1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Solvation of a protein in water — MMTK User Guide 2.7.7 documentation</title>
<link rel="stylesheet" href="../../_static/default.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../',
VERSION: '2.7.7',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<link rel="top" title="MMTK User Guide 2.7.7 documentation" href="../../index.html" />
</head>
<body>
<div class="related">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../../genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="../../py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li><a href="../../index.html">MMTK User Guide 2.7.7 documentation</a> »</li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body">
<div class="section" id="solvation-of-a-protein-in-water">
<h1>Solvation of a protein in water<a class="headerlink" href="#solvation-of-a-protein-in-water" title="Permalink to this headline">ΒΆ</a></h1>
<div class="highlight-python"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95</pre></div></td><td class="code"><div class="highlight"><pre><span class="c"># Solvation of a protein with water.</span>
<span class="c">#</span>
<span class="c"># The solvation procedure consists of three steps:</span>
<span class="c">#</span>
<span class="c"># - The universe containing the protein is scaled up, and the required</span>
<span class="c"># number of water molecules is added at random positions, but without</span>
<span class="c"># any overlap between molecules. The system is so dilute that random</span>
<span class="c"># placements are easily possible.</span>
<span class="c">#</span>
<span class="c"># - The universe is slowly scaled down do its original size, with</span>
<span class="c"># each scaling step followed by some energy minimization and</span>
<span class="c"># molecular dynamics steps.</span>
<span class="c">#</span>
<span class="c"># - A molecular dynamics run at constant pressure and temperature is</span>
<span class="c"># used to put the system into a well-defined thermodynamic state.</span>
<span class="c">#</span>
<span class="kn">from</span> <span class="nn">MMTK</span> <span class="kn">import</span> <span class="o">*</span>
<span class="kn">from</span> <span class="nn">MMTK.Proteins</span> <span class="kn">import</span> <span class="n">Protein</span>
<span class="kn">from</span> <span class="nn">MMTK.ForceFields</span> <span class="kn">import</span> <span class="n">Amber94ForceField</span>
<span class="kn">from</span> <span class="nn">MMTK.Environment</span> <span class="kn">import</span> <span class="n">NoseThermostat</span><span class="p">,</span> <span class="n">AndersenBarostat</span>
<span class="kn">from</span> <span class="nn">MMTK.Trajectory</span> <span class="kn">import</span> <span class="n">Trajectory</span><span class="p">,</span> <span class="n">TrajectoryOutput</span><span class="p">,</span> <span class="n">LogOutput</span>
<span class="kn">from</span> <span class="nn">MMTK.Dynamics</span> <span class="kn">import</span> <span class="n">VelocityVerletIntegrator</span><span class="p">,</span> <span class="n">VelocityScaler</span><span class="p">,</span> \
<span class="n">BarostatReset</span><span class="p">,</span> <span class="n">TranslationRemover</span>
<span class="kn">import</span> <span class="nn">MMTK.Solvation</span>
<span class="c"># Create the solute.</span>
<span class="n">protein</span> <span class="o">=</span> <span class="n">Protein</span><span class="p">(</span><span class="s">'bala1'</span><span class="p">)</span>
<span class="c"># Put the solvent in a standard configuration: center of mass at the</span>
<span class="c"># coordinate origin, principal axes of inertia parallel to the coordinate axes.</span>
<span class="n">protein</span><span class="o">.</span><span class="n">normalizeConfiguration</span><span class="p">()</span>
<span class="c"># Define density, pressure, and temperature of the solvent.</span>
<span class="n">water_density</span> <span class="o">=</span> <span class="mf">1.</span><span class="o">*</span><span class="n">Units</span><span class="o">.</span><span class="n">g</span><span class="o">/</span><span class="n">Units</span><span class="o">.</span><span class="n">cm</span><span class="o">**</span><span class="mi">3</span>
<span class="n">temperature</span> <span class="o">=</span> <span class="mf">300.</span><span class="o">*</span><span class="n">Units</span><span class="o">.</span><span class="n">K</span>
<span class="n">pressure</span> <span class="o">=</span> <span class="mf">1.</span><span class="o">*</span><span class="n">Units</span><span class="o">.</span><span class="n">atm</span>
<span class="c"># Calculate the box size as the boundary box of the protein plus an</span>
<span class="c"># offset. Note: a much larger offset should be used in real applications.</span>
<span class="n">box</span> <span class="o">=</span> <span class="n">protein</span><span class="o">.</span><span class="n">boundingBox</span><span class="p">()</span>
<span class="n">box</span> <span class="o">=</span> <span class="n">box</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">-</span><span class="n">box</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">+</span><span class="n">Vector</span><span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">)</span>
<span class="c"># Create a periodic universe. The force field is intentionally created with</span>
<span class="c"># a rather small cutoff to speed up the solvation process.</span>
<span class="n">universe</span> <span class="o">=</span> <span class="n">OrthorhombicPeriodicUniverse</span><span class="p">(</span><span class="nb">tuple</span><span class="p">(</span><span class="n">box</span><span class="p">),</span>
<span class="n">Amber94ForceField</span><span class="p">(</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">))</span>
<span class="n">universe</span><span class="o">.</span><span class="n">protein</span> <span class="o">=</span> <span class="n">protein</span>
<span class="c"># Find the number of solvent molecules.</span>
<span class="k">print</span> <span class="n">MMTK</span><span class="o">.</span><span class="n">Solvation</span><span class="o">.</span><span class="n">numberOfSolventMolecules</span><span class="p">(</span><span class="n">universe</span><span class="p">,</span><span class="s">'water'</span><span class="p">,</span><span class="n">water_density</span><span class="p">),</span>\
<span class="s">"water molecules will be added"</span>
<span class="c"># Scale up the universe and add the solvent molecules.</span>
<span class="n">MMTK</span><span class="o">.</span><span class="n">Solvation</span><span class="o">.</span><span class="n">addSolvent</span><span class="p">(</span><span class="n">universe</span><span class="p">,</span> <span class="s">'water'</span><span class="p">,</span> <span class="n">water_density</span><span class="p">)</span>
<span class="k">print</span> <span class="s">"Solvent molecules have been added, now shrinking universe..."</span>
<span class="c"># Shrink the universe back to its original size, thereby compressing</span>
<span class="c"># the solvent to its real density.</span>
<span class="n">MMTK</span><span class="o">.</span><span class="n">Solvation</span><span class="o">.</span><span class="n">shrinkUniverse</span><span class="p">(</span><span class="n">universe</span><span class="p">,</span> <span class="n">temperature</span><span class="p">,</span> <span class="s">'solvation.nc'</span><span class="p">)</span>
<span class="k">print</span> <span class="s">"Universe has been compressed, now equilibrating..."</span>
<span class="c"># Set a better force field and add thermostat and barostat.</span>
<span class="c">#</span>
<span class="c"># Note: For efficiency, optimized Ewald parameters should be used</span>
<span class="c"># in a real application. The barostat relaxation time must be</span>
<span class="c"># adjusted to the system size; it should be chosen smaller than</span>
<span class="c"># for a realistic simulation in order to reach the final</span>
<span class="c"># volume faster.</span>
<span class="n">universe</span><span class="o">.</span><span class="n">setForceField</span><span class="p">(</span><span class="n">Amber94ForceField</span><span class="p">(</span><span class="mf">1.4</span><span class="p">,</span> <span class="p">{</span><span class="s">'method'</span><span class="p">:</span> <span class="s">'ewald'</span><span class="p">}))</span>
<span class="n">universe</span><span class="o">.</span><span class="n">thermostat</span> <span class="o">=</span> <span class="n">NoseThermostat</span><span class="p">(</span><span class="n">temperature</span><span class="p">)</span>
<span class="n">universe</span><span class="o">.</span><span class="n">barostat</span> <span class="o">=</span> <span class="n">AndersenBarostat</span><span class="p">(</span><span class="n">pressure</span><span class="p">,</span> <span class="mf">0.1</span><span class="o">*</span><span class="n">Units</span><span class="o">.</span><span class="n">ps</span><span class="p">)</span>
<span class="c"># Create an integrator and a trajectory.</span>
<span class="n">integrator</span> <span class="o">=</span> <span class="n">VelocityVerletIntegrator</span><span class="p">(</span><span class="n">universe</span><span class="p">,</span> <span class="n">delta_t</span><span class="o">=</span><span class="mf">1.</span><span class="o">*</span><span class="n">Units</span><span class="o">.</span><span class="n">fs</span><span class="p">)</span>
<span class="n">trajectory</span> <span class="o">=</span> <span class="n">Trajectory</span><span class="p">(</span><span class="n">universe</span><span class="p">,</span> <span class="s">"equilibration.nc"</span><span class="p">,</span> <span class="s">"w"</span><span class="p">,</span>
<span class="s">"Equilibration (NPT ensemble)"</span><span class="p">)</span>
<span class="c"># Start an NPT integration with periodic rescaling of velocities</span>
<span class="c"># and resetting of the barostat. The number of steps required to</span>
<span class="c"># reach a stable volume depends strongly on the system!</span>
<span class="n">output_actions</span> <span class="o">=</span> <span class="p">[</span><span class="n">TrajectoryOutput</span><span class="p">(</span><span class="n">trajectory</span><span class="p">,</span>
<span class="p">(</span><span class="s">'configuration'</span><span class="p">,</span> <span class="s">'energy'</span><span class="p">,</span> <span class="s">'thermodynamic'</span><span class="p">,</span>
<span class="s">'time'</span><span class="p">,</span> <span class="s">'auxiliary'</span><span class="p">),</span> <span class="mi">0</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="mi">100</span><span class="p">),</span>
<span class="n">LogOutput</span><span class="p">(</span><span class="s">"equilibration.log"</span><span class="p">,</span> <span class="p">(</span><span class="s">'time'</span><span class="p">,</span> <span class="s">'energy'</span><span class="p">),</span>
<span class="mi">0</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="mi">100</span><span class="p">)]</span>
<span class="n">integrator</span><span class="p">(</span><span class="n">steps</span> <span class="o">=</span> <span class="mi">1000</span><span class="p">,</span>
<span class="n">actions</span> <span class="o">=</span> <span class="p">[</span><span class="n">TranslationRemover</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="mi">200</span><span class="p">),</span>
<span class="n">BarostatReset</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="mi">20</span><span class="p">),</span>
<span class="n">VelocityScaler</span><span class="p">(</span><span class="n">temperature</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="mi">20</span><span class="p">)]</span>
<span class="o">+</span> <span class="n">output_actions</span><span class="p">)</span>
<span class="c"># Close the equilibration trajectory</span>
<span class="n">trajectory</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
</pre></div>
</td></tr></table></div>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar">
<div class="sphinxsidebarwrapper">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="../../_sources/Examples/MolecularDynamics/solvation.py.txt"
rel="nofollow">Show Source</a></li>
</ul>
<div id="searchbox" style="display: none">
<h3>Quick search</h3>
<form class="search" action="../../search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
<p class="searchtip" style="font-size: 90%">
Enter search terms or a module, class or function name.
</p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../../genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="../../py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li><a href="../../index.html">MMTK User Guide 2.7.7 documentation</a> »</li>
</ul>
</div>
<div class="footer">
© Copyright 2010, Konrad Hinsen.
Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.3.
</div>
</body>
</html>
|