1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
#ifndef INCLUDED_SLS_ALP_REGRESSION
#define INCLUDED_SLS_ALP_REGRESSION
/* $Id: $
* ===========================================================================
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's offical duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===========================================================================*/
/*****************************************************************************
File name: sls_alp_regression.hpp
Author: Sergey Sheetlin
Contents: Regression methods
******************************************************************************/
#include "sls_basic.hpp"
#include <complex>
#include <iostream>
#include <map>
#include <vector>
#include <fstream>
#include <float.h>
#include <algorithm>
namespace Sls {
typedef double function_type(double x_,void* func_number_);
class alp_reg{
public:
alp_reg(//constructor
);
~alp_reg();//destructor
static void find_tetta_general(
function_type *func_,
void* func_pointer_,
double a_,//[a,b] is the interval for search of equation solution
double b_,
long int n_partition_,
double eps_,
std::vector<double> &res_);
static double find_single_tetta_general(
function_type *func_,
void* func_pointer_,
double a_,//[a,b] is the interval for search of equation solution
double b_,
double eps_);
static void correction_of_errors(
double *errors_,
long int number_of_elements_);
static void robust_regression_sum_with_cut_LSM(
long int min_length_,
long int number_of_elements_,
double *values_,
double *errors_,
bool cut_left_tail_,
bool cut_right_tail_,
double y_,
double &beta0_,
double &beta1_,
double &beta0_error_,
double &beta1_error_,
long int &k1_opt_,
long int &k2_opt_,
bool &res_was_calculated_);
static double function_for_robust_regression_sum_with_cut_LSM(
double *values_,
double *errors_,
long int number_of_elements_,
long int k_start_,
double c_,
double &beta0_,
double &beta1_,
double &beta0_error_,
double &beta1_error_,
bool &res_was_calculated_);
static void robust_regression_sum_with_cut_LSM_beta1_is_defined(
long int min_length_,
long int number_of_elements_,
double *values_,
double *errors_,
bool cut_left_tail_,
bool cut_right_tail_,
double y_,
double &beta0_,
double beta1_,
double &beta0_error_,
double beta1_error_,
long int &k1_opt_,
long int &k2_opt_,
bool &res_was_calculated_);
static double function_for_robust_regression_sum_with_cut_LSM_beta1_is_defined(
double *values_,
double *errors_,
long int number_of_elements_,
long int k_start_,
double c_,
double &beta0_,
double beta1_,
double &beta0_error_,
double beta1_error_,
bool &res_was_calculated_);
inline static double sqrt_for_errors(
double x_)
{
if(x_<=0)
{
return 0.0;
}
else
{
return sqrt(x_);
};
}
static double median(
long int dim_,
double *array_);
static double robust_sum(
double *values,
long int dim,
long int N_points,
bool *&remove_flag);
};
}
#endif
|