,i1,k1,l1,its,mn,ExitKey;
realtype C,G,F,X,S,H,Y,Z,Scale,ANorm,GG;
l1 = 0; // this is to keep compiler happy
RetCode = 0;
if (U!=A) {
if (NA==M)
for (i=1;i<=M;i++)
for (j=1;j<=N;j++)
U[i][j] = A[i][j];
else
for (i=1;i<=M;i++)
for (j=1;j<=N;j++)
U[i][j] = A[j][i];
}
G = 0.0;
Scale = 0.0;
ANorm = 0.0;
for (i=1;i<=N;i++) {
l = i+1;
RV1[i] = Scale*G;
G = 0.0;
S = 0.0;
Scale = 0.0;
if (i<=M) {
for (k=i;k<=M;k++)
Scale += fabs(U[k][i]);
if (Scale!=0.0) {
for (k=i;k<=M;k++) {
U[k][i] /= Scale;
S += U[k][i]*U[k][i];
}
F = U[i][i];
G = -Sign(sqrt(S),F);
H = F*G-S;
U[i][i] = F-G;
if (i!=N)
for (j=l;j<=N;j++) {
S = 0.0;
for (k=i;k<=M;k++)
S += U[k][i]*U[k][j];
F = S/H;
for (k=i;k<=M;k++)
U[k][j] += F*U[k][i];
}
for (k=i;k<=M;k++)
U[k][i] *= Scale;
}
}
W[i] = Scale*G;
G = 0.0;
S = 0.0;
Scale = 0.0;
if ((i<=M) && (i!=N)) {
for (k=l;k<=N;k++)
Scale += fabs(U[i][k]);
if (Scale!=0.0) {
for (k=l;k<=N;k++) {
U[i][k] /= Scale;
S += U[i][k]*U[i][k];
}
F = U[i][l];
G = -Sign(sqrt(S),F);
H = F*G-S;
U[i][l] = F-G;
for (k=l;k<=N;k++)
RV1[k] = U[i][k]/H;
if (i!=M)
for (j=l;j<=M;j++) {
S = 0.0;
for (k=l;k<=N;k++)
S += U[j][k]*U[i][k];
for (k=l;k<=N;k++)
U[j][k] += S*RV1[k];
}
for (k=l;k<=N;k++)
U[i][k] *= Scale;
}
}
ANorm = RMax( ANorm,fabs(W[i])+fabs(RV1[i]) );
}
// Accumulation of the right-hand transformations
if (MatV)
for (i=N;i>=1;i--) {
if (i!=N) {
if (G!=0.0) {
for (j=l;j<=N;j++)
V[j][i] = (U[i][j]/U[i][l]) / G;
for (j=l;j<=N;j++) {
S = 0.0;
for (k=l;k<=N;k++)
S += U[i][k]*V[k][j];
for (k=l;k<=N;k++)
V[k][j] += S*V[k][i];
}
}
for (j=l;j<=N;j++) {
V[i][j] = 0.0;
V[j][i] = 0.0;
}
}
V[i][i] = 1.0;
G = RV1[i];
l = i;
}
// Accumulation of the left-hand transformations
if (MatU) {
mn = N;
if (M<N) mn = M;
for (i=mn;i>=1;i--) {
l = i+1;
G = W[i];
if (i!=N)
for (j=l;j<=N;j++)
U[i][j] = 0.0;
if (G!=0.0) {
if (i!=mn)
for (j=l;j<=N;j++) {
S = 0.0;
for (k=l;k<=M;k++)
S += U[k][i]*U[k][j];
F = (S/U[i][i]) / G;
for (k=i;k<=M;k++)
U[k][j] += F*U[k][i];
}
for (j=i;j<=M;j++)
U[j][i] /= G;
} else
for (j=i;j<=M;j++)
U[j][i] = 0.0;
U[i][i] += 1.0;
}
}
// Diagonalization of the two-diagonal form.
for (k=N;k>=1;k--) {
k1 = k-1;
its = 0;
do {
ExitKey = 0;
l = k+1;
while ((ExitKey==0) && (l>1)) {
l--;
l1 = l-1;
if (fabs(RV1[l])+ANorm==ANorm) ExitKey=1;
else if (l1>0) {
if (fabs(W[l1])+ANorm==ANorm) ExitKey=2;
}
}
// if (ExitKey!=1) { <-- this is original statement
if (ExitKey>1) { // <-- prevents from corruption due to l1<1.
// This is a rare case as RV1[1] should be
// always 0.0 . Apparently this logics is
// on the edge of float-point arithmetic,
// therefore extra precaution for the case
// of l1<1 was found necessary.
C = 0.0;
S = 1.0;
ExitKey = 0;
i = l;
while ((ExitKey==0) && (i<=k)) {
F = S*RV1[i];
RV1[i] = C*RV1[i];
if (fabs(F)+ANorm==ANorm) ExitKey = 1;
else {
G = W[i];
H = SrX2Y2(F,G);
W[i] = H;
C = G/H;
S = -F/H;
if (MatU)
for (j=1;j<=M;j++) {
Y = U[j][l1];
Z = U[j][i];
U[j][l1] = Y*C+Z*S;
U[j][i] = -Y*S+Z*C;
}
i++;
}
}
}
// Convergence Checking
Z = W[k];
if (l!=k) {
if (its>=ItnLimit) {
RetCode = k;
return;
}
its++;
X = W[l];
Y = W[k1];
G = RV1[k1];
H = RV1[k];
F = ((Y-Z)*(Y+Z) + (G-H)*(G+H)) / ( 2.0*H*Y );
if (fabs(F)<=1.0) GG = Sign(sqrt(F*F+1.0),F);
else GG = F*sqrt(1.0+1.0/F/F);
F = ((X-Z)*(X+Z) + H*(Y/(F+GG)-H)) / X;
// Next QR - Transformation
C = 1.0;
S = 1.0;
for (i1=l;i1<=k1;i1++) {
i = i1+1;
G = RV1[i];
Y = W[i];
H = S*G;
G = C*G;
Z = SrX2Y2(F,H);
RV1[i1] = Z;
C = F/Z;
S = H/Z;
F = X*C+G*S;
G = -X*S+G*C;
H = Y*S;
Y = Y*C;
if (MatV)
for (j=1;j<=N;j++) {
X = V[j][i1];
Z = V[j][i];
V[j][i1] = X*C+Z*S;
V[j][i] = -X*S+Z*C;
}
Z = SrX2Y2(F,H);
W[i1] = Z;
if (Z!=0.0) {
C = F/Z;
S = H/Z;
}
F = C*G+S*Y;
X = -S*G+C*Y;
if (MatU)
for (j=1;j<=M;j++) {
Y = U[j][i1];
Z = U[j][i];
U[j][i1] = Y*C+Z*S;
U[j][i] = -Y*S+Z*C;
}
}
RV1[l] = 0.0;
RV1[k] = F;
W[k] = X;
} else if (Z<0.0) {
W[k] = -Z;
if (MatV)
for (j=1;j<=N;j++)
V[j][k] = -V[j][k];
}
} while (l!=k);
}
}
// -----------------------------------------------------
void OrderSVD ( int M, int N, rmatrix U, rmatrix V,
rvector W, bool MatU, bool MatV ) {
int i,k,j;
realtype P;
// External loop of the re-ordering
for (i=1;i<N;i++) {
k = i;
P = W[i];
// Internal loop : finding of the index of greatest
// singular value over the remaining ones.
for (j=i+1;j<=N;j++)
if (W[j]>P) {
k = j;
P = W[j];
}
if (k!=i) {
// Swapping the singular value
W[k] = W[i];
W[i] = P;
// Swapping the U's columns ( if needed )
if (MatU)
for (j=1;j<=M;j++) {
P = U[j][i];
U[j][i] = U[j][k];
U[j][k] = P;
}
// Swapping the V's columns ( if needed )
if (MatV)
for (j=1;j<=N;j++) {
P = V[j][i];
V[j][i] = V[j][k];
V[j][k] = P;
}
}
}
}
/*
#ifndef __STDIO_H
#include <stdio.h>
#endif
int main ( int argc, char ** argv, char ** env ) {
// Test Jacobi
matrix A,T,A1;
vector Eigen,Aik;
realtype SR;
int N,i,j,k,Signal;
N = 4;
GetMatrixMemory ( A,N,N,1,1 );
GetMatrixMemory ( T,N,N,1,1 );
GetMatrixMemory ( A1,N,N,1,1 );
GetVectorMemory ( Eigen,N,1 );
GetVectorMemory ( Aik ,N,1 );
k = 1;
for (i=1;i<=N;i++)
for (j=i;j<=N;j++) {
A[i][j] = k++;
A[i][j] *= 1000.0;
A[j][i] = A[i][j];
}
printf ( " INITIAL MATRIX:\n" );
for (i=1;i<=N;i++) {
for (j=1;j<=N;j++)
printf ( " %10.4f",A[i][j] );
printf ( "\n" );
}
Jacobi ( N,A,T,Eigen,Aik,Signal );
printf ( "\n EIGEN VALUES AND EIGEN VECTORS:\n" );
for (i=1;i<=N;i++) {
printf ( " %10.4f ",Eigen[i] );
for (j=1;j<=N;j++)
printf ( " %10.4f",T[j][i] );
printf ( "\n" );
}
printf ( "\n measure: " );
for (i=1;i<=N;i++) {
SR = 0.0;
for (j=1;j<=N;j++)
SR += T[j][i]*T[j][i];
printf ( " %10.4f",sqrt(SR) );
}
printf ( "\n" );
for (i=1;i<=N;i++)
for (j=1;j<=N;j++) {
A1[i][j] = 0.0;
for (k=1;k<=N;k++)
A1[i][j] += T[i][k]*Eigen[k]*T[j][k];
}
printf ( "\n RESTORED INITIAL MATRIX:\n" );
for (i=1;i<=N;i++) {
for (j=1;j<=N;j++)
printf ( " %10.4f",A1[j][i] );
printf ( "\n" );
}
FreeMatrixMemory ( A,N,1,1 );
FreeMatrixMemory ( T,N,1,1 );
FreeMatrixMemory ( A1,N,1,1 );
FreeVectorMemory ( Eigen,1 );
FreeVectorMemory ( Aik ,1 );
}
*/
}
}
|