1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>MMTK.Geometry — MMTK User Guide 2.7.7 documentation</title>
<link rel="stylesheet" href="../../_static/default.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../',
VERSION: '2.7.7',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<link rel="top" title="MMTK User Guide 2.7.7 documentation" href="../../index.html" />
<link rel="up" title="Module code" href="../index.html" />
</head>
<body>
<div class="related">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../../genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="../../py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li><a href="../../index.html">MMTK User Guide 2.7.7 documentation</a> »</li>
<li><a href="../index.html" accesskey="U">Module code</a> »</li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body">
<h1>Source code for MMTK.Geometry</h1><div class="highlight"><pre>
<span class="c"># This module defines some geometrical objects in 3D-space.</span>
<span class="c">#</span>
<span class="c"># Written by Konrad Hinsen</span>
<span class="c">#</span>
<span class="sd">"""</span>
<span class="sd">Elementary geometrical objects and operations</span>
<span class="sd">There are essentially two kinds of geometrical objects: shape objects</span>
<span class="sd">(spheres, planes, etc.), from which intersections can be calculated,</span>
<span class="sd">and lattice objects, which define a regular arrangements of points.</span>
<span class="sd">"""</span>
<span class="n">__docformat__</span> <span class="o">=</span> <span class="s">'restructuredtext'</span>
<span class="kn">from</span> <span class="nn">Scientific.Geometry</span> <span class="kn">import</span> <span class="n">Vector</span>
<span class="kn">from</span> <span class="nn">Scientific</span> <span class="kn">import</span> <span class="n">N</span>
<span class="c"># Error type</span>
<span class="k">class</span> <span class="nc">GeomError</span><span class="p">(</span><span class="ne">Exception</span><span class="p">):</span>
<span class="k">pass</span>
<span class="c"># Small number</span>
<span class="n">eps</span> <span class="o">=</span> <span class="mf">1.e-16</span>
<span class="c">#</span>
<span class="c"># The base class</span>
<span class="c">#</span>
<div class="viewcode-block" id="GeometricalObject3D"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.GeometricalObject3D">[docs]</a><span class="k">class</span> <span class="nc">GeometricalObject3D</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> 3D shape object</span>
<span class="sd"> This is an abstract base class. To create 3D objects,</span>
<span class="sd"> use one of its subclasses.</span>
<span class="sd"> """</span>
<div class="viewcode-block" id="GeometricalObject3D.intersectWith"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.GeometricalObject3D.intersectWith">[docs]</a> <span class="k">def</span> <span class="nf">intersectWith</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param other: another 3D object</span>
<span class="sd"> :returns: a 3D object that represents the intersection with other</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">__class__</span> <span class="o">></span> <span class="n">other</span><span class="o">.</span><span class="n">__class__</span><span class="p">:</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">other</span> <span class="o">=</span> <span class="n">other</span><span class="p">,</span> <span class="bp">self</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">f</span><span class="p">,</span> <span class="n">switch</span> <span class="o">=</span> <span class="n">_intersectTable</span><span class="p">[(</span><span class="bp">self</span><span class="o">.</span><span class="n">__class__</span><span class="p">,</span> <span class="n">other</span><span class="o">.</span><span class="n">__class__</span><span class="p">)]</span>
<span class="k">if</span> <span class="n">switch</span><span class="p">:</span>
<span class="k">return</span> <span class="n">f</span><span class="p">(</span><span class="n">other</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">f</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">KeyError</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">GeomError</span><span class="p">(</span><span class="s">"Can't calculate intersection of "</span> <span class="o">+</span>
<span class="bp">self</span><span class="o">.</span><span class="n">__class__</span><span class="o">.</span><span class="n">__name__</span> <span class="o">+</span> <span class="s">" with "</span> <span class="o">+</span>
<span class="n">other</span><span class="o">.</span><span class="n">__class__</span><span class="o">.</span><span class="n">__name__</span><span class="p">)</span>
</div>
<div class="viewcode-block" id="GeometricalObject3D.volume"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.GeometricalObject3D.volume">[docs]</a> <span class="k">def</span> <span class="nf">volume</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :returns: the volume of the object</span>
<span class="sd"> :rtype: float</span>
<span class="sd"> """</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span>
</div>
<div class="viewcode-block" id="GeometricalObject3D.hasPoint"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.GeometricalObject3D.hasPoint">[docs]</a> <span class="k">def</span> <span class="nf">hasPoint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param point: a point in 3D space</span>
<span class="sd"> :type point: Scientific.Geometry.Vector</span>
<span class="sd"> :returns: True of the point lies on the surface of the object</span>
<span class="sd"> :rtype: bool</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">distanceFrom</span><span class="p">(</span><span class="n">point</span><span class="p">)</span> <span class="o"><</span> <span class="n">eps</span>
<span class="c"># subclasses that enclose a volume should override this method</span>
<span class="c"># a return value of None indicates "don't know", "can't compute",</span>
<span class="c"># or "not implemented (yet)".</span></div>
<div class="viewcode-block" id="GeometricalObject3D.enclosesPoint"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.GeometricalObject3D.enclosesPoint">[docs]</a> <span class="k">def</span> <span class="nf">enclosesPoint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param point: a point in 3D space</span>
<span class="sd"> :type point: Scientific.Geometry.Vector</span>
<span class="sd"> :returns: True of the point is inside the volume of the object</span>
<span class="sd"> :rtype: bool</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="bp">None</span>
</div></div>
<span class="n">_intersectTable</span> <span class="o">=</span> <span class="p">{}</span>
<span class="c">#</span>
<span class="c"># Boxes</span>
<span class="c">#</span>
<div class="viewcode-block" id="Box"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.Box">[docs]</a><span class="k">class</span> <span class="nc">Box</span><span class="p">(</span><span class="n">GeometricalObject3D</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Rectangular box aligned with the coordinate axes</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">corner1</span><span class="p">,</span> <span class="n">corner2</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param corner1: one corner of the box</span>
<span class="sd"> :type corner1: Scientific.Geometry.Vector</span>
<span class="sd"> :param corner2: the diagonally opposite corner</span>
<span class="sd"> :type corner2: Scientific.Geometry.Vector</span>
<span class="sd"> """</span>
<span class="n">c1</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">minimum</span><span class="p">(</span><span class="n">corner1</span><span class="o">.</span><span class="n">array</span><span class="p">,</span> <span class="n">corner2</span><span class="o">.</span><span class="n">array</span><span class="p">)</span>
<span class="n">c2</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">maximum</span><span class="p">(</span><span class="n">corner1</span><span class="o">.</span><span class="n">array</span><span class="p">,</span> <span class="n">corner2</span><span class="o">.</span><span class="n">array</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">corners</span> <span class="o">=</span> <span class="n">c1</span><span class="p">,</span> <span class="n">c2</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s">'Box('</span> <span class="o">+</span> <span class="sb">`Vector(self.corners[0])`</span> <span class="o">+</span> <span class="s">', '</span> \
<span class="o">+</span> <span class="sb">`Vector(self.corners[1])`</span> <span class="o">+</span> <span class="s">')'</span>
<span class="n">__str__</span> <span class="o">=</span> <span class="n">__repr__</span>
<span class="k">def</span> <span class="nf">volume</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">c1</span><span class="p">,</span> <span class="n">c2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">corners</span>
<span class="k">return</span> <span class="n">N</span><span class="o">.</span><span class="n">multiply</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">c2</span><span class="o">-</span><span class="n">c1</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">hasPoint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="n">c1</span><span class="p">,</span> <span class="n">c2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">corners</span>
<span class="n">min1</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">minimum</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">N</span><span class="o">.</span><span class="n">fabs</span><span class="p">(</span><span class="n">point</span><span class="o">.</span><span class="n">array</span><span class="o">-</span><span class="n">c1</span><span class="p">))</span>
<span class="n">min2</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">minimum</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">N</span><span class="o">.</span><span class="n">fabs</span><span class="p">(</span><span class="n">point</span><span class="o">.</span><span class="n">array</span><span class="o">-</span><span class="n">c2</span><span class="p">))</span>
<span class="k">return</span> <span class="n">min1</span> <span class="o"><</span> <span class="n">eps</span> <span class="ow">or</span> <span class="n">min2</span> <span class="o"><</span> <span class="n">eps</span>
<span class="k">def</span> <span class="nf">enclosesPoint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="n">c1</span><span class="p">,</span> <span class="n">c2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">corners</span>
<span class="n">out1</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">logical_or</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">N</span><span class="o">.</span><span class="n">less</span><span class="p">(</span><span class="n">point</span><span class="o">.</span><span class="n">array</span><span class="o">-</span><span class="n">c1</span><span class="p">,</span> <span class="mi">0</span><span class="p">))</span>
<span class="n">out2</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">logical_or</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">N</span><span class="o">.</span><span class="n">less_equal</span><span class="p">(</span><span class="n">c2</span><span class="o">-</span><span class="n">point</span><span class="o">.</span><span class="n">array</span><span class="p">,</span> <span class="mi">0</span><span class="p">))</span>
<span class="k">return</span> <span class="ow">not</span> <span class="p">(</span><span class="n">out1</span> <span class="ow">or</span> <span class="n">out2</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">cornerPoints</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="p">(</span><span class="n">c1x</span><span class="p">,</span> <span class="n">c1y</span><span class="p">,</span> <span class="n">c1z</span><span class="p">),</span> <span class="p">(</span><span class="n">c2x</span><span class="p">,</span> <span class="n">c2y</span><span class="p">,</span> <span class="n">c2z</span><span class="p">)</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">corners</span>
<span class="k">return</span> <span class="p">[</span><span class="n">Vector</span><span class="p">(</span><span class="n">c1x</span><span class="p">,</span> <span class="n">c1y</span><span class="p">,</span> <span class="n">c1z</span><span class="p">),</span>
<span class="n">Vector</span><span class="p">(</span><span class="n">c1x</span><span class="p">,</span> <span class="n">c1y</span><span class="p">,</span> <span class="n">c2z</span><span class="p">),</span>
<span class="n">Vector</span><span class="p">(</span><span class="n">c1x</span><span class="p">,</span> <span class="n">c2y</span><span class="p">,</span> <span class="n">c1z</span><span class="p">),</span>
<span class="n">Vector</span><span class="p">(</span><span class="n">c2x</span><span class="p">,</span> <span class="n">c1y</span><span class="p">,</span> <span class="n">c1z</span><span class="p">),</span>
<span class="n">Vector</span><span class="p">(</span><span class="n">c2x</span><span class="p">,</span> <span class="n">c2y</span><span class="p">,</span> <span class="n">c1z</span><span class="p">),</span>
<span class="n">Vector</span><span class="p">(</span><span class="n">c2x</span><span class="p">,</span> <span class="n">c1y</span><span class="p">,</span> <span class="n">c2z</span><span class="p">),</span>
<span class="n">Vector</span><span class="p">(</span><span class="n">c1x</span><span class="p">,</span> <span class="n">c2y</span><span class="p">,</span> <span class="n">c2z</span><span class="p">),</span>
<span class="n">Vector</span><span class="p">(</span><span class="n">c2x</span><span class="p">,</span> <span class="n">c2y</span><span class="p">,</span> <span class="n">c2z</span><span class="p">)]</span>
<span class="c">#</span>
<span class="c"># Spheres</span>
<span class="c">#</span></div>
<div class="viewcode-block" id="Sphere"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.Sphere">[docs]</a><span class="k">class</span> <span class="nc">Sphere</span><span class="p">(</span><span class="n">GeometricalObject3D</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Sphere</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">center</span><span class="p">,</span> <span class="n">radius</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param center: the center of the sphere</span>
<span class="sd"> :type center: Scientific.Geometry.Vector</span>
<span class="sd"> :param radius: the radius of the sphere</span>
<span class="sd"> :type radius: float</span>
<span class="sd"> """</span>
<span class="bp">self</span><span class="o">.</span><span class="n">center</span> <span class="o">=</span> <span class="n">center</span>
<span class="bp">self</span><span class="o">.</span><span class="n">radius</span> <span class="o">=</span> <span class="n">radius</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s">'Sphere('</span> <span class="o">+</span> <span class="sb">`self.center`</span> <span class="o">+</span> <span class="s">', '</span> <span class="o">+</span> <span class="sb">`self.radius`</span> <span class="o">+</span> <span class="s">')'</span>
<span class="n">__str__</span> <span class="o">=</span> <span class="n">__repr__</span>
<span class="k">def</span> <span class="nf">volume</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="p">(</span><span class="mf">4.</span><span class="o">*</span><span class="n">N</span><span class="o">.</span><span class="n">pi</span><span class="o">/</span><span class="mf">3.</span><span class="p">)</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">radius</span><span class="o">**</span><span class="mi">3</span>
<span class="k">def</span> <span class="nf">hasPoint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="k">return</span> <span class="n">N</span><span class="o">.</span><span class="n">fabs</span><span class="p">((</span><span class="n">point</span><span class="o">-</span><span class="bp">self</span><span class="o">.</span><span class="n">center</span><span class="p">)</span><span class="o">.</span><span class="n">length</span><span class="p">()</span><span class="o">-</span><span class="bp">self</span><span class="o">.</span><span class="n">radius</span><span class="p">)</span> <span class="o"><</span> <span class="n">eps</span>
<span class="k">def</span> <span class="nf">enclosesPoint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="k">return</span> <span class="p">(</span><span class="n">point</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">center</span><span class="p">)</span><span class="o">.</span><span class="n">length</span><span class="p">()</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">radius</span>
<span class="c">#</span>
<span class="c"># Cylinders</span>
<span class="c">#</span></div>
<div class="viewcode-block" id="Cylinder"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.Cylinder">[docs]</a><span class="k">class</span> <span class="nc">Cylinder</span><span class="p">(</span><span class="n">GeometricalObject3D</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Cylinder</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">center1</span><span class="p">,</span> <span class="n">center2</span><span class="p">,</span> <span class="n">radius</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param center1: the center of the bottom circle</span>
<span class="sd"> :type center1: Scientific.Geometry.Vector</span>
<span class="sd"> :param center2: the center of the top circle</span>
<span class="sd"> :type center2: Scientific.Geometry.Vector</span>
<span class="sd"> :param radius: the radius of the cylinder</span>
<span class="sd"> :type radius: float</span>
<span class="sd"> """</span>
<span class="bp">self</span><span class="o">.</span><span class="n">center1</span> <span class="o">=</span> <span class="n">center1</span> <span class="c"># center of base</span>
<span class="bp">self</span><span class="o">.</span><span class="n">center2</span> <span class="o">=</span> <span class="n">center2</span> <span class="c"># center of top</span>
<span class="bp">self</span><span class="o">.</span><span class="n">radius</span> <span class="o">=</span> <span class="n">radius</span>
<span class="bp">self</span><span class="o">.</span><span class="n">height</span> <span class="o">=</span> <span class="p">(</span><span class="n">center2</span><span class="o">-</span><span class="n">center1</span><span class="p">)</span><span class="o">.</span><span class="n">length</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">volume</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="n">N</span><span class="o">.</span><span class="n">pi</span><span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">radius</span><span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">radius</span><span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">height</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s">'Cylinder('</span> <span class="o">+</span> <span class="sb">`self.center1`</span> <span class="o">+</span> <span class="s">', '</span> <span class="o">+</span> <span class="sb">`self.center2`</span> <span class="o">+</span> \
<span class="s">', '</span> <span class="o">+</span> <span class="sb">`self.radius`</span> <span class="o">+</span> <span class="s">')'</span>
<span class="n">__str__</span> <span class="o">=</span> <span class="n">__repr__</span>
<span class="k">def</span> <span class="nf">hasPoint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="n">center_line</span> <span class="o">=</span> <span class="n">LineSegment</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">center1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">center2</span><span class="p">)</span>
<span class="n">pt</span> <span class="o">=</span> <span class="n">center_line</span><span class="o">.</span><span class="n">projectionOf</span><span class="p">(</span><span class="n">point</span><span class="p">)</span>
<span class="k">if</span> <span class="n">pt</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="k">return</span> <span class="mi">0</span>
<span class="k">return</span> <span class="n">N</span><span class="o">.</span><span class="n">fabs</span><span class="p">((</span><span class="n">point</span> <span class="o">-</span> <span class="n">pt</span><span class="p">)</span><span class="o">.</span><span class="n">length</span><span class="p">()</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">radius</span><span class="p">)</span> <span class="o"><</span> <span class="n">eps</span>
<span class="k">def</span> <span class="nf">enclosesPoint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="n">center_line</span> <span class="o">=</span> <span class="n">LineSegment</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">center1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">center2</span><span class="p">)</span>
<span class="n">pt</span> <span class="o">=</span> <span class="n">center_line</span><span class="o">.</span><span class="n">projectionOf</span><span class="p">(</span><span class="n">point</span><span class="p">)</span>
<span class="k">if</span> <span class="n">pt</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="k">return</span> <span class="mi">0</span>
<span class="k">return</span> <span class="p">(</span><span class="n">point</span> <span class="o">-</span> <span class="n">pt</span><span class="p">)</span><span class="o">.</span><span class="n">length</span><span class="p">()</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">radius</span>
<span class="c">#</span>
<span class="c"># Planes</span>
<span class="c">#</span></div>
<div class="viewcode-block" id="Plane"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.Plane">[docs]</a><span class="k">class</span> <span class="nc">Plane</span><span class="p">(</span><span class="n">GeometricalObject3D</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> 2D plane in 3D space</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param args: three points (of type Scientific.Geometry.Vector)</span>
<span class="sd"> that are not collinear, or a point in the plane and</span>
<span class="sd"> the normal vector of the plane</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">args</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span> <span class="c"># point, normal</span>
<span class="bp">self</span><span class="o">.</span><span class="n">normal</span> <span class="o">=</span> <span class="n">args</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">normal</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">distance_from_zero</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">normal</span><span class="o">*</span><span class="n">args</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span> <span class="c"># three points</span>
<span class="n">v1</span> <span class="o">=</span> <span class="n">args</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">-</span><span class="n">args</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">v2</span> <span class="o">=</span> <span class="n">args</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">-</span><span class="n">args</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">normal</span> <span class="o">=</span> <span class="p">(</span><span class="n">v1</span><span class="o">.</span><span class="n">cross</span><span class="p">(</span><span class="n">v2</span><span class="p">))</span><span class="o">.</span><span class="n">normal</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">distance_from_zero</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">normal</span><span class="o">*</span><span class="n">args</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s">'Plane('</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">normal</span><span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">distance_from_zero</span><span class="p">)</span> <span class="o">+</span> \
<span class="s">', '</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">normal</span><span class="p">)</span> <span class="o">+</span> <span class="s">')'</span>
<span class="n">__str__</span> <span class="o">=</span> <span class="n">__repr__</span>
<span class="k">def</span> <span class="nf">distanceFrom</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="k">return</span> <span class="nb">abs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">normal</span><span class="o">*</span><span class="n">point</span><span class="o">-</span><span class="bp">self</span><span class="o">.</span><span class="n">distance_from_zero</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">projectionOf</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="k">return</span> <span class="n">point</span> <span class="o">-</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">normal</span><span class="o">*</span><span class="n">point</span><span class="o">-</span><span class="bp">self</span><span class="o">.</span><span class="n">distance_from_zero</span><span class="p">)</span><span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">normal</span>
<span class="k">def</span> <span class="nf">rotate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">axis</span><span class="p">,</span> <span class="n">angle</span><span class="p">):</span>
<span class="n">point</span> <span class="o">=</span> <span class="n">rotatePoint</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">distance_from_zero</span><span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">normal</span><span class="p">,</span> <span class="n">axis</span><span class="p">,</span> <span class="n">angle</span><span class="p">)</span>
<span class="n">normal</span> <span class="o">=</span> <span class="n">rotateDirection</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">normal</span><span class="p">,</span> <span class="n">axis</span><span class="p">,</span> <span class="n">angle</span><span class="p">)</span>
<span class="k">return</span> <span class="n">Plane</span><span class="p">(</span><span class="n">point</span><span class="p">,</span> <span class="n">normal</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">volume</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="mf">0.</span>
<span class="c">#</span>
<span class="c"># Infinite cones</span>
<span class="c">#</span></div>
<div class="viewcode-block" id="Cone"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.Cone">[docs]</a><span class="k">class</span> <span class="nc">Cone</span><span class="p">(</span><span class="n">GeometricalObject3D</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Cone</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">center</span><span class="p">,</span> <span class="n">axis</span><span class="p">,</span> <span class="n">angle</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param center: the center (tip) of the cone</span>
<span class="sd"> :type center: Scientific.Geometry.Vector</span>
<span class="sd"> :param axis: the direction of the axis of rotational symmetry</span>
<span class="sd"> :type axis: Scientific.Geometry.Vector</span>
<span class="sd"> :param angle: the angle between any straight line on the cone</span>
<span class="sd"> surface and the axis of symmetry</span>
<span class="sd"> :type angle: float</span>
<span class="sd"> """</span>
<span class="bp">self</span><span class="o">.</span><span class="n">center</span> <span class="o">=</span> <span class="n">center</span>
<span class="bp">self</span><span class="o">.</span><span class="n">axis</span> <span class="o">=</span> <span class="n">axis</span><span class="o">.</span><span class="n">normal</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">angle</span> <span class="o">=</span> <span class="n">angle</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s">'Cone('</span> <span class="o">+</span> <span class="sb">`self.center`</span> <span class="o">+</span> <span class="s">', '</span> <span class="o">+</span> <span class="sb">`self.axis`</span> <span class="o">+</span> <span class="s">','</span> <span class="o">+</span> \
<span class="sb">`self.angle`</span> <span class="o">+</span> <span class="s">')'</span>
<span class="n">__str__</span> <span class="o">=</span> <span class="n">__repr__</span>
<span class="k">def</span> <span class="nf">volume</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">None</span>
<span class="c">#</span>
<span class="c"># Circles</span>
<span class="c">#</span></div>
<div class="viewcode-block" id="Circle"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.Circle">[docs]</a><span class="k">class</span> <span class="nc">Circle</span><span class="p">(</span><span class="n">GeometricalObject3D</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> 2D circle in 3D space</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">center</span><span class="p">,</span> <span class="n">normal</span><span class="p">,</span> <span class="n">radius</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param center: the center of the circle</span>
<span class="sd"> :type center: Scientific.Geometry.Vector</span>
<span class="sd"> :param normal: the normal vector of the circle's plane</span>
<span class="sd"> :type normal: Scientific.Geometry.Vector</span>
<span class="sd"> :param radius: the radius of the circle</span>
<span class="sd"> :type radius: float</span>
<span class="sd"> """</span>
<span class="bp">self</span><span class="o">.</span><span class="n">center</span> <span class="o">=</span> <span class="n">center</span>
<span class="bp">self</span><span class="o">.</span><span class="n">normal</span> <span class="o">=</span> <span class="n">normal</span>
<span class="bp">self</span><span class="o">.</span><span class="n">radius</span> <span class="o">=</span> <span class="n">radius</span>
<span class="k">def</span> <span class="nf">planeOf</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="n">Plane</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">center</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">normal</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s">'Circle('</span> <span class="o">+</span> <span class="sb">`self.center`</span> <span class="o">+</span> <span class="s">', '</span> <span class="o">+</span> <span class="sb">`self.normal`</span> <span class="o">+</span> \
<span class="s">', '</span> <span class="o">+</span> <span class="sb">`self.radius`</span> <span class="o">+</span> <span class="s">')'</span>
<span class="n">__str__</span> <span class="o">=</span> <span class="n">__repr__</span>
<span class="k">def</span> <span class="nf">volume</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="mf">0.</span>
<span class="k">def</span> <span class="nf">distanceFrom</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="n">plane</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">planeOf</span><span class="p">()</span>
<span class="n">project_on_plane</span> <span class="o">=</span> <span class="n">plane</span><span class="o">.</span><span class="n">projectionOf</span><span class="p">(</span><span class="n">point</span><span class="p">)</span>
<span class="n">center_to_projection</span> <span class="o">=</span> <span class="n">project_on_plane</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">center</span>
<span class="k">if</span> <span class="n">center_to_projection</span><span class="o">.</span><span class="n">length</span><span class="p">()</span> <span class="o"><</span> <span class="n">eps</span><span class="p">:</span>
<span class="k">return</span> <span class="mi">0</span>
<span class="n">closest_point</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">center</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">radius</span><span class="o">*</span><span class="n">center_to_projection</span><span class="o">.</span><span class="n">normal</span><span class="p">()</span>
<span class="k">return</span> <span class="p">(</span><span class="n">point</span> <span class="o">-</span> <span class="n">closest_point</span><span class="p">)</span><span class="o">.</span><span class="n">length</span><span class="p">()</span>
<span class="c">#</span>
<span class="c"># Lines</span>
<span class="c">#</span></div>
<div class="viewcode-block" id="Line"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.Line">[docs]</a><span class="k">class</span> <span class="nc">Line</span><span class="p">(</span><span class="n">GeometricalObject3D</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Line</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">,</span> <span class="n">direction</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param point: any point on the line</span>
<span class="sd"> :type point: Scientific.Geometry.Vector</span>
<span class="sd"> :param direction: the direction of the line</span>
<span class="sd"> :type direction: Scientific.Geometry.Vector</span>
<span class="sd"> """</span>
<span class="bp">self</span><span class="o">.</span><span class="n">point</span> <span class="o">=</span> <span class="n">point</span>
<span class="bp">self</span><span class="o">.</span><span class="n">direction</span> <span class="o">=</span> <span class="n">direction</span><span class="o">.</span><span class="n">normal</span><span class="p">()</span>
<div class="viewcode-block" id="Line.distanceFrom"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.Line.distanceFrom">[docs]</a> <span class="k">def</span> <span class="nf">distanceFrom</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param point: a point in space</span>
<span class="sd"> :type point: Scientific.Geometry.Vector</span>
<span class="sd"> :returns: the smallest distance of the point from the line</span>
<span class="sd"> :rtype: float</span>
<span class="sd"> """</span>
<span class="n">d</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">point</span><span class="o">-</span><span class="n">point</span>
<span class="n">d</span> <span class="o">=</span> <span class="n">d</span> <span class="o">-</span> <span class="p">(</span><span class="n">d</span><span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">direction</span><span class="p">)</span><span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">direction</span>
<span class="k">return</span> <span class="n">d</span><span class="o">.</span><span class="n">length</span><span class="p">()</span>
</div>
<div class="viewcode-block" id="Line.projectionOf"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.Line.projectionOf">[docs]</a> <span class="k">def</span> <span class="nf">projectionOf</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param point: a point in space</span>
<span class="sd"> :type point: Scientific.Geometry.Vector</span>
<span class="sd"> :returns: the orthogonal projection of the point onto the line</span>
<span class="sd"> :rtype: Scientific.Geometry.Vector</span>
<span class="sd"> """</span>
<span class="n">d</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">point</span><span class="o">-</span><span class="n">point</span>
<span class="n">d</span> <span class="o">=</span> <span class="n">d</span> <span class="o">-</span> <span class="p">(</span><span class="n">d</span><span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">direction</span><span class="p">)</span><span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">direction</span>
<span class="k">return</span> <span class="n">point</span><span class="o">+</span><span class="n">d</span>
</div>
<div class="viewcode-block" id="Line.perpendicularVector"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.Line.perpendicularVector">[docs]</a> <span class="k">def</span> <span class="nf">perpendicularVector</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">plane</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param plane: a plane</span>
<span class="sd"> :type plane: Plane</span>
<span class="sd"> :returns: a vector in the plane perpendicular to the line</span>
<span class="sd"> :rtype: Scientific.Geometry.Vector</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">direction</span><span class="o">.</span><span class="n">cross</span><span class="p">(</span><span class="n">plane</span><span class="o">.</span><span class="n">normal</span><span class="p">)</span>
</div>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s">'Line('</span> <span class="o">+</span> <span class="sb">`self.point`</span> <span class="o">+</span> <span class="s">', '</span> <span class="o">+</span> <span class="sb">`self.direction`</span> <span class="o">+</span> <span class="s">')'</span>
<span class="n">__str__</span> <span class="o">=</span> <span class="n">__repr__</span>
<span class="k">def</span> <span class="nf">volume</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="mf">0.</span>
</div>
<span class="k">class</span> <span class="nc">LineSegment</span><span class="p">(</span><span class="n">Line</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point1</span><span class="p">,</span> <span class="n">point2</span><span class="p">):</span>
<span class="n">Line</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point1</span><span class="p">,</span> <span class="n">point2</span> <span class="o">-</span> <span class="n">point1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">point2</span> <span class="o">=</span> <span class="n">point2</span>
<span class="k">def</span> <span class="nf">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s">'LineSegment('</span> <span class="o">+</span> <span class="sb">`self.point`</span> <span class="o">+</span> <span class="s">', '</span> <span class="o">+</span> <span class="sb">`self.point2`</span> <span class="o">+</span> <span class="s">')'</span>
<span class="n">__str__</span> <span class="o">=</span> <span class="n">__repr__</span>
<span class="k">def</span> <span class="nf">distanceFrom</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="n">pt</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">projectionOf</span><span class="p">(</span><span class="n">point</span><span class="p">)</span>
<span class="k">if</span> <span class="n">pt</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">:</span>
<span class="k">return</span> <span class="p">(</span><span class="n">pt</span> <span class="o">-</span> <span class="n">point</span><span class="p">)</span><span class="o">.</span><span class="n">length</span><span class="p">()</span>
<span class="n">d1</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">point</span> <span class="o">-</span> <span class="n">point</span><span class="p">)</span><span class="o">.</span><span class="n">length</span><span class="p">()</span>
<span class="n">d2</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">point2</span> <span class="o">-</span> <span class="n">point</span><span class="p">)</span><span class="o">.</span><span class="n">length</span><span class="p">()</span>
<span class="k">return</span> <span class="nb">min</span><span class="p">(</span><span class="n">d1</span><span class="p">,</span> <span class="n">d2</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">projectionOf</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">point</span><span class="p">):</span>
<span class="n">d</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">point</span><span class="o">-</span><span class="n">point</span>
<span class="n">d</span> <span class="o">=</span> <span class="n">d</span> <span class="o">-</span> <span class="p">(</span><span class="n">d</span><span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">direction</span><span class="p">)</span><span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">direction</span>
<span class="n">pt</span> <span class="o">=</span> <span class="n">point</span><span class="o">+</span><span class="n">d</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">isWithin</span><span class="p">(</span><span class="n">pt</span><span class="p">):</span>
<span class="k">return</span> <span class="n">pt</span>
<span class="k">return</span> <span class="bp">None</span>
<span class="k">def</span> <span class="nf">isWithin</span><span class="p">(</span><span class="n">point</span><span class="p">):</span>
<span class="n">v1</span> <span class="o">=</span> <span class="n">point</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">point</span>
<span class="n">v2</span> <span class="o">=</span> <span class="n">point</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">point2</span>
<span class="k">if</span> <span class="nb">abs</span><span class="p">(</span><span class="n">v1</span> <span class="o">*</span> <span class="n">v2</span><span class="p">)</span> <span class="o"><</span> <span class="n">eps</span><span class="p">:</span>
<span class="k">return</span> <span class="mi">0</span>
<span class="k">return</span> <span class="ow">not</span> <span class="n">Same_Dir</span><span class="p">(</span><span class="n">v1</span><span class="p">,</span> <span class="n">v2</span><span class="p">)</span>
<span class="c">#</span>
<span class="c"># Intersection calculations</span>
<span class="c">#</span>
<span class="k">def</span> <span class="nf">_addIntersectFunction</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="n">class1</span><span class="p">,</span> <span class="n">class2</span><span class="p">):</span>
<span class="n">switch</span> <span class="o">=</span> <span class="n">class1</span> <span class="o">></span> <span class="n">class2</span>
<span class="k">if</span> <span class="n">switch</span><span class="p">:</span>
<span class="n">class1</span><span class="p">,</span> <span class="n">class2</span> <span class="o">=</span> <span class="n">class2</span><span class="p">,</span> <span class="n">class1</span>
<span class="n">_intersectTable</span><span class="p">[(</span><span class="n">class1</span><span class="p">,</span> <span class="n">class2</span><span class="p">)]</span> <span class="o">=</span> <span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="n">switch</span><span class="p">)</span>
<span class="c"># Box with box</span>
<span class="k">def</span> <span class="nf">_intersectBoxBox</span><span class="p">(</span><span class="n">box1</span><span class="p">,</span> <span class="n">box2</span><span class="p">):</span>
<span class="n">c1</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">maximum</span><span class="p">(</span><span class="n">box1</span><span class="o">.</span><span class="n">corners</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">box2</span><span class="o">.</span><span class="n">corners</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="n">c2</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">minimum</span><span class="p">(</span><span class="n">box1</span><span class="o">.</span><span class="n">corners</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">box2</span><span class="o">.</span><span class="n">corners</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="k">if</span> <span class="n">N</span><span class="o">.</span><span class="n">logical_or</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">N</span><span class="o">.</span><span class="n">greater_equal</span><span class="p">(</span><span class="n">c1</span><span class="p">,</span> <span class="n">c2</span><span class="p">)):</span>
<span class="k">return</span> <span class="bp">None</span>
<span class="k">return</span> <span class="n">Box</span><span class="p">(</span><span class="n">Vector</span><span class="p">(</span><span class="n">c1</span><span class="p">),</span> <span class="n">Vector</span><span class="p">(</span><span class="n">c2</span><span class="p">))</span>
<span class="n">_addIntersectFunction</span><span class="p">(</span><span class="n">_intersectBoxBox</span><span class="p">,</span> <span class="n">Box</span><span class="p">,</span> <span class="n">Box</span><span class="p">)</span>
<span class="c"># Sphere with sphere</span>
<span class="k">def</span> <span class="nf">_intersectSphereSphere</span><span class="p">(</span><span class="n">sphere1</span><span class="p">,</span> <span class="n">sphere2</span><span class="p">):</span>
<span class="n">r1r2</span> <span class="o">=</span> <span class="n">sphere2</span><span class="o">.</span><span class="n">center</span><span class="o">-</span><span class="n">sphere1</span><span class="o">.</span><span class="n">center</span>
<span class="n">d</span> <span class="o">=</span> <span class="n">r1r2</span><span class="o">.</span><span class="n">length</span><span class="p">()</span>
<span class="k">if</span> <span class="n">d</span> <span class="o">></span> <span class="n">sphere1</span><span class="o">.</span><span class="n">radius</span><span class="o">+</span><span class="n">sphere2</span><span class="o">.</span><span class="n">radius</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">None</span>
<span class="k">if</span> <span class="n">d</span><span class="o">+</span><span class="nb">min</span><span class="p">(</span><span class="n">sphere1</span><span class="o">.</span><span class="n">radius</span><span class="p">,</span> <span class="n">sphere2</span><span class="o">.</span><span class="n">radius</span><span class="p">)</span> <span class="o"><</span> \
<span class="nb">max</span><span class="p">(</span><span class="n">sphere1</span><span class="o">.</span><span class="n">radius</span><span class="p">,</span> <span class="n">sphere2</span><span class="o">.</span><span class="n">radius</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">None</span>
<span class="n">x</span> <span class="o">=</span> <span class="mf">0.5</span><span class="o">*</span><span class="p">(</span><span class="n">d</span><span class="o">**</span><span class="mi">2</span> <span class="o">+</span> <span class="n">sphere1</span><span class="o">.</span><span class="n">radius</span><span class="o">**</span><span class="mi">2</span> <span class="o">-</span> <span class="n">sphere2</span><span class="o">.</span><span class="n">radius</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">/</span><span class="n">d</span>
<span class="n">h</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">sphere1</span><span class="o">.</span><span class="n">radius</span><span class="o">**</span><span class="mi">2</span><span class="o">-</span><span class="n">x</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span>
<span class="n">normal</span> <span class="o">=</span> <span class="n">r1r2</span><span class="o">.</span><span class="n">normal</span><span class="p">()</span>
<span class="k">return</span> <span class="n">Circle</span><span class="p">(</span><span class="n">sphere1</span><span class="o">.</span><span class="n">center</span> <span class="o">+</span> <span class="n">x</span><span class="o">*</span><span class="n">normal</span><span class="p">,</span> <span class="n">normal</span><span class="p">,</span> <span class="n">h</span><span class="p">)</span>
<span class="n">_addIntersectFunction</span><span class="p">(</span><span class="n">_intersectSphereSphere</span><span class="p">,</span> <span class="n">Sphere</span><span class="p">,</span> <span class="n">Sphere</span><span class="p">)</span>
<span class="c"># Sphere with cone</span>
<span class="k">def</span> <span class="nf">_intersectSphereCone</span><span class="p">(</span><span class="n">sphere</span><span class="p">,</span> <span class="n">cone</span><span class="p">):</span>
<span class="k">if</span> <span class="n">sphere</span><span class="o">.</span><span class="n">center</span> <span class="o">!=</span> <span class="n">cone</span><span class="o">.</span><span class="n">center</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">GeomError</span><span class="p">(</span><span class="s">"Not yet implemented"</span><span class="p">)</span>
<span class="n">from_center</span> <span class="o">=</span> <span class="n">sphere</span><span class="o">.</span><span class="n">radius</span><span class="o">*</span><span class="n">N</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="n">cone</span><span class="o">.</span><span class="n">angle</span><span class="p">)</span>
<span class="n">radius</span> <span class="o">=</span> <span class="n">sphere</span><span class="o">.</span><span class="n">radius</span><span class="o">*</span><span class="n">N</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">cone</span><span class="o">.</span><span class="n">angle</span><span class="p">)</span>
<span class="k">return</span> <span class="n">Circle</span><span class="p">(</span><span class="n">cone</span><span class="o">.</span><span class="n">center</span><span class="o">+</span><span class="n">from_center</span><span class="o">*</span><span class="n">cone</span><span class="o">.</span><span class="n">axis</span><span class="p">,</span> <span class="n">cone</span><span class="o">.</span><span class="n">axis</span><span class="p">,</span> <span class="n">radius</span><span class="p">)</span>
<span class="n">_addIntersectFunction</span><span class="p">(</span><span class="n">_intersectSphereCone</span><span class="p">,</span> <span class="n">Sphere</span><span class="p">,</span> <span class="n">Cone</span><span class="p">)</span>
<span class="c"># Plane with plane</span>
<span class="k">def</span> <span class="nf">_intersectPlanePlane</span><span class="p">(</span><span class="n">plane1</span><span class="p">,</span> <span class="n">plane2</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">abs</span><span class="p">(</span><span class="nb">abs</span><span class="p">(</span><span class="n">plane1</span><span class="o">.</span><span class="n">normal</span><span class="o">*</span><span class="n">plane2</span><span class="o">.</span><span class="n">normal</span><span class="p">)</span><span class="o">-</span><span class="mf">1.</span><span class="p">)</span> <span class="o"><</span> <span class="n">eps</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">abs</span><span class="p">(</span><span class="n">plane1</span><span class="o">.</span><span class="n">distance_from_zero</span><span class="o">-</span><span class="n">plane2</span><span class="o">.</span><span class="n">distance_from_zero</span><span class="p">)</span> <span class="o"><</span> <span class="n">eps</span><span class="p">:</span>
<span class="k">return</span> <span class="n">plane1</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">None</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">direction</span> <span class="o">=</span> <span class="n">plane1</span><span class="o">.</span><span class="n">normal</span><span class="o">.</span><span class="n">cross</span><span class="p">(</span><span class="n">plane2</span><span class="o">.</span><span class="n">normal</span><span class="p">)</span>
<span class="n">point_in_1</span> <span class="o">=</span> <span class="n">plane1</span><span class="o">.</span><span class="n">distance_from_zero</span><span class="o">*</span><span class="n">plane1</span><span class="o">.</span><span class="n">normal</span>
<span class="n">point_in_both</span> <span class="o">=</span> <span class="n">point_in_1</span> <span class="o">-</span> <span class="p">(</span><span class="n">point_in_1</span><span class="o">*</span><span class="n">plane2</span><span class="o">.</span><span class="n">normal</span> <span class="o">-</span>
<span class="n">plane2</span><span class="o">.</span><span class="n">distance_from_zero</span><span class="p">)</span><span class="o">*</span><span class="n">plane2</span><span class="o">.</span><span class="n">normal</span>
<span class="k">return</span> <span class="n">Line</span><span class="p">(</span><span class="n">point_in_both</span><span class="p">,</span> <span class="n">direction</span><span class="p">)</span>
<span class="n">_addIntersectFunction</span><span class="p">(</span><span class="n">_intersectPlanePlane</span><span class="p">,</span> <span class="n">Plane</span><span class="p">,</span> <span class="n">Plane</span><span class="p">)</span>
<span class="c"># Circle with plane</span>
<span class="k">def</span> <span class="nf">_intersectCirclePlane</span><span class="p">(</span><span class="n">circle</span><span class="p">,</span> <span class="n">plane</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">abs</span><span class="p">(</span><span class="nb">abs</span><span class="p">(</span><span class="n">circle</span><span class="o">.</span><span class="n">normal</span><span class="o">*</span><span class="n">plane</span><span class="o">.</span><span class="n">normal</span><span class="p">)</span><span class="o">-</span><span class="mf">1.</span><span class="p">)</span> <span class="o"><</span> <span class="n">eps</span><span class="p">:</span>
<span class="k">if</span> <span class="n">plane</span><span class="o">.</span><span class="n">hasPoint</span><span class="p">(</span><span class="n">circle</span><span class="o">.</span><span class="n">center</span><span class="p">):</span>
<span class="k">return</span> <span class="n">circle</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">None</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">line</span> <span class="o">=</span> <span class="n">plane</span><span class="o">.</span><span class="n">intersectWith</span><span class="p">(</span><span class="n">Plane</span><span class="p">(</span><span class="n">circle</span><span class="o">.</span><span class="n">center</span><span class="p">,</span> <span class="n">circle</span><span class="o">.</span><span class="n">normal</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">line</span><span class="o">.</span><span class="n">distanceFrom</span><span class="p">(</span><span class="n">circle</span><span class="o">.</span><span class="n">center</span><span class="p">)</span>
<span class="k">if</span> <span class="n">x</span> <span class="o">></span> <span class="n">circle</span><span class="o">.</span><span class="n">radius</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">None</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">angle</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">arccos</span><span class="p">(</span><span class="n">x</span><span class="o">/</span><span class="n">circle</span><span class="o">.</span><span class="n">radius</span><span class="p">)</span>
<span class="n">along_line</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">angle</span><span class="p">)</span><span class="o">*</span><span class="n">circle</span><span class="o">.</span><span class="n">radius</span>
<span class="n">normal</span> <span class="o">=</span> <span class="n">circle</span><span class="o">.</span><span class="n">normal</span><span class="o">.</span><span class="n">cross</span><span class="p">(</span><span class="n">line</span><span class="o">.</span><span class="n">direction</span><span class="p">)</span>
<span class="k">if</span> <span class="n">line</span><span class="o">.</span><span class="n">distanceFrom</span><span class="p">(</span><span class="n">circle</span><span class="o">.</span><span class="n">center</span><span class="o">+</span><span class="n">normal</span><span class="p">)</span> <span class="o">></span> <span class="n">x</span><span class="p">:</span>
<span class="n">normal</span> <span class="o">=</span> <span class="o">-</span><span class="n">normal</span>
<span class="k">return</span> <span class="p">(</span><span class="n">circle</span><span class="o">.</span><span class="n">center</span><span class="o">+</span><span class="n">x</span><span class="o">*</span><span class="n">normal</span><span class="o">-</span><span class="n">along_line</span><span class="o">*</span><span class="n">line</span><span class="o">.</span><span class="n">direction</span><span class="p">,</span>
<span class="n">circle</span><span class="o">.</span><span class="n">center</span><span class="o">+</span><span class="n">x</span><span class="o">*</span><span class="n">normal</span><span class="o">+</span><span class="n">along_line</span><span class="o">*</span><span class="n">line</span><span class="o">.</span><span class="n">direction</span><span class="p">)</span>
<span class="n">_addIntersectFunction</span><span class="p">(</span><span class="n">_intersectCirclePlane</span><span class="p">,</span> <span class="n">Circle</span><span class="p">,</span> <span class="n">Plane</span><span class="p">)</span>
<span class="c">#</span>
<span class="c"># Rotation</span>
<span class="c">#</span>
<span class="k">def</span> <span class="nf">rotateDirection</span><span class="p">(</span><span class="n">vector</span><span class="p">,</span> <span class="n">axis</span><span class="p">,</span> <span class="n">angle</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">angle</span><span class="p">)</span>
<span class="n">c</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="n">angle</span><span class="p">)</span>
<span class="n">c1</span> <span class="o">=</span> <span class="mi">1</span><span class="o">-</span><span class="n">c</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">axis</span> <span class="o">=</span> <span class="n">axis</span><span class="o">.</span><span class="n">direction</span>
<span class="k">except</span> <span class="ne">AttributeError</span><span class="p">:</span>
<span class="k">pass</span>
<span class="k">return</span> <span class="n">s</span><span class="o">*</span><span class="n">axis</span><span class="o">.</span><span class="n">cross</span><span class="p">(</span><span class="n">vector</span><span class="p">)</span> <span class="o">+</span> <span class="n">c1</span><span class="o">*</span><span class="p">(</span><span class="n">axis</span><span class="o">*</span><span class="n">vector</span><span class="p">)</span><span class="o">*</span><span class="n">axis</span> <span class="o">+</span> <span class="n">c</span><span class="o">*</span><span class="n">vector</span>
<span class="k">def</span> <span class="nf">rotatePoint</span><span class="p">(</span><span class="n">point</span><span class="p">,</span> <span class="n">axis</span><span class="p">,</span> <span class="n">angle</span><span class="p">):</span>
<span class="k">return</span> <span class="n">axis</span><span class="o">.</span><span class="n">point</span> <span class="o">+</span> <span class="n">rotateDirection</span><span class="p">(</span><span class="n">point</span><span class="o">-</span><span class="n">axis</span><span class="o">.</span><span class="n">point</span><span class="p">,</span> <span class="n">axis</span><span class="p">,</span> <span class="n">angle</span><span class="p">)</span>
<span class="c">#</span>
<span class="c"># Lattices</span>
<span class="c">#</span>
<span class="c">#</span>
<span class="c"># Lattice base class</span>
<span class="c">#</span>
<div class="viewcode-block" id="Lattice"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.Lattice">[docs]</a><span class="k">class</span> <span class="nc">Lattice</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> General lattice</span>
<span class="sd"> Lattices are special sequence objects that contain vectors</span>
<span class="sd"> (points on the lattice) or objects that are constructed as</span>
<span class="sd"> functions of these vectors. Lattice objects behave like</span>
<span class="sd"> lists, i.e. they permit indexing, length inquiry, and iteration</span>
<span class="sd"> by 'for'-loops. Note that the lattices represented by these</span>
<span class="sd"> objects are finite, they have a finite (and fixed) number</span>
<span class="sd"> of repetitions along each lattice vector.</span>
<span class="sd"> This is an abstract base class. To create lattice objects,</span>
<span class="sd"> use one of its subclasses.</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">function</span><span class="p">):</span>
<span class="k">if</span> <span class="n">function</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">elements</span> <span class="o">=</span> <span class="nb">map</span><span class="p">(</span><span class="n">function</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">elements</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__getitem__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">item</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">elements</span><span class="p">[</span><span class="n">item</span><span class="p">]</span>
<span class="k">def</span> <span class="nf">__setitem__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">item</span><span class="p">,</span> <span class="n">value</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">elements</span><span class="p">[</span><span class="n">item</span><span class="p">]</span> <span class="o">=</span> <span class="n">value</span>
<span class="k">def</span> <span class="nf">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">elements</span><span class="p">)</span>
<span class="c">#</span>
<span class="c"># General rhombic lattice</span>
<span class="c">#</span></div>
<div class="viewcode-block" id="RhombicLattice"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.RhombicLattice">[docs]</a><span class="k">class</span> <span class="nc">RhombicLattice</span><span class="p">(</span><span class="n">Lattice</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Rhombic lattice</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">elementary_cell</span><span class="p">,</span> <span class="n">lattice_vectors</span><span class="p">,</span> <span class="n">cells</span><span class="p">,</span>
<span class="n">function</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">base</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param elementary_cell: a list of points in the elementary cell</span>
<span class="sd"> :param lattice_vectors: a list of lattice vectors. Each lattice</span>
<span class="sd"> vector defines a lattice dimension (only</span>
<span class="sd"> values from one to three make sense) and</span>
<span class="sd"> indicates the displacement along this</span>
<span class="sd"> dimension from one cell to the next.</span>
<span class="sd"> :param cells: a list of integers, whose length must equal the number</span>
<span class="sd"> of dimensions. Each entry specifies how often a cell is</span>
<span class="sd"> repeated along this dimension.</span>
<span class="sd"> :param function: a function that is called for every lattice point with</span>
<span class="sd"> the vector describing the point as argument. The return</span>
<span class="sd"> value of this function is stored in the lattice object.</span>
<span class="sd"> If the function is 'None', the vector is directly</span>
<span class="sd"> stored in the lattice object.</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">lattice_vectors</span><span class="p">)</span> <span class="o">!=</span> <span class="nb">len</span><span class="p">(</span><span class="n">cells</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s">'Inconsistent dimension specification'</span><span class="p">)</span>
<span class="k">if</span> <span class="n">base</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">base</span> <span class="o">=</span> <span class="n">Vector</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dimension</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">lattice_vectors</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">elements</span> <span class="o">=</span> <span class="p">[]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">makeLattice</span><span class="p">(</span><span class="n">elementary_cell</span><span class="p">,</span> <span class="n">lattice_vectors</span><span class="p">,</span> <span class="n">cells</span><span class="p">,</span> <span class="n">base</span><span class="p">)</span>
<span class="n">Lattice</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">function</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">makeLattice</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">elementary_cell</span><span class="p">,</span> <span class="n">lattice_vectors</span><span class="p">,</span> <span class="n">cells</span><span class="p">,</span> <span class="n">base</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">cells</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">elementary_cell</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">elements</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">p</span><span class="o">+</span><span class="n">base</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">cells</span><span class="p">[</span><span class="mi">0</span><span class="p">]):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">makeLattice</span><span class="p">(</span><span class="n">elementary_cell</span><span class="p">,</span> <span class="n">lattice_vectors</span><span class="p">[</span><span class="mi">1</span><span class="p">:],</span>
<span class="n">cells</span><span class="p">[</span><span class="mi">1</span><span class="p">:],</span> <span class="n">base</span><span class="o">+</span><span class="n">i</span><span class="o">*</span><span class="n">lattice_vectors</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="c">#</span>
<span class="c"># Bravais lattice</span>
<span class="c">#</span></div>
<div class="viewcode-block" id="BravaisLattice"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.BravaisLattice">[docs]</a><span class="k">class</span> <span class="nc">BravaisLattice</span><span class="p">(</span><span class="n">RhombicLattice</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Bravais lattice</span>
<span class="sd"> A Bravais lattice is a special case of a general rhombic lattice</span>
<span class="sd"> in which the elementary cell contains only one point.</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">lattice_vectors</span><span class="p">,</span> <span class="n">cells</span><span class="p">,</span> <span class="n">function</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">base</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param lattice_vectors: a list of lattice vectors. Each lattice</span>
<span class="sd"> vector defines a lattice dimension (only</span>
<span class="sd"> values from one to three make sense) and</span>
<span class="sd"> indicates the displacement along this</span>
<span class="sd"> dimension from one cell to the next.</span>
<span class="sd"> :param cells: a list of integers, whose length must equal the number</span>
<span class="sd"> of dimensions. Each entry specifies how often a cell is</span>
<span class="sd"> repeated along this dimension.</span>
<span class="sd"> :param function: a function that is called for every lattice point with</span>
<span class="sd"> the vector describing the point as argument. The return</span>
<span class="sd"> value of this function is stored in the lattice object.</span>
<span class="sd"> If the function is 'None', the vector is directly</span>
<span class="sd"> stored in the lattice object.</span>
<span class="sd"> """</span>
<span class="n">cell</span> <span class="o">=</span> <span class="p">[</span><span class="n">Vector</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">)]</span>
<span class="n">RhombicLattice</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">cell</span><span class="p">,</span> <span class="n">lattice_vectors</span><span class="p">,</span> <span class="n">cells</span><span class="p">,</span>
<span class="n">function</span><span class="p">,</span> <span class="n">base</span><span class="p">)</span>
<span class="c">#</span>
<span class="c"># Simple cubic lattice</span>
<span class="c">#</span></div>
<div class="viewcode-block" id="SCLattice"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.SCLattice">[docs]</a><span class="k">class</span> <span class="nc">SCLattice</span><span class="p">(</span><span class="n">BravaisLattice</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Simple Cubic lattice</span>
<span class="sd"> A Simple Cubic lattice is a special case of a Bravais lattice</span>
<span class="sd"> in which the elementary cell is a cube.</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">cellsize</span><span class="p">,</span> <span class="n">cells</span><span class="p">,</span> <span class="n">function</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">base</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param cellsize: the edge length of the elementary cell</span>
<span class="sd"> :type cellsize: float</span>
<span class="sd"> :param cells: a list of integers, whose length must equal the number</span>
<span class="sd"> of dimensions. Each entry specifies how often a cell is</span>
<span class="sd"> repeated along this dimension.</span>
<span class="sd"> :param function: a function that is called for every lattice point with</span>
<span class="sd"> the vector describing the point as argument. The return</span>
<span class="sd"> value of this function is stored in the lattice object.</span>
<span class="sd"> If the function is 'None', the vector is directly</span>
<span class="sd"> stored in the lattice object.</span>
<span class="sd"> """</span>
<span class="n">lattice_vectors</span> <span class="o">=</span> <span class="p">(</span><span class="n">cellsize</span><span class="o">*</span><span class="n">Vector</span><span class="p">(</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">),</span>
<span class="n">cellsize</span><span class="o">*</span><span class="n">Vector</span><span class="p">(</span><span class="mf">0.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">),</span>
<span class="n">cellsize</span><span class="o">*</span><span class="n">Vector</span><span class="p">(</span><span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">))</span>
<span class="k">if</span> <span class="nb">type</span><span class="p">(</span><span class="n">cells</span><span class="p">)</span> <span class="o">!=</span> <span class="nb">type</span><span class="p">(()):</span>
<span class="n">cells</span> <span class="o">=</span> <span class="mi">3</span><span class="o">*</span><span class="p">(</span><span class="n">cells</span><span class="p">,)</span>
<span class="n">BravaisLattice</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">lattice_vectors</span><span class="p">,</span> <span class="n">cells</span><span class="p">,</span> <span class="n">function</span><span class="p">,</span> <span class="n">base</span><span class="p">)</span>
<span class="c">#</span>
<span class="c"># Body-centered cubic lattice</span>
<span class="c">#</span></div>
<div class="viewcode-block" id="BCCLattice"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.BCCLattice">[docs]</a><span class="k">class</span> <span class="nc">BCCLattice</span><span class="p">(</span><span class="n">RhombicLattice</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Body-Centered Cubic lattice</span>
<span class="sd"> A Body-Centered Cubic lattice has two points per elementary cell.</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">cellsize</span><span class="p">,</span> <span class="n">cells</span><span class="p">,</span> <span class="n">function</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">base</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param cellsize: the edge length of the elementary cell</span>
<span class="sd"> :type cellsize: float</span>
<span class="sd"> :param cells: a list of integers, whose length must equal the number</span>
<span class="sd"> of dimensions. Each entry specifies how often a cell is</span>
<span class="sd"> repeated along this dimension.</span>
<span class="sd"> :param function: a function that is called for every lattice point with</span>
<span class="sd"> the vector describing the point as argument. The return</span>
<span class="sd"> value of this function is stored in the lattice object.</span>
<span class="sd"> If the function is 'None', the vector is directly</span>
<span class="sd"> stored in the lattice object.</span>
<span class="sd"> """</span>
<span class="n">cell</span> <span class="o">=</span> <span class="p">[</span><span class="n">Vector</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">),</span> <span class="n">cellsize</span><span class="o">*</span><span class="n">Vector</span><span class="p">(</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.5</span><span class="p">)]</span>
<span class="n">lattice_vectors</span> <span class="o">=</span> <span class="p">(</span><span class="n">cellsize</span><span class="o">*</span><span class="n">Vector</span><span class="p">(</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">),</span>
<span class="n">cellsize</span><span class="o">*</span><span class="n">Vector</span><span class="p">(</span><span class="mf">0.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">),</span>
<span class="n">cellsize</span><span class="o">*</span><span class="n">Vector</span><span class="p">(</span><span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">))</span>
<span class="k">if</span> <span class="nb">type</span><span class="p">(</span><span class="n">cells</span><span class="p">)</span> <span class="o">!=</span> <span class="nb">type</span><span class="p">(()):</span>
<span class="n">cells</span> <span class="o">=</span> <span class="mi">3</span><span class="o">*</span><span class="p">(</span><span class="n">cells</span><span class="p">,)</span>
<span class="n">RhombicLattice</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">cell</span><span class="p">,</span> <span class="n">lattice_vectors</span><span class="p">,</span> <span class="n">cells</span><span class="p">,</span>
<span class="n">function</span><span class="p">,</span> <span class="n">base</span><span class="p">)</span>
<span class="c">#</span>
<span class="c"># Face-centered cubic lattice</span>
<span class="c">#</span></div>
<div class="viewcode-block" id="FCCLattice"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.FCCLattice">[docs]</a><span class="k">class</span> <span class="nc">FCCLattice</span><span class="p">(</span><span class="n">RhombicLattice</span><span class="p">):</span>
<span class="sd">"""Face-Centered Cubic lattice</span>
<span class="sd"> A Face-Centered Cubic lattice has four points per elementary cell.</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">cellsize</span><span class="p">,</span> <span class="n">cells</span><span class="p">,</span> <span class="n">function</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">base</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param cellsize: the edge length of the elementary cell</span>
<span class="sd"> :type cellsize: float</span>
<span class="sd"> :param cells: a list of integers, whose length must equal the number</span>
<span class="sd"> of dimensions. Each entry specifies how often a cell is</span>
<span class="sd"> repeated along this dimension.</span>
<span class="sd"> :param function: a function that is called for every lattice point with</span>
<span class="sd"> the vector describing the point as argument. The return</span>
<span class="sd"> value of this function is stored in the lattice object.</span>
<span class="sd"> If the function is 'None', the vector is directly</span>
<span class="sd"> stored in the lattice object.</span>
<span class="sd"> """</span>
<span class="n">cell</span> <span class="o">=</span> <span class="p">[</span><span class="n">Vector</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">),</span>
<span class="n">cellsize</span><span class="o">*</span><span class="n">Vector</span><span class="p">(</span> <span class="mi">0</span><span class="p">,</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.5</span><span class="p">),</span>
<span class="n">cellsize</span><span class="o">*</span><span class="n">Vector</span><span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span><span class="mf">0.5</span><span class="p">),</span>
<span class="n">cellsize</span><span class="o">*</span><span class="n">Vector</span><span class="p">(</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.5</span><span class="p">,</span> <span class="mi">0</span><span class="p">)]</span>
<span class="n">lattice_vectors</span> <span class="o">=</span> <span class="p">(</span><span class="n">cellsize</span><span class="o">*</span><span class="n">Vector</span><span class="p">(</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">),</span>
<span class="n">cellsize</span><span class="o">*</span><span class="n">Vector</span><span class="p">(</span><span class="mf">0.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">),</span>
<span class="n">cellsize</span><span class="o">*</span><span class="n">Vector</span><span class="p">(</span><span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">))</span>
<span class="k">if</span> <span class="nb">type</span><span class="p">(</span><span class="n">cells</span><span class="p">)</span> <span class="o">!=</span> <span class="nb">type</span><span class="p">(()):</span>
<span class="n">cells</span> <span class="o">=</span> <span class="mi">3</span><span class="o">*</span><span class="p">(</span><span class="n">cells</span><span class="p">,)</span>
<span class="n">RhombicLattice</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">cell</span><span class="p">,</span> <span class="n">lattice_vectors</span><span class="p">,</span> <span class="n">cells</span><span class="p">,</span>
<span class="n">function</span><span class="p">,</span> <span class="n">base</span><span class="p">)</span>
<span class="c">#</span>
<span class="c"># Optimal superposition of a molecule in two configurations</span>
<span class="c">#</span></div>
<div class="viewcode-block" id="superpositionFit"><a class="viewcode-back" href="../../modules.html#MMTK.Geometry.superpositionFit">[docs]</a><span class="k">def</span> <span class="nf">superpositionFit</span><span class="p">(</span><span class="n">confs</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> :param confs: the weight, reference position, and alternate</span>
<span class="sd"> position for each atom</span>
<span class="sd"> :type confs: sequence of (float, Vector, Vector)</span>
<span class="sd"> :returns: the quaternion representing the rotation,</span>
<span class="sd"> the center of mass in the alternate configuraton,</span>
<span class="sd"> the center of mass in the reference configuration,</span>
<span class="sd"> and the RMS distance after the optimal superposition</span>
<span class="sd"> """</span>
<span class="n">w_sum</span> <span class="o">=</span> <span class="mf">0.</span>
<span class="n">wr_sum</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">3</span><span class="p">,),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
<span class="k">for</span> <span class="n">w</span><span class="p">,</span> <span class="n">r_ref</span><span class="p">,</span> <span class="n">r</span> <span class="ow">in</span> <span class="n">confs</span><span class="p">:</span>
<span class="n">w_sum</span> <span class="o">+=</span> <span class="n">w</span>
<span class="n">wr_sum</span> <span class="o">+=</span> <span class="n">w</span><span class="o">*</span><span class="n">r_ref</span><span class="o">.</span><span class="n">array</span>
<span class="n">ref_cms</span> <span class="o">=</span> <span class="n">wr_sum</span><span class="o">/</span><span class="n">w_sum</span>
<span class="n">pos</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">3</span><span class="p">,),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
<span class="n">possq</span> <span class="o">=</span> <span class="mf">0.</span>
<span class="n">cross</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
<span class="k">for</span> <span class="n">w</span><span class="p">,</span> <span class="n">r_ref</span><span class="p">,</span> <span class="n">r</span> <span class="ow">in</span> <span class="n">confs</span><span class="p">:</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">w</span><span class="o">/</span><span class="n">w_sum</span>
<span class="n">r_ref</span> <span class="o">=</span> <span class="n">r_ref</span><span class="o">.</span><span class="n">array</span><span class="o">-</span><span class="n">ref_cms</span>
<span class="n">r</span> <span class="o">=</span> <span class="n">r</span><span class="o">.</span><span class="n">array</span>
<span class="n">pos</span> <span class="o">=</span> <span class="n">pos</span> <span class="o">+</span> <span class="n">w</span><span class="o">*</span><span class="n">r</span>
<span class="n">possq</span> <span class="o">=</span> <span class="n">possq</span> <span class="o">+</span> <span class="n">w</span><span class="o">*</span><span class="n">N</span><span class="o">.</span><span class="n">add</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">r</span><span class="o">*</span><span class="n">r</span><span class="p">)</span> \
<span class="o">+</span> <span class="n">w</span><span class="o">*</span><span class="n">N</span><span class="o">.</span><span class="n">add</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">r_ref</span><span class="o">*</span><span class="n">r_ref</span><span class="p">)</span>
<span class="n">cross</span> <span class="o">=</span> <span class="n">cross</span> <span class="o">+</span> <span class="n">w</span><span class="o">*</span><span class="n">r</span><span class="p">[:,</span> <span class="n">N</span><span class="o">.</span><span class="n">NewAxis</span><span class="p">]</span><span class="o">*</span><span class="n">r_ref</span><span class="p">[</span><span class="n">N</span><span class="o">.</span><span class="n">NewAxis</span><span class="p">,</span> <span class="p">:]</span>
<span class="n">k</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
<span class="n">k</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span><span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span><span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span>
<span class="n">k</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">cross</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span><span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span>
<span class="n">k</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">cross</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span><span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span>
<span class="n">k</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span> <span class="o">=</span> <span class="n">cross</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span><span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span>
<span class="n">k</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span><span class="o">+</span><span class="n">cross</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span><span class="o">+</span><span class="n">cross</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span>
<span class="n">k</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span><span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span>
<span class="n">k</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span> <span class="o">=</span> <span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span><span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span>
<span class="n">k</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">cross</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span><span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span><span class="o">+</span><span class="n">cross</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span>
<span class="n">k</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span> <span class="o">=</span> <span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span><span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span>
<span class="n">k</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span> <span class="o">=</span> <span class="n">cross</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span><span class="o">+</span><span class="n">cross</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span><span class="o">-</span><span class="n">cross</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">):</span>
<span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">i</span><span class="p">):</span>
<span class="n">k</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">k</span><span class="p">[</span><span class="n">j</span><span class="p">,</span> <span class="n">i</span><span class="p">]</span>
<span class="n">k</span> <span class="o">=</span> <span class="mf">2.</span><span class="o">*</span><span class="n">k</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">):</span>
<span class="n">k</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">k</span><span class="p">[</span><span class="n">i</span><span class="p">,</span> <span class="n">i</span><span class="p">]</span> <span class="o">+</span> <span class="n">possq</span> <span class="o">-</span> <span class="n">N</span><span class="o">.</span><span class="n">add</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">pos</span><span class="o">*</span><span class="n">pos</span><span class="p">)</span>
<span class="kn">from</span> <span class="nn">Scientific</span> <span class="kn">import</span> <span class="n">LA</span>
<span class="n">e</span><span class="p">,</span> <span class="n">v</span> <span class="o">=</span> <span class="n">LA</span><span class="o">.</span><span class="n">eigenvectors</span><span class="p">(</span><span class="n">k</span><span class="p">)</span>
<span class="n">i</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">argmin</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">v</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
<span class="k">if</span> <span class="n">v</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o"><</span> <span class="mi">0</span><span class="p">:</span> <span class="n">v</span> <span class="o">=</span> <span class="o">-</span><span class="n">v</span>
<span class="k">if</span> <span class="n">e</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o"><=</span> <span class="mf">0.</span><span class="p">:</span>
<span class="n">rms</span> <span class="o">=</span> <span class="mf">0.</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">rms</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">e</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<span class="kn">from</span> <span class="nn">Scientific.Geometry</span> <span class="kn">import</span> <span class="n">Quaternion</span>
<span class="k">return</span> <span class="n">Quaternion</span><span class="o">.</span><span class="n">Quaternion</span><span class="p">(</span><span class="n">v</span><span class="p">),</span> <span class="n">Vector</span><span class="p">(</span><span class="n">ref_cms</span><span class="p">),</span> \
<span class="n">Vector</span><span class="p">(</span><span class="n">pos</span><span class="p">),</span> <span class="n">rms</span>
</pre></div></div>
</div>
</div>
</div>
<div class="sphinxsidebar">
<div class="sphinxsidebarwrapper">
<div id="searchbox" style="display: none">
<h3>Quick search</h3>
<form class="search" action="../../search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
<p class="searchtip" style="font-size: 90%">
Enter search terms or a module, class or function name.
</p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../../genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="../../py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li><a href="../../index.html">MMTK User Guide 2.7.7 documentation</a> »</li>
<li><a href="../index.html" >Module code</a> »</li>
</ul>
</div>
<div class="footer">
© Copyright 2010, Konrad Hinsen.
Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.3.
</div>
</body>
</html>
|