1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
/* $Id: $
* ===========================================================================
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's offical duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===========================================================================*/
/*****************************************************************************
File name: njn_localmaxstatutil.cpp
Author: John Spouge
Contents:
******************************************************************************/
#include <assert.h>
#include "njn_localmaxstatutil.hpp"
#include "njn_approx.hpp"
#include "njn_dynprogproblim.hpp"
#include "njn_integer.hpp"
#include "njn_memutil.hpp"
#include "njn_root.hpp"
#include "sls_basic.hpp"
using namespace Njn;
void LocalMaxStatUtil::flatten ( // allocates memory for linear probabilities and scores
size_t dimension_, // dimension of equilProb_
const long int *const *scoreMatrix_, // packed scoring matrix [0...dimension_)[0...dimension2_)
const double *const *prob_, // prob_ [0...dimension_)[0...dimension2_) : distribution of scores sum to 1.0
size_t *dim_, // dimension of p_
long int **score_, // score [0...dim_) in increasing order
double **p_, // linear p_ [0...dim_) : distribution of scores
size_t dimension2_) // dimension2 of equilProb_
{
if (dimension2_ == 0) dimension2_ = dimension_;
size_t i = 0;
size_t j = 0;
double sum = 0.0;
for (i = 0; i < dimension_; i++)
{
for (j = 0; j < dimension2_; j++)
{
sum += prob_ [i][j];
}
}
const double FUDGE = 20.0;
assert (Approx::relApprox (sum, 1.0, FUDGE * REL_TOL));
long int s = 0;
long int min = LONG_MAX;
long int max = LONG_MIN;
for (i = 0; i < dimension_; i++)
{
for (j = 0; j < dimension2_; j++)
{
if (scoreMatrix_ [i][j] < min) min = scoreMatrix_ [i][j];
if (max < scoreMatrix_ [i][j]) max = scoreMatrix_ [i][j];
}
}
assert (min <= max);
size_t dim = static_cast <size_t> (max - min + 1);
double *p = new double [dim];
for (i = 0; i < dim; i++) p [i] = 0.0;
for (i = 0; i < dimension_; i++)
{
for (j = 0; j < dimension2_; j++)
{
p [scoreMatrix_ [i][j] - min] += prob_ [i][j];
}
}
*dim_ = 0;
for (s = min; s <= max; s++)
{
if (0.0 < p [s - min]) ++*dim_;
}
*p_ = new double [*dim_];
*score_ = new long int [*dim_];
*dim_ = 0;
for (s = min; s <= max; s++)
{
if (0.0 < p [s - min]) {
(*score_) [*dim_] = s;
(*p_) [*dim_] = p [s - min];
++*dim_;
}
}
delete [] p; p = 0;
}
double LocalMaxStatUtil::lambda (
size_t dimension_, // dimension of equilProb_
const long int *const *scoreMatrix_, // packed scoring matrix [0...dimension_)[0...dimension_)
const double *q_) // q_ [0...dimension_) : distribution of independent letters
{
size_t i = 0;
size_t j = 0;
double **prob = MemUtil::newMatrix <double> (dimension_, dimension_);
for (i = 0; i < dimension_; i++)
{
for (j = 0; j < dimension_; j++)
{
prob [i][j] = q_ [i] * q_ [j];
}
}
size_t dim = 0;
long int *score = 0;
double *p = 0;
flatten (dimension_, scoreMatrix_, prob, &dim, &score, &p);
for (i = 0; i < dimension_; i++)
{
delete prob [i];
}
double lambdaHat = LocalMaxStatUtil::lambda (dim, score, p);
delete p; p = 0;
delete score; score = 0;
return lambdaHat;
}
size_t n_dimension = 0; // dimension of matrices
const long int *n_score = 0; // score_ [0...dimension_ - 1]
const double *n_prob = 0; // prob_ [0...dimension_ - 1]
long int n_morgue = 0; // score_ [0] - 1
long int n_entry = 0; // n_entry = 0 : weak descending ladder epoch ; n_entry = -1 : strict descending ladder epoch
void n_setParameters (
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const long int *score_, // scores
const double *prob_, // probabilities
long int entry_ = 0) // entry_ = 0 : weak descending ladder epoch ; entry_ = -1 : strict descending ladder epoch
{
n_dimension = dimension_;
n_score = score_;
n_prob = prob_;
n_morgue = score_ [0] - 1;
n_entry = entry_;
}
double n_totalProbAssoc (double x_)
{
double sum = 0.0;
for (size_t i = 0; i < n_dimension; i++) {
sum += n_prob [i] * exp (x_ * static_cast <double> (n_score [i]));
}
return sum;
}
double n_meanPowerAssoc (double x_, long int power_ = 1L)
{
double sum = 0.0;
for (size_t i = 0; i < n_dimension; i++) {
sum += Integer::integerPower (static_cast <double> (n_score [i]), power_) *
n_prob [i] * exp (x_ * static_cast <double> (n_score [i]));
}
return sum;
}
double n_meanAssoc (double x_)
{
return n_meanPowerAssoc (x_);
}
void n_bracket (double *p_, double *q_)
{
const double FACTOR = 0.5;
*p_ = -log (n_prob [n_dimension - 1]) / static_cast <double> (n_score [n_dimension - 1]);
while (1.0 <= n_totalProbAssoc (*p_)) {
*p_ *= FACTOR;
}
*q_ = *p_ / FACTOR;
}
double LocalMaxStatUtil::mu (
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const long int *score_, // scores in increasing order
const double *prob_) // corresponding probabilities
{
double mu = 0.0;
for (size_t i = 0; i < dimension_; i++) {
mu += static_cast <double> (score_ [i]) * prob_ [i];
}
return mu;
}
double LocalMaxStatUtil::lambda (
size_t dimension_, // #(distinct values)
const long int *score_, // values
const double *prob_) // probability of corresponding value
{
n_setParameters (dimension_, score_, prob_);
double p = 0.0;
double q = 0.0;
n_bracket (&p, &q);
return Root::bisection (1.0, n_totalProbAssoc, p, q, REL_TOL * fabs (p - q));
}
double LocalMaxStatUtil::muPowerAssoc (
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const long int *score_, // scores in increasing order
const double *prob_, // corresponding probabilities
double lambda_, // lambda
long int power_) // power
{
n_setParameters (dimension_, score_, prob_);
if (lambda_ == 0.0) lambda_ = lambda (dimension_, score_, prob_);
return n_meanPowerAssoc (lambda_, power_);
}
double LocalMaxStatUtil::muAssoc (
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const long int *score_, // scores in increasing order
const double *prob_, // corresponding probabilities
double lambda_) // lambda
{
return muPowerAssoc (dimension_, score_, prob_, lambda_);
}
double LocalMaxStatUtil::thetaMin (
size_t dimension_, // #(distinct values)
const long int *score_, // values
const double *prob_, // probability of corresponding value
double lambda_) // lambda
// assumes logarithmic regime
{
n_setParameters (dimension_, score_, prob_);
if (lambda_ == 0.0) lambda_ = lambda (dimension_, score_, prob_);
double p = 0.0;
double q = 0.0;
n_bracket (&p, &q);
return Root::bisection (0.0, n_meanAssoc, 0.0, lambda_, REL_TOL * fabs (p - q));
}
double LocalMaxStatUtil::rMin (
size_t dimension_, // #(distinct values)
const long int *score_, // values
const double *prob_, // probability of corresponding value
double lambda_, // lambda
double thetaMin_) // argument of rate
// assumes logarithmic regime
{
n_setParameters (dimension_, score_, prob_);
if (thetaMin_ == 0.0) thetaMin_ = thetaMin (dimension_, score_, prob_, lambda_);
return n_totalProbAssoc (thetaMin_);
}
double LocalMaxStatUtil::r ( // r (theta)
size_t dimension_, // #(distinct values)
const long int *score_, // scores in increasing order
const double *prob_, // probability of corresponding value
double theta_) // argument of rate
// assumes logarithmic regime
{
double sum = 0.0;
for (size_t i = 0; i < dimension_; i++) {
sum += prob_ [i] * exp (theta_ * static_cast <double> (score_ [i]));
}
return sum;
}
long int LocalMaxStatUtil::delta ( // theta [minus delta] for ungapped sequence comparison
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const long int *score_) // scores
{
size_t i = 0;
long int delta = 0;
for (i = 0; i < dimension_; i++) {
delta = Integer::euclidAlgorithm <long int> (delta, score_ [i]);
}
return delta;
}
double LocalMaxStatUtil::thetaMinusDelta ( // theta [minus delta] for ungapped sequence comparison
double lambda_, // lambda, the exponential rate for the local maximum
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const long int *score_) // scores
{
double del = static_cast <double> (delta (dimension_, score_));
return (1.0 - exp (-lambda_ * del)) / del;
}
long int n_step (long int oldValue_, size_t state_)
{
assert (state_ < n_dimension);
return n_morgue < oldValue_ ? oldValue_ + n_score [state_] : oldValue_;
}
long int n_bury (long int oldValue_, size_t state_)
{
assert (state_ < n_dimension);
return n_entry < oldValue_ ? oldValue_ : n_morgue;
}
void LocalMaxStatUtil::descendingLadderEpochRepeat (
size_t dimension_, // #(distinct values)
const long int *score_, // values
const double *prob_, // probability of corresponding value
double *eSumAlpha_, // expectation (sum [alpha])
double *eOneMinusExpSumAlpha_, // expectation [1.0 - exp (sum [alpha])]
bool isStrict_, // ? is this a strict descending ladder epoch
double lambda_, // lambda for repeats : default is lambda0_ below
size_t endW_, // maximum w plus 1
double *pAlphaW_, // probability {alpha = w} : pAlphaW_ [0, wEnd)
double *eOneMinusExpSumAlphaW_, // expectation [1.0 - exp (sum [alpha]); alpha = w] : eOneMinusExpSumAlphaW_ [0, wEnd)
double lambda0_, // lambda for flattened distribution (avoid recomputation)
double mu0_, // mean of flattened distribution (avoid recomputation)
double muAssoc0_, // mean of associated flattened distribution (avoid recomputation)
double thetaMin0_, // thetaMin of flattened distribution (avoid recomputation)
double rMin0_, // rMin of flattened distribution (avoid recomputation)
double time_, // get time for the dynamic programming computation
bool *terminated_) // ? Was the dynamic programming computation terminated prematurely ?
// assumes logarithmic regime
{
// Start dynamic programming probability calculation using notation in
//
// Mott R. and Tribe R. (1999)
// J. Computational Biology 6(1):91-112
//
// Karlin S. and Taylor H.M.(1981)
// A Second Course in Stochastic Processes, p. 480
//
// Note there is an error in Eq (6.19) there, which is corrected in Eq (6.20)
//
// This program uses departure into (-Inf, 0] not (-Inf, 0)
// avoid recomputation
double mu0 = 0.0 == mu0_ ? mu (dimension_, score_, prob_) : mu0_;
assert (mu0 < 0.0);
double lambda0 = 0.0 == lambda0_ ? lambda (dimension_, score_, prob_) : lambda0_;
assert (0.0 < lambda0);
if (lambda_ == 0.0) lambda_ = lambda0;
assert (0.0 < lambda_);
double muAssoc0 = 0.0 == muAssoc0_ ? muAssoc (dimension_, score_, prob_, lambda0) : muAssoc0_;
assert (0.0 < muAssoc0);
double thetaMin0 = 0.0 == thetaMin0_ ? thetaMin (dimension_, score_, prob_, lambda0) : thetaMin0_;
assert (0.0 < thetaMin0);
double rMin0 = 0.0 == rMin0_ ? rMin (dimension_, score_, prob_, lambda0, thetaMin0) : rMin0_;
assert (0.0 < rMin0 && rMin0 < 1.0);
const long int ITER_MIN = static_cast <long int> ((log (REL_TOL * (1.0 - rMin0)) / log (rMin0)));
assert (0 < ITER_MIN);
const long int ITER = static_cast <long int> (endW_) < ITER_MIN ? ITER_MIN : static_cast <long int> (endW_);
assert (0 < ITER);
const long int Y_MAX = static_cast <long int> (-log (REL_TOL) / lambda0);
long int entry = isStrict_ ? -1 : 0;
n_setParameters (dimension_, score_, prob_, entry);
double time0 = 0.0;
double time1 = 0.0;
if (time_ > 0.0) Sls::sls_basic::get_current_time (time0);
DynProgProbLim dynProgProb (n_step, dimension_, prob_, score_ [0] - 1, Y_MAX);
if (pAlphaW_) pAlphaW_ [0] = 0.0;
if (eOneMinusExpSumAlphaW_) eOneMinusExpSumAlphaW_ [0] = 0.0;
dynProgProb.update (); // iterate random walk
long int value = 0;
if (eSumAlpha_) *eSumAlpha_ = 0.0;
if (eOneMinusExpSumAlpha_) *eOneMinusExpSumAlpha_ = 0.0;
for (size_t w = 1; w < static_cast <size_t> (ITER); w++) {
if (w < endW_) { // sum pAlphaW_ [w] and eOneMinusExpSumAlphaW_ [w]
if (pAlphaW_) pAlphaW_ [w] = 0.0;
if (eOneMinusExpSumAlphaW_) eOneMinusExpSumAlphaW_ [w] = 0.0;
for (value = score_ [0]; value <= entry; value++) {
if (pAlphaW_) pAlphaW_ [w] += dynProgProb.getProb (value);
if (eOneMinusExpSumAlphaW_) eOneMinusExpSumAlphaW_ [w] +=
dynProgProb.getProb (value) *
(1.0 - exp (lambda_ * static_cast <double> (value)));
}
}
for (value = score_ [0]; value <= entry; value++) {
if (eSumAlpha_) *eSumAlpha_ += dynProgProb.getProb (value) * static_cast <double> (value);
if (eOneMinusExpSumAlpha_) *eOneMinusExpSumAlpha_ += dynProgProb.getProb (value) *
(1.0 - exp (lambda_ * static_cast <double> (value)));
}
dynProgProb.setValueFct (n_bury);
dynProgProb.update (); // put probability into the morgue
dynProgProb.setValueFct (n_step);
dynProgProb.update (); // iterate random walk
if (time_ > 0.0)
{
Sls::sls_basic::get_current_time (time1);
if (time1 - time0 > time_)
{
*terminated_ = true;
return;
}
}
}
for (value = score_ [0]; value <= entry; value++) {
if (eSumAlpha_) *eSumAlpha_ += dynProgProb.getProb (value) * static_cast <double> (value);
if (eOneMinusExpSumAlpha_) *eOneMinusExpSumAlpha_ += dynProgProb.getProb (value) *
(1.0 - exp (lambda_ * static_cast <double> (value)));
}
// check that not too much probability has been omitted
double prob = 0.0;
for (value = entry + 1; value < dynProgProb.getValueUpper (); value++) {
prob += dynProgProb.getProb (value);
}
prob += dynProgProb.getProbLost ();
const double FUDGE = 100.0;
assert (prob <= FUDGE * static_cast <double> (dimension_) * REL_TOL);
}
void LocalMaxStatUtil::descendingLadderEpoch (
size_t dimension_, // #(distinct values)
const long int *score_, // values
const double *prob_, // probability of corresponding value
double *eSumAlpha_, // expectation (sum [alpha])
double *eOneMinusExpSumAlpha_, // expectation [1.0 - exp (sum [alpha])]
bool isStrict_, // ? is this a strict descending ladder epoch
double lambda0_, // lambda for flattened distribution (avoid recomputation)
double mu0_, // mean of flattened distribution (avoid recomputation)
double muAssoc0_, // mean of associated flattened distribution (avoid recomputation)
double thetaMin0_, // thetaMin of flattened distribution (avoid recomputation)
double rMin0_, // rMin of flattened distribution (avoid recomputation)
double time_, // get time for the dynamic programming computation
bool *terminated_) // ? Was the dynamic programming computation terminated prematurely ?
{
descendingLadderEpochRepeat (dimension_, score_, prob_,
eSumAlpha_, eOneMinusExpSumAlpha_, isStrict_, 0.0, 0, 0, 0,
lambda0_, mu0_, muAssoc0_, thetaMin0_, rMin0_, time_, terminated_);
}
bool LocalMaxStatUtil::isProbDist (
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const double *prob_) // corresponding probabilities
{
double sum = 0.0;
for (size_t i = 0; i < dimension_; i++) {
if (prob_ [i] < 0.0 || 1.0 < prob_ [i]) return false;
sum += prob_ [i];
}
return Approx::relApprox (sum, 1.0, REL_TOL);
}
bool LocalMaxStatUtil::isScoreIncreasing (
size_t dimension_, // #(distinct values)
const long int *score_) // scores in increasing order
{
for (size_t i = 1; i < dimension_; i++) {
if (score_ [i] <= score_ [i - 1]) return false;
}
return true;
}
bool LocalMaxStatUtil::isLogarithmic (
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const long int *score_, // scores in increasing order
const double *prob_) // corresponding probabilities
{
assert (score_);
assert (prob_);
if (! isScoreIncreasing (dimension_, score_)) return false;
if (! isProbDist (dimension_, prob_)) return false;
if (0.0 <= mu (dimension_, score_, prob_)) return false;
if (score_ [dimension_ - 1] <= 0.0) return false;
return true;
}
|