1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
|
#ifndef INCLUDED_NJN_FUNCTION
#define INCLUDED_NJN_FUNCTION
/* $Id: $
* ===========================================================================
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's offical duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===========================================================================*/
/*****************************************************************************
File name: njn_function.hpp
Author: John Spouge
Contents:
******************************************************************************/
#include "njn_doubletype.hpp"
namespace Njn {
namespace Function {
template <typename T> inline T bitsToNats (T x_);
template <typename T> inline T natsToBits (T x_);
template <typename T> inline T hartleysToNats (T x_);
template <typename T> inline T natsToHartleys (T x_);
template <typename T> inline T hartleysToBits (T x_);
template <typename T> inline T bitsToHartleys (T x_);
template <typename T> inline T exp2 (T x_);
template <typename T> inline T log2 (T x_);
template <typename T> inline T exp10 (T x_);
template <typename T> inline T log10 (T x_);
template <typename T> inline T max (T x_, T y_);
template <typename T> inline T max3 (T a_, T b_, T c_);
template <typename T> inline T min (T x_, T y_);
template <typename T> inline T plus (T x_); // x_^+
template <typename T> inline T minus (T x_); // x_^-
template <typename T> inline T signum (T x_);
template <typename T> inline T heaviside (T x_);
template <typename T> inline T psqrt (T x_); // square-root of x_^+
template <typename T> inline T square (T x_); // x_ * x_
template <typename T> inline T bound (T x_, T xlo_, T xhi_); // the closest value to x_ in the interval [xlo_, xhi_]
template <typename T> inline T probability (T x_); // the closest value to x_ in the interval [0.0, 1.0]
template <typename T> inline T prob (T x_); // the closest value to x_ in the interval [0.0, 1.0]
template <typename T> inline bool isProb (T x_); // the closest value to x_ in the interval [0.0, 1.0]
//
// There are no more declarations beyond this point.
//
template <typename T> T bitsToNats (T x_) {return x_ * DoubleType::LN_2;}
template <typename T> T natsToBits (T x_) {return x_ / DoubleType::LN_2;}
template <typename T> T hartleysToNats (T x_) {return x_ * DoubleType::LN_10;}
template <typename T> T natsToHartleys (T x_) {return x_ / DoubleType::LN_10;}
template <typename T> T hartleysToBits (T x_) {return hartleysToNats (natsToBits (x_));}
template <typename T> T bitsToHartleys (T x_) {return bitsToNats (natsToHartleys (x_));}
template <typename T> T exp2 (T x_) {return exp (DoubleType::LN_2 * (x_));}
template <typename T> T log2 (T x_) {return log (x_) / DoubleType::LN_2;}
template <typename T> T exp10 (T x_) {return exp (DoubleType::LN_10 * (x_));}
template <typename T> T log10 (T x_) {return log (x_) / DoubleType::LN_10;}
template <typename T> T max (T x_, T y_) {return x_ > y_ ? x_ : y_;}
template <typename T> T max3 (T a_, T b_, T c_) {return max <T> (a_, max <T> (b_, c_));}
template <typename T> T min (T x_, T y_) {return x_ < y_ ? x_ : y_;}
template <typename T> T positive (T x_) {return max <T> (x_, static_cast <T> (0));}
template <typename T> T negative (T x_) {return max <T> (-x_, static_cast <T> (0));}
template <typename T> T signum (T x_) {return x_ > 0.0 ? 1.0 : (x_ == 0.0 ? 0.0 : -1.0);}
template <typename T> T heaviside (T x_) {return x_ < 0.0 ? 0.0 : 1.0;}
template <typename T> T psqrt (T x_) {return positive <T> (sqrt (x_));}
template <typename T> T square (T x_) {return x_ * x_;}
template <typename T> T bound (T x_, T xlo_, T xhi_) {
if (x_ < xlo_) return xlo_;
if (x_ < xhi_) return x_;
return xhi_;
}
template <typename T> T probability (T x_) {return bound <T> (x_, 0.0, 1.0);}
template <typename T> T prob (T x_) {return probability <T> (x_);}
template <typename T> bool isProb (T x_) {return 0.0 <= x_ && x_ <= 1.0;}/*sls deleted;*/ // the closest value to x_ in the interval [0.0, 1.0]
}
}
#endif //! INCLUDED
|