1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
// $Id: mmdb_seqsuperpose.cpp $
// =================================================================
//
// CCP4 Coordinate Library: support of coordinate-related
// functionality in protein crystallography applications.
//
// Copyright (C) Eugene Krissinel 2000-2013.
//
// This library is free software: you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License version 3, modified in accordance with the provisions
// of the license to address the requirements of UK law.
//
// You should have received a copy of the modified GNU Lesser
// General Public License along with this library. If not, copies
// may be downloaded from http://www.ccp4.ac.uk/ccp4license.php
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// =================================================================
//
// 19.09.13 <-- Date of Last Modification.
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// -----------------------------------------------------------------
//
// **** Module : SeqSuperpose <implementation>
// ~~~~~~~~~
// **** Classes : mmdb::SeqSuperpose
// ~~~~~~~~~
//
// (C) E.Krissinel 2005-2013
//
// =================================================================
//
#include <math.h>
#include <string.h>
#include "mmdb_tables.h"
#include "mmdb_seqsuperpose.h"
namespace mmdb {
// =================================================================
SeqSuperpose::SeqSuperpose() {
SeqSuperposeInit();
}
SeqSuperpose::~SeqSuperpose() {
FreeMemory();
}
void SeqSuperpose::SeqSuperposeInit() {
Align = NULL;
Mat4Init ( TMatrix ); // superposes Ca1 over Ca2: |T*Ca1 - Ca2|->min
Q = -0.5; // Q-score
rmsd = MaxReal; // rmsd
seqId = MaxReal; // sequence identity
_seqId = 0.0; // sequence identity in sequence alignment
Nalign = 0; // alignment length
c1 = NULL; // sup-n vector: Ca1[i]->Ca2[c1[i]] if c1[i]>=0
c2 = NULL; // sup-n vector: Ca2[i]->Ca1[c2[i]] if c2[i]>=0
cn1 = NULL; // temporary contact array #1
cn2 = NULL; // temporary contact array #2
Rmsd0 = 3.0; // quality optimization parameter
maxContact = 15.0; // maximal Calpha-pair contact parameter
contact = NULL;
ncontacts = 0;
}
void SeqSuperpose::FreeMemory() {
if (Align) {
delete Align;
Align = NULL;
}
FreeVectorMemory ( c1 ,0 );
FreeVectorMemory ( c2 ,0 );
FreeVectorMemory ( cn1,0 );
FreeVectorMemory ( cn2,0 );
if (contact) {
delete[] contact;
contact = NULL;
}
ncontacts = 0;
}
void makeAAString ( pstr & S, PPAtom C, int nat ) {
pstr rname;
ResName r1;
int i,j;
S = new char[nat+1];
j = 0;
for (i=0;i<nat;i++)
if (C[i]) {
rname = C[i]->GetResName();
if (rname) {
Get1LetterCode ( rname,r1 );
S[j++] = r1[0];
}
}
S[j] = char(0);
}
realtype SeqSuperpose::MatchQuality ( int Nalign, realtype Rmsd,
int nres1, int nres2 ) {
if (Nalign==0) return 0.0;
return MatchQuality2 ( Nalign,Rmsd*Rmsd*Nalign,nres1,nres2 );
}
realtype SeqSuperpose::MatchQuality2 ( int Nalign, realtype dist2,
int nres1, int nres2 ) {
realtype NormN,Na2,NormR;
NormN = nres1*nres2;
if (NormN<=0.0) return 0.0;
Na2 = Nalign*Nalign;
NormR = dist2/(Nalign*Rmsd0*Rmsd0);
return Na2/((1.0+NormR)*NormN);
}
void SeqSuperpose::MakeContacts ( mat44 & TM, realtype cont_est ) {
// Find the closest contacts atoms and makes the correspondence
// vectors cn1 and cn2
int i,j,i1,i2;
// 1. Find all contacts in the range of 0.0 - cont_est
if (contact) {
delete[] contact;
contact = NULL;
}
ncontacts = 0;
M->SeekContacts ( Ca2,nCa2,Ca1,nCa1,0.0,cont_est,0,
contact,ncontacts,0,&TM,0,
BRICK_ON_1 | BRICK_READY );
// 2. Leave only unique shortest contacts, that is, if Ca1[i]-Ca2[j]
// is the shortest contact for atom Ca1[i], it has also to be
// the shortest contact for atom Ca2[j].
if (ncontacts>0) {
SortContacts ( contact,ncontacts,CNSORT_DINC );
for (i=0;i<nCa1;i++)
cn1[i] = -1;
for (i=0;i<nCa2;i++)
cn2[i] = -1;
j = 0;
for (i=0;i<ncontacts;i++) {
i1 = contact[i].id2;
i2 = contact[i].id1;
if ((cn1[i1]<0) && (cn2[i2]<0)) {
// We only check for unmapped atoms in this version, so that
// chain misdirection and wide-angle contacts are accepted.
// However, the method itself is meant to be used only with
// highly similar chains, so we do not expect difficulties
// here. Our purpose here is to get maximum performance at
// high-quality input. See SSM code for more rigorous contact
// building.
if (j<i) contact[j].Copy ( contact[i] );
// close contact
cn1[i1] = i2;
cn2[i2] = i1;
j++;
}
}
ncontacts = j;
}
}
int SeqSuperpose::makeStructAlignment ( realtype seqThreshold,
bool keepBricks ) {
pstr S,T;
mat44 TM;
realtype dist2,maxRMSD2,Q1,Q0,dist20;
int i,i1,i2,nal,rc,iter,iter1;
char Space;
S = Align->GetAlignedS();
T = Align->GetAlignedT();
GetVectorMemory ( cn1,nCa1,0 );
GetVectorMemory ( c1 ,nCa1,0 );
for (i=0;i<nCa1;i++) {
cn1[i] = -1;
c1 [i] = -1;
}
GetVectorMemory ( cn2,nCa2,0 );
GetVectorMemory ( c2 ,nCa2,0 );
for (i=0;i<nCa2;i++) {
cn2[i] = -1;
c2 [i] = -1;
}
i = 0;
i1 = 0;
i2 = 0;
Space = Align->GetSpace();
while (S[i] && (i1<nCa1) && (i2<nCa2)) {
if ((S[i]==Space) && (T[i]!=Space)) i2++;
else if ((S[i]!=Space) && (T[i]==Space)) i1++;
else {
if (S[i]==T[i]) {
cn1[i1] = i2;
cn2[i2] = i1;
_seqId += 1.0;
}
i1++;
i2++;
}
i++;
}
_seqId /= IMax(nCa1,nCa2);
if (_seqId<seqThreshold) {
FreeVectorMemory ( cn1,0 );
FreeVectorMemory ( cn2,0 );
return SEQSP_SeqThreshold;
}
maxRMSD2 = maxContact*maxContact;
if ((!keepBricks) || (!M->areBricks()))
M->MakeBricks ( Ca2,nCa2,1.25*maxContact );
Q = -1.0;
Q0 = -1.0;
iter = 0;
iter1 = 0;
do {
Q = RMax ( Q,Q0 );
iter++;
rc = SuperposeAtoms ( TM,Ca1,nCa1,Ca2,cn1 );
if (rc==SPOSEAT_Ok) {
MakeContacts ( TM,maxContact );
dist2 = 0.0;
for (i=0;i<ncontacts;i++) {
contact[i].dist *= contact[i].dist;
dist2 += contact[i].dist;
}
dist20 = dist2;
nal = ncontacts;
Q0 = RMax ( Q0,MatchQuality2(ncontacts,dist2,nCa1,nCa2) );
if (ncontacts>0) {
i = ncontacts;
while (i>3) {
i--;
dist2 -= contact[i].dist;
if (dist2<=i*maxRMSD2) { // rmsd must be within the limits
Q1 = MatchQuality2 ( i,dist2,nCa1,nCa2 );
if (Q1>Q0) {
Q0 = Q1;
nal = i;
dist20 = dist2;
}
}
}
for (i=nal+1;i<ncontacts;i++) {
cn1[contact[i].id2] = -1;
cn2[contact[i].id1] = -1;
}
if (Q0>Q) {
for (i=0;i<nCa1;i++)
c1[i] = cn1[i];
for (i=0;i<nCa2;i++)
c2[i] = cn2[i];
Mat4Copy ( TM,TMatrix );
Nalign = nal;
rmsd = dist20;
iter1 = 0;
} else
iter1++;
}
}
if ((!rc) && (iter>100)) rc = SEQSP_IterLimit;
} while ((rc==SPOSEAT_Ok) && ((Q<Q0) || (iter1>=2)));
if (Nalign>0) {
SuperposeAtoms ( TMatrix,Ca1,nCa1,Ca2,c1 );
rmsd = sqrt(rmsd/Nalign); // rmsd
seqId = 0.0;
for (i=0;i<nCa1;i++)
if (c1[i]>=0) {
if (!strcasecmp(Ca1[i]->GetResName(),Ca2[c1[i]]->GetResName()))
seqId += 1.0;
}
seqId = seqId/Nalign;
} else {
rmsd = MaxReal;
seqId = 0.0;
}
FreeVectorMemory ( cn1,0 );
FreeVectorMemory ( cn2,0 );
if (!keepBricks) M->RemoveBricks();
return rc;
}
int SeqSuperpose::Superpose ( PManager MMDB,
PPAtom Calpha1, int nCalpha1,
PPAtom Calpha2, int nCalpha2,
realtype seqThreshold,
bool keepBricks ) {
pstr S,T;
Mat4Init ( TMatrix ); // superposes Ca1 over Ca2: |T*Ca1 - Ca2|->min
Q = 0.0; // Q-score
rmsd = MaxReal; // rmsd
seqId = MaxReal; // sequence identity in structure alignment
Nalign = 0; // alignment length in structure alignment
FreeVectorMemory ( c1,0 );
FreeVectorMemory ( c2,0 );
_seqId = IMin(nCalpha1,nCalpha2);
_seqId /= IMax(nCalpha1,nCalpha2);
if (_seqId<seqThreshold)
return SEQSP_SeqThreshold;
M = MMDB;
Ca1 = Calpha1;
nCa1 = nCalpha1;
Ca2 = Calpha2;
nCa2 = nCalpha2;
makeAAString ( S,Ca1,nCa1 );
makeAAString ( T,Ca2,nCa2 );
if (!Align) Align = new math::Alignment();
Align->Align ( S,T,math::ALIGN_FREEENDS );
if (S) delete[] S;
if (T) delete[] T;
return makeStructAlignment ( seqThreshold,keepBricks );
}
} // namespace mmdb
|