File: njn_localmaxstatmatrix.hpp

package info (click to toggle)
mmseqs2 12-113e3%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 25,760 kB
  • sloc: cpp: 67,306; ansic: 6,279; sh: 2,425; makefile: 94; perl: 32
file content (144 lines) | stat: -rwxr-xr-x 7,354 bytes parent folder | download | duplicates (20)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#ifndef INCLUDED_NJN_LOCALMAXSTATMATRIX
#define INCLUDED_NJN_LOCALMAXSTATMATRIX

/* $Id: $
* ===========================================================================
*
*                            PUBLIC DOMAIN NOTICE
*               National Center for Biotechnology Information
*
*  This software/database is a "United States Government Work" under the
*  terms of the United States Copyright Act.  It was written as part of
*  the author's offical duties as a United States Government employee and
*  thus cannot be copyrighted.  This software/database is freely available
*  to the public for use. The National Library of Medicine and the U.S.
*  Government have not placed any restriction on its use or reproduction.
*
*  Although all reasonable efforts have been taken to ensure the accuracy
*  and reliability of the software and data, the NLM and the U.S.
*  Government do not and cannot warrant the performance or results that
*  may be obtained by using this software or data. The NLM and the U.S.
*  Government disclaim all warranties, express or implied, including
*  warranties of performance, merchantability or fitness for any particular
*  purpose.
*
*  Please cite the author in any work or product based on this material.
*
* ===========================================================================*/

/*****************************************************************************

File name: njn_localmaxstatmatrix.hpp

Author: John Spouge

Contents: Random walk parameters

******************************************************************************/

 
#include "njn_localmaxstat.hpp"


namespace Njn {



     class LocalMaxStatMatrix : public LocalMaxStat { 

    // calculates the statistical parameters for the local maximum in a random walk
    //
    // The scores are uniqued and 
    //    with the correspondence to probabilities maintained, placed in ascending order.
    //
    // The default p2_ = 0 is equivalent to the symmetric probabilities p2_ = p_ (on the same alphabet).
    //
    // The default dimMatrix2_ = 0 is equivalent to the same alphabet dimMatrix2_ = dimMatrix_.

        public:

        inline LocalMaxStatMatrix ( 
        size_t dimMatrix_ = 0, // #(distinct values)          
        const long int *const *scoreMatrix_ = 0, // score matrix [0...dimMatrix_)[0...dimMatrix2_)
        const double *p_ = 0, // probability of "letters" p_ [0...dimMatrix_)
        const double *p2_ = 0, // probability of "letters" p2_ [0...dimMatrix2_), the second (j) set of letter-probabilities
        size_t dimMatrix2_ = 0, // #(distinct values) in the second alphabet         
		double time_=0)
        :  LocalMaxStat (), d_dimMatrix (0), d_scoreMatrix_p (0), d_p_p (0), d_p2_p (0), d_dimMatrix2 (0)
        {
			setTime(time_);
            copy (dimMatrix_, scoreMatrix_, p_, p2_, dimMatrix2_);
        }

        inline ~LocalMaxStatMatrix () {free2 ();}

        inline LocalMaxStatMatrix &operator= (const LocalMaxStatMatrix &localMaxStat_) // random walk parameters
        {
            if (this != &localMaxStat_) copy (localMaxStat_);
            return *this;
        }

        void copy (
        size_t dimMatrix_, // #(distinct values) of scores & probabilities (which are paired)         
        const long int *const *scoreMatrix_, // score matrix [0...dimMatrix_)[0...dimMatrix_)
        const double *p_, // probability of "letters" p_ [0...dimMatrix_)
        const double *p2_ = 0, // probability of "letters" p2_ [0...dimMatrix2_), the second (j) set of letter-probabilities
        size_t dimMatrix2_ = 0); // #(distinct letters) in the second alphabet         

        void copy (
        LocalMaxStat localMaxStat_, // base object 
        size_t dimMatrix_, // #(distinct values) of scores & probabilities (which are paired)         
        const long int *const *scoreMatrix_, // score matrix [0...dimMatrix_)[0...dimMatrix_)
        const double *p_, // probability of "letters" p_ [0...dimMatrix_)
        const double *p2_ = 0, // probability of "letters" p2_ [0...dimMatrix2_), the second (j) set of letter-probabilities
        size_t dimMatrix2_ = 0); // #(distinct letters) in the second alphabet         

        inline void copy (const LocalMaxStatMatrix &localMaxStatMatrix_)
        {
            copy (localMaxStatMatrix_, localMaxStatMatrix_.getDimMatrix (), localMaxStatMatrix_.getScoreMatrix (), localMaxStatMatrix_.getP (), localMaxStatMatrix_.getP2 (), localMaxStatMatrix_.getDimMatrix2 ());
        }

        using LocalMaxStat::operator bool; // ? is the object ready for computation ?
        using LocalMaxStat::out; // output
        using LocalMaxStat::getR; // r (theta_) : dominant eigenvalue for theta_
        using LocalMaxStat::getA; // lim expected [length] / y for achieving y
        using LocalMaxStat::getAlpha; // lim var [length] / y for achieving y
        using LocalMaxStat::getDimension; // #(distinct values) of scores & probabilities (which are paired)         
        using LocalMaxStat::getScore; // scores in increasing order
        using LocalMaxStat::getProb; // probabilities
        using LocalMaxStat::getLambda; // lambda for associated random walk
        using LocalMaxStat::getK; // k for random walk : exponential prefactor
        using LocalMaxStat::getC; // c for random walk : exponential prefactor (global alignment)
        using LocalMaxStat::getThetaMin; // theta for minimum expectation (exp (theta * score))
        using LocalMaxStat::getRMin; // minimum expectation (exp (theta * score))
        using LocalMaxStat::getDelta; // span
        using LocalMaxStat::getThetaMinusDelta; // renewal span parameter
        using LocalMaxStat::getMu; // step mean for random walk
        using LocalMaxStat::getSigma; // step standard deviation for random walk
        using LocalMaxStat::getMuAssoc; // step mean for associated random walk (relative entropy)
        using LocalMaxStat::getSigmaAssoc; // step standard deviation for associated random walk
        using LocalMaxStat::getMeanWDLE; // expected renewal length for weak ladder epochs

        inline size_t getDimMatrix () const {return d_dimMatrix;} // #(distinct values) of scores & probabilities (which are paired)
        inline const long int *const *getScoreMatrix () const {return d_scoreMatrix_p;} // score matrix [0...dimMatrix_)[0...dimMatrix_)
        inline const double *getP () const {return d_p_p;} // probability of "letters" d_p_p [0...dimMatrix_)
        inline const double *getP2 () const {return d_p2_p;}  // probability of "letters" p2_ [0...dimMatrix_), the second (j) set of letter-probabilities
        inline size_t getDimMatrix2 () const {return d_dimMatrix2;} // #(distinct letters) in the second alphabet

        private:

        size_t d_dimMatrix; // #(distinct values) of scores & probabilities (which are paired)         
        long int **d_scoreMatrix_p; // score matrix [0...dimMatrix_)[0...dimMatrix_)
        double *d_p_p; // probability of "letters" d_p_p [0...dimMatrix_)
        double *d_p2_p; // probability of "letters" p2_ [0...dimMatrix_), the second (j) set of letter-probabilities
        size_t d_dimMatrix2; // #(distinct letters) in the second alphabet

        void init (size_t dimMatrix_, size_t dimMatrix2_ = 0);
        void free2 ();
    };

	}


#endif //!INCLUDED_NJS_LOCALMAXSTAT