1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
/* $Id: $
* ===========================================================================
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's offical duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===========================================================================*/
/*****************************************************************************
File name: njn_localmaxstat.cpp
Author: John Spouge
Contents:
******************************************************************************/
#include "sls_basic.hpp"
#include "njn_localmaxstat.hpp"
#include "njn_memutil.hpp"
#include "njn_dynprogproblim.hpp"
#include "njn_function.hpp"
#include "njn_integer.hpp"
#include "njn_localmaxstatutil.hpp"
using namespace Njn;
double LocalMaxStat::s_time = 0.0;
void LocalMaxStat::init (size_t dimension_)
{
if (dimension_ > 0)
{
d_score_p = new long int [dimension_];
d_prob_p = new double [dimension_];
}
d_dimension = dimension_;
}
void LocalMaxStat::free2 ()
{
if (getDimension () > 0)
{
delete [] d_score_p; d_score_p = 0;
delete [] d_prob_p; d_prob_p = 0;
}
d_dimension = 0;
}
void LocalMaxStat::clear ()
{
free2 ();
init (0);
d_lambda = 0.0;
d_k = 0.0;
d_c = 0.0;
d_thetaMin = 0.0;
d_rMin = 0.0;
d_delta = 0;
d_thetaMinusDelta = 0.0;
d_mu = 0.0;
d_sigma = 0.0;
d_muAssoc = 0.0;
d_sigmaAssoc = 0.0;
d_meanWDLE = 0.0;
d_terminated = false;
}
void LocalMaxStat::copy (
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const long int *score_, // scores
const double *prob_, // probabilities
double lambda_, // lambda for associated random walk
double k_, // k for random walk : exponential prefactor
double c_, // c for random walk : exponential prefactor (global alignment)
double thetaMin_, // theta for minimum expectation (exp (theta * score))
double rMin_, // minimum expectation (exp (theta * score))
long int delta_, // span
double thetaMinusDelta_, // renewal span parameter
double mu_, // n_step mean for random walk
double sigma_, // n_step standard deviation for random walk
double muAssoc_, // n_step mean for associated random walk (relative entropy)
double sigmaAssoc_, // n_step standard deviation for associated random walk
double meanLength_, // expected renewal length
bool terminated_) // ? Was the dynamic programming computation terminated prematurely ?
{
free2 ();
init (dimension_);
memcpy (d_score_p, score_, sizeof (long int) * getDimension ());
memcpy (d_prob_p, prob_, sizeof (double) * getDimension ());
d_lambda = lambda_;
d_k = k_;
d_c = c_;
d_thetaMin = thetaMin_;
d_rMin = rMin_;
d_delta = delta_;
d_thetaMinusDelta = thetaMinusDelta_;
d_mu = mu_;
d_sigma = sigma_;
d_muAssoc = muAssoc_;
d_sigmaAssoc = sigmaAssoc_;
d_meanWDLE = meanLength_;
d_terminated = terminated_;
}
void LocalMaxStat::copy (
size_t dimension_, // #(distinct values) of scores & probabilities (which are paired)
const long int *score_, // scores in increasing order
const double *prob_) // corresponding probabilities
{
if (dimension_ == 0)
{
clear ();
return;
}
if (! LocalMaxStatUtil::isLogarithmic (dimension_, score_, prob_))
{
//IoUtil::abort ("LocalMaxStat::copy : ! isLogarithmic");
throw Sls::error("Error - you have exceeded the calculation time or memory limit.\nThe error might indicate that the regime is linear or too close to linear to permit efficient computation.\nPossible solutions include changing the randomization seed, or increasing the allowed calculation time and the memory limit.\n",3);
}
size_t i = 0;
/*sls deleted size_t j = 0;*/
/*sls deleted long int iter = 0;*/
/*sls deleted long int value = 0;*/
free2 ();
init (dimension_);
memcpy (d_score_p, score_, sizeof (long int) * getDimension ());
memcpy (d_prob_p, prob_, sizeof (double) * getDimension ());
d_mu = LocalMaxStatUtil::mu (getDimension (), getScore (), getProb ());
d_sigma = 0.0;
for (i = 0; i < dimension_; i++)
{
d_sigma += static_cast <double> (score_ [i]) * static_cast <double> (score_ [i]) * prob_ [i];
}
d_sigma -= getMu () * getMu ();
d_sigma = Function::psqrt (getSigma ());
// calculate lambda
d_lambda = LocalMaxStatUtil::lambda (getDimension (), getScore (), getProb ());
d_muAssoc = LocalMaxStatUtil::muAssoc (getDimension (), getScore (), getProb (), getLambda ());
d_sigmaAssoc = 0.0;
for (i = 0; i < getDimension (); i++)
{
d_sigmaAssoc += static_cast <double> (getScore () [i]) * static_cast <double> (getScore () [i]) *
getProb () [i] * exp (getLambda () * static_cast <double> (getScore () [i]));
}
d_sigmaAssoc -= getMuAssoc () * getMuAssoc ();
d_sigmaAssoc = Function::psqrt (d_sigmaAssoc);
d_thetaMin = LocalMaxStatUtil::thetaMin (getDimension (), getScore (), getProb (), getLambda ());
d_rMin = LocalMaxStatUtil::rMin (getDimension (), getScore (), getProb (), getLambda (), getThetaMin ());
d_delta = LocalMaxStatUtil::delta (getDimension (), getScore ());
d_thetaMinusDelta = LocalMaxStatUtil::thetaMinusDelta (getLambda (), getDimension (), getScore ());
dynProgCalc ();
}
double LocalMaxStat::getR (double theta_) const
{
return LocalMaxStatUtil::r (d_dimension, d_score_p, d_prob_p, theta_);
}
void LocalMaxStat::dynProgCalc ()
// k for random walk : exponential prefactor
// expected renewal length for weak ladder epochs
{
double eSumAlpha_ = 0.0;
double eOneMinusExpSumAlpha_ = 0.0;
LocalMaxStatUtil::descendingLadderEpoch (getDimension (), getScore (), getProb (),
&eSumAlpha_, &eOneMinusExpSumAlpha_, false,
getLambda (), getMu (), getMuAssoc (), getThetaMin (), getRMin (), getTime (), &d_terminated);
if (getTerminated ()) return;
// fluctuation sum quantities
double ratio = eOneMinusExpSumAlpha_ / eSumAlpha_;
d_k = getMu () * getMu () / getThetaMinusDelta () / getMuAssoc () * ratio * ratio;
d_meanWDLE = eSumAlpha_ / getMu ();
d_c = getK () * getMeanWDLE () / eOneMinusExpSumAlpha_;
}
|