1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
#ifndef INCLUDED_NJN_LOCALMAXSTATUTIL
#define INCLUDED_NJN_LOCALMAXSTATUTIL
/* $Id: $
* ===========================================================================
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's offical duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===========================================================================*/
/*****************************************************************************
File name: njn_localmaxstatutil.hpp
Author: John Spouge
Contents: Random walk parameters
******************************************************************************/
#include "njn_matrix.hpp"
namespace Njn {
namespace LocalMaxStatUtil {
const double REL_TOL = 1.0e-6;
void flatten ( // allocates memory for linear probabilities and scores
size_t dimension_, // dimension of equilProb_
const long int *const *scoreMatrix_, // packed scoring matrix [0...dimension_)[0...dimension_)
const double *const *prob_, // prob_ [0...dimension_)[0...dimension_) : distribution of scores sum to 1.0
size_t *dim_, // dimension of p_
long int **score_, // score [0...dim_) in increasing order
double **p_, // linear p_ [0...dim_) : distribution of scores
size_t dimension2_ = 0); // dimension2 of equilProb_ : defaults to dimension_
// asserts (sum (p_) == 1.0);
double lambda (
size_t dimMatrix_, // dimension of equilProb_
const long int *const *scoreMatrix_, // packed scoring matrix [0...dimension_)[0...dimension_)
const double *q_); // q_ [0...dimension_) : distribution of independent letters
double mu (
size_t dimension_, // #(distinct values)
const long int *score_, // scores in increasing order
const double *prob_); // probability of corresponding value
double lambda (
size_t dimension_, // #(distinct values)
const long int *score_, // scores in increasing order
const double *prob_); // probability of corresponding value
// assumes logarithmic regime
double muAssoc (
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const long int *score_, // scores in increasing order
const double *prob_, // corresponding probabilities
double lambda_ = 0.0); // lambda
double muPowerAssoc (
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const long int *score_, // scores in increasing order
const double *prob_, // corresponding probabilities
double lambda_ = 0.0, // lambda
long int power_ = 1); // power
double thetaMin ( // minimizing value for r(theta)
size_t dimension_, // #(distinct values)
const long int *score_, // scores in increasing order
const double *prob_, // probability of corresponding value
double lambda_ = 0.0); // lambda
// assumes logarithmic regime
double rMin ( // minimum value of r(theta)
size_t dimension_, // #(distinct values)
const long int *score_, // scores in increasing order
const double *prob_, // probability of corresponding value
double lambda_ = 0.0, // lambda
double thetaMin_ = 0.0); // argument of rate
// assumes logarithmic regime
double r ( // r(theta)
size_t dimension_, // #(distinct values)
const long int *score_, // scores in increasing order
const double *prob_, // probability of corresponding value
double theta_); // argument of rate
// assumes logarithmic regime
long int delta ( // theta [minus delta] for ungapped sequence comparison
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const long int *score_); // scores
double thetaMinusDelta ( // theta [minus delta] for ungapped sequence comparison
double lambda_, // lambda, the exponential rate for the local maximum
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const long int *score_); // scores
void descendingLadderEpoch (
size_t dimension_, // #(distinct values)
const long int *score_, // values
const double *prob_, // probability of corresponding value
double *eSumAlpha_ = 0, // expectation (sum [alpha])
double *eOneMinusExpSumAlpha_ = 0, // expectation [1.0 - exp (sum [alpha])]
bool isStrict_ = false, // ? is this a strict descending ladder epoch
double lambda0_ = 0.0, // lambda for flattened distribution (avoid recomputation)
double mu0_ = 0.0, // mean of flattened distribution (avoid recomputation)
double muAssoc0_ = 0.0, // mean of associated flattened distribution (avoid recomputation)
double thetaMin0_ = 0.0, // thetaMin of flattened distribution (avoid recomputation)
double rMin0_ = 0.0, // rMin of flattened distribution (avoid recomputation)
double time_ = 0.0, // get time for the dynamic programming computation
bool *terminated_ = 0); // ? Was the dynamic programming computation terminated prematurely ?
void descendingLadderEpochRepeat (
size_t dimension_, // #(distinct values)
const long int *score_, // values
const double *prob_, // probability of corresponding value
double *eSumAlpha_ = 0, // expectation (sum [alpha])
double *eOneMinusExpSumAlpha_ = 0, // expectation [1.0 - exp (sum [alpha])]
bool isStrict_ = false, // ? is this a strict descending ladder epoch
double lambda_ = 0.0, // lambda for repeats : default is lambda0_ below
size_t endW_ = 0, // maximum w plus 1
double *pAlphaW_ = 0, // probability {alpha = w} : pAlphaW_ [0, wEnd)
double *eOneMinusExpSumAlphaW_ = 0, // expectation [1.0 - exp (sum [alpha]); alpha = w] : eOneMinusExpSumAlphaW_ [0, wEnd)
double lambda0_ = 0.0, // lambda for flattened distribution (avoid recomputation)
double mu0_ = 0.0, // mean of flattened distribution (avoid recomputation)
double muAssoc0_ = 0.0, // mean of associated flattened distribution (avoid recomputation)
double thetaMin0_ = 0.0, // thetaMin of flattened distribution (avoid recomputation)
double rMin0_ = 0.0, // rMin of flattened distribution (avoid recomputation)
double time_ = 0.0, // get time for the dynamic programming computation
bool *terminated_ = 0); // ? Was the dynamic programming computation terminated prematurely ?
// assumes logarithmic regime
bool isProbDist (
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const double *prob_); // corresponding probabilities
bool isScoreIncreasing (
size_t dimension_, // #(distinct values)
const long int *score_); // scores in increasing order
bool isLogarithmic (
size_t dimension_, // #(distinct values)
const long int *score_, // scores in increasing order
const double *prob_); // probability of corresponding value
}
}
#endif
|