File: Subspace.html

package info (click to toggle)
mmtk 2.7.9-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,788 kB
  • ctags: 6,600
  • sloc: python: 18,050; ansic: 12,400; makefile: 129; csh: 3
file content (467 lines) | stat: -rw-r--r-- 62,748 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>MMTK.Subspace &mdash; MMTK User Guide 2.7.7 documentation</title>
    
    <link rel="stylesheet" href="../../_static/default.css" type="text/css" />
    <link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    '../../',
        VERSION:     '2.7.7',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="../../_static/jquery.js"></script>
    <script type="text/javascript" src="../../_static/underscore.js"></script>
    <script type="text/javascript" src="../../_static/doctools.js"></script>
    <link rel="top" title="MMTK User Guide 2.7.7 documentation" href="../../index.html" />
    <link rel="up" title="Module code" href="../index.html" /> 
  </head>
  <body>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li><a href="../../index.html">MMTK User Guide 2.7.7 documentation</a> &raquo;</li>
          <li><a href="../index.html" accesskey="U">Module code</a> &raquo;</li> 
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body">
            
  <h1>Source code for MMTK.Subspace</h1><div class="highlight"><pre>
<span class="c"># This module implements subspaces for motion analysis etc.</span>
<span class="c">#</span>
<span class="c"># Written by Konrad Hinsen</span>
<span class="c">#</span>

<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Linear subspaces for infinitesimal motions</span>

<span class="sd">This module implements subspaces for infinitesimal (or finite</span>
<span class="sd">small-amplitude) atomic motions. They can be used in normal mode</span>
<span class="sd">calculations or for analyzing complex motions. For an explanation, see:</span>

<span class="sd">  |  K. Hinsen and G.R. Kneller</span>
<span class="sd">  |  Projection methods for the analysis of complex motions in macromolecules</span>
<span class="sd">  |  Mol. Sim. 23:275-292 (2000)</span>
<span class="sd">&quot;&quot;&quot;</span>

<span class="n">__docformat__</span> <span class="o">=</span> <span class="s">&#39;restructuredtext&#39;</span>

<span class="kn">from</span> <span class="nn">MMTK</span> <span class="kn">import</span> <span class="n">Utility</span><span class="p">,</span> <span class="n">ParticleProperties</span>
<span class="kn">from</span> <span class="nn">Scientific.Geometry</span> <span class="kn">import</span> <span class="n">Vector</span><span class="p">,</span> <span class="n">ex</span><span class="p">,</span> <span class="n">ey</span><span class="p">,</span> <span class="n">ez</span>
<span class="kn">from</span> <span class="nn">Scientific</span> <span class="kn">import</span> <span class="n">N</span>
<span class="kn">import</span> <span class="nn">copy</span>

<span class="c">#</span>
<span class="c"># Import LAPACK routines</span>
<span class="c">#</span>
<span class="k">try</span><span class="p">:</span>
    <span class="n">array_package</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">package</span>
<span class="k">except</span> <span class="ne">AttributeError</span><span class="p">:</span>
    <span class="n">array_package</span> <span class="o">=</span> <span class="s">&quot;Numeric&quot;</span>

<span class="n">dgesdd</span> <span class="o">=</span> <span class="bp">None</span>
<span class="k">try</span><span class="p">:</span>
    <span class="k">if</span> <span class="n">array_package</span> <span class="o">==</span> <span class="s">&quot;Numeric&quot;</span><span class="p">:</span>
        <span class="kn">from</span> <span class="nn">lapack_lite</span> <span class="kn">import</span> <span class="n">dgesdd</span><span class="p">,</span> <span class="n">LapackError</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="kn">from</span> <span class="nn">numpy.linalg.lapack_lite</span> <span class="kn">import</span> <span class="n">dgesdd</span><span class="p">,</span> <span class="n">LapackError</span>
<span class="k">except</span> <span class="ne">ImportError</span><span class="p">:</span> <span class="k">pass</span>
<span class="k">if</span> <span class="n">dgesdd</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="c"># PyLAPACK</span>
        <span class="kn">from</span> <span class="nn">lapack_dge</span> <span class="kn">import</span> <span class="n">dgesdd</span>
    <span class="k">except</span> <span class="ne">ImportError</span><span class="p">:</span> <span class="k">pass</span>
<span class="k">if</span> <span class="n">dgesdd</span><span class="p">:</span>
    <span class="n">n</span> <span class="o">=</span> <span class="mi">1</span>
    <span class="n">array</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">n</span><span class="p">,</span> <span class="n">n</span><span class="p">),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
    <span class="n">sv</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">n</span><span class="p">,),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
    <span class="n">u</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">n</span><span class="p">,</span> <span class="n">n</span><span class="p">),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
    <span class="n">vt</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">n</span><span class="p">,</span> <span class="n">n</span><span class="p">),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
    <span class="n">work</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">1</span><span class="p">,),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
    <span class="n">int_types</span> <span class="o">=</span> <span class="p">[</span><span class="n">N</span><span class="o">.</span><span class="n">Int</span><span class="p">,</span> <span class="n">N</span><span class="o">.</span><span class="n">Int8</span><span class="p">,</span> <span class="n">N</span><span class="o">.</span><span class="n">Int16</span><span class="p">,</span> <span class="n">N</span><span class="o">.</span><span class="n">Int32</span><span class="p">]</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="n">int_types</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">N</span><span class="o">.</span><span class="n">Int64</span><span class="p">)</span>
        <span class="n">int_types</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">N</span><span class="o">.</span><span class="n">Int128</span><span class="p">)</span>
    <span class="k">except</span> <span class="ne">AttributeError</span><span class="p">:</span>
        <span class="k">pass</span>
    <span class="k">for</span> <span class="n">int_type</span> <span class="ow">in</span> <span class="n">int_types</span><span class="p">:</span>
        <span class="n">iwork</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">1</span><span class="p">,),</span> <span class="n">int_type</span><span class="p">)</span>
        <span class="k">try</span><span class="p">:</span>
            <span class="n">dgesdd</span><span class="p">(</span><span class="s">&#39;S&#39;</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">array</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">sv</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">vt</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">work</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">iwork</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
            <span class="k">break</span>
        <span class="k">except</span> <span class="n">LapackError</span><span class="p">:</span>
            <span class="k">pass</span>
    <span class="k">del</span> <span class="n">n</span><span class="p">,</span> <span class="n">array</span><span class="p">,</span> <span class="n">sv</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">vt</span><span class="p">,</span> <span class="n">work</span><span class="p">,</span> <span class="n">iwork</span><span class="p">,</span> <span class="n">int_types</span>

<span class="k">del</span> <span class="n">array_package</span>

<span class="c">#</span>
<span class="c"># A set of particle vectors that define a subspace</span>
<span class="c">#</span>
<span class="k">class</span> <span class="nc">ParticleVectorSet</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>

    <span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">universe</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">universe</span> <span class="o">=</span> <span class="n">universe</span>
        <span class="k">if</span> <span class="nb">type</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="o">==</span> <span class="n">N</span><span class="o">.</span><span class="n">arraytype</span><span class="p">:</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">n</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">array</span> <span class="o">=</span> <span class="n">data</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">n</span> <span class="o">=</span> <span class="n">data</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">array</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="bp">self</span><span class="o">.</span><span class="n">n</span><span class="p">,</span> <span class="n">universe</span><span class="o">.</span><span class="n">numberOfAtoms</span><span class="p">(),</span> <span class="mi">3</span><span class="p">),</span>
                                 <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>

    <span class="k">def</span> <span class="nf">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">n</span>

    <span class="k">def</span> <span class="nf">__getitem__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">i</span><span class="p">):</span>
        <span class="k">if</span> <span class="n">i</span> <span class="o">&gt;=</span> <span class="bp">self</span><span class="o">.</span><span class="n">n</span><span class="p">:</span>
            <span class="k">raise</span> <span class="ne">IndexError</span>
        <span class="k">return</span> <span class="n">ParticleProperties</span><span class="o">.</span><span class="n">ParticleVector</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">universe</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">array</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>


<div class="viewcode-block" id="Subspace"><a class="viewcode-back" href="../../modules.html#MMTK.Subspace.Subspace">[docs]</a><span class="k">class</span> <span class="nc">Subspace</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>

    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Subspace of infinitesimal atomic motions</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">universe</span><span class="p">,</span> <span class="n">vectors</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        :param universe: the universe for which the subspace is created</span>
<span class="sd">        :type universe: :class:`~MMTK.Universe.Universe`</span>
<span class="sd">        :param vectors: a list of :class:`~MMTK.ParticleProperties.ParticleVector`</span>
<span class="sd">                        objects that define the subspace. They need not be</span>
<span class="sd">                        orthogonal or linearly independent.</span>
<span class="sd">        :type vectors: list</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">universe</span> <span class="o">=</span> <span class="n">universe</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">vectors</span> <span class="o">=</span> <span class="n">vectors</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">_basis</span> <span class="o">=</span> <span class="bp">None</span>

    <span class="k">def</span> <span class="nf">__add__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other</span><span class="p">):</span>
        <span class="k">return</span> <span class="n">Subspace</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">vectors</span><span class="o">+</span><span class="n">other</span><span class="o">.</span><span class="n">vectors</span><span class="p">)</span>

    <span class="k">def</span> <span class="nf">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="k">return</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">vectors</span><span class="p">)</span>

    <span class="k">def</span> <span class="nf">__getitem__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">item</span><span class="p">):</span>
        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">vectors</span><span class="p">[</span><span class="n">item</span><span class="p">]</span>

<div class="viewcode-block" id="Subspace.getBasis"><a class="viewcode-back" href="../../modules.html#MMTK.Subspace.Subspace.getBasis">[docs]</a>    <span class="k">def</span> <span class="nf">getBasis</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Construct a basis for the subspace by orthonormalization of</span>
<span class="sd">        the input vectors using Singular Value Decomposition. The</span>
<span class="sd">        basis consists of a sequence of</span>
<span class="sd">        :class:`~MMTK.ParticleProperties.ParticleVector`</span>
<span class="sd">        objects that are orthonormal in configuration space.</span>
<span class="sd">        :returns: the basis</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_basis</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
            <span class="n">basis</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">v</span><span class="o">.</span><span class="n">array</span> <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">vectors</span><span class="p">],</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
            <span class="n">shape</span> <span class="o">=</span> <span class="n">basis</span><span class="o">.</span><span class="n">shape</span>
            <span class="n">nvectors</span> <span class="o">=</span> <span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
            <span class="n">natoms</span> <span class="o">=</span> <span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
            <span class="n">basis</span><span class="o">.</span><span class="n">shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">nvectors</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">)</span>
            <span class="n">sv</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="nb">min</span><span class="p">(</span><span class="n">nvectors</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">),),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
            <span class="n">min_n_m</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">,</span> <span class="n">nvectors</span><span class="p">)</span>
            <span class="n">vt</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">nvectors</span><span class="p">,</span> <span class="n">min_n_m</span><span class="p">),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
            <span class="n">work</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">1</span><span class="p">,),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
            <span class="n">iwork</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">8</span><span class="o">*</span><span class="n">min_n_m</span><span class="p">,),</span> <span class="n">int_type</span><span class="p">)</span>
            <span class="k">if</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span> <span class="o">&gt;=</span> <span class="n">nvectors</span><span class="p">:</span>
                <span class="n">result</span> <span class="o">=</span> <span class="n">dgesdd</span><span class="p">(</span><span class="s">&#39;O&#39;</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">,</span> <span class="n">nvectors</span><span class="p">,</span> <span class="n">basis</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">,</span>
                                <span class="n">sv</span><span class="p">,</span> <span class="n">basis</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">,</span> <span class="n">vt</span><span class="p">,</span> <span class="n">min_n_m</span><span class="p">,</span>
                                <span class="n">work</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">iwork</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
                <span class="n">work</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="nb">int</span><span class="p">(</span><span class="n">work</span><span class="p">[</span><span class="mi">0</span><span class="p">]),),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
                <span class="n">result</span> <span class="o">=</span> <span class="n">dgesdd</span><span class="p">(</span><span class="s">&#39;O&#39;</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">,</span> <span class="n">nvectors</span><span class="p">,</span> <span class="n">basis</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">,</span>
                                <span class="n">sv</span><span class="p">,</span> <span class="n">basis</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">,</span> <span class="n">vt</span><span class="p">,</span> <span class="n">min_n_m</span><span class="p">,</span>
                                <span class="n">work</span><span class="p">,</span> <span class="n">work</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">iwork</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
                <span class="n">u</span> <span class="o">=</span> <span class="n">basis</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="n">u</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">min_n_m</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
                <span class="n">result</span> <span class="o">=</span> <span class="n">dgesdd</span><span class="p">(</span><span class="s">&#39;S&#39;</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">,</span> <span class="n">nvectors</span><span class="p">,</span> <span class="n">basis</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">,</span>
                                <span class="n">sv</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">,</span> <span class="n">vt</span><span class="p">,</span> <span class="n">min_n_m</span><span class="p">,</span>
                                <span class="n">work</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">iwork</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
                <span class="n">work</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="nb">int</span><span class="p">(</span><span class="n">work</span><span class="p">[</span><span class="mi">0</span><span class="p">]),),</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
                <span class="n">result</span> <span class="o">=</span> <span class="n">dgesdd</span><span class="p">(</span><span class="s">&#39;S&#39;</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">,</span> <span class="n">nvectors</span><span class="p">,</span> <span class="n">basis</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">,</span>
                                <span class="n">sv</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">natoms</span><span class="p">,</span> <span class="n">vt</span><span class="p">,</span> <span class="n">min_n_m</span><span class="p">,</span>
                                <span class="n">work</span><span class="p">,</span> <span class="n">work</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">iwork</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
            <span class="k">if</span> <span class="n">result</span><span class="p">[</span><span class="s">&#39;info&#39;</span><span class="p">]</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
                <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s">&#39;Lapack SVD: &#39;</span> <span class="o">+</span> <span class="sb">`result[&#39;info&#39;]`</span><span class="p">)</span>
            <span class="n">svmax</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">maximum</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">sv</span><span class="p">)</span>
            <span class="n">nvectors</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">add</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">N</span><span class="o">.</span><span class="n">greater</span><span class="p">(</span><span class="n">sv</span><span class="p">,</span> <span class="mf">1.e-10</span><span class="o">*</span><span class="n">svmax</span><span class="p">))</span>
            <span class="n">u</span> <span class="o">=</span> <span class="n">u</span><span class="p">[:</span><span class="n">nvectors</span><span class="p">]</span>
            <span class="n">u</span><span class="o">.</span><span class="n">shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">nvectors</span><span class="p">,</span> <span class="n">natoms</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">_basis</span> <span class="o">=</span> <span class="n">ParticleVectorSet</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">universe</span><span class="p">,</span> <span class="n">u</span><span class="p">)</span>
        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_basis</span>
</div>
<div class="viewcode-block" id="Subspace.projectionOf"><a class="viewcode-back" href="../../modules.html#MMTK.Subspace.Subspace.projectionOf">[docs]</a>    <span class="k">def</span> <span class="nf">projectionOf</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">vector</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        :param vector: a particle vector</span>
<span class="sd">        :type vector: :class:`~MMTK.ParticleProperties.ParticleVector`</span>
<span class="sd">        :returns: the projection of the vector onto the subspace.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">vector</span> <span class="o">=</span> <span class="n">vector</span><span class="o">.</span><span class="n">array</span>
        <span class="n">basis</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">getBasis</span><span class="p">()</span><span class="o">.</span><span class="n">array</span>
        <span class="n">p</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">vector</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">N</span><span class="o">.</span><span class="n">Float</span><span class="p">)</span>
        <span class="k">for</span> <span class="n">bv</span> <span class="ow">in</span> <span class="n">basis</span><span class="p">:</span>
            <span class="n">N</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">N</span><span class="o">.</span><span class="n">add</span><span class="o">.</span><span class="n">reduce</span><span class="p">(</span><span class="n">N</span><span class="o">.</span><span class="n">ravel</span><span class="p">(</span><span class="n">bv</span><span class="o">*</span><span class="n">vector</span><span class="p">))</span><span class="o">*</span><span class="n">bv</span><span class="p">,</span> <span class="n">p</span><span class="p">,</span> <span class="n">p</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">ParticleProperties</span><span class="o">.</span><span class="n">ParticleVector</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">universe</span><span class="p">,</span> <span class="n">p</span><span class="p">)</span>
</div>
<div class="viewcode-block" id="Subspace.projectionComplementOf"><a class="viewcode-back" href="../../modules.html#MMTK.Subspace.Subspace.projectionComplementOf">[docs]</a>    <span class="k">def</span> <span class="nf">projectionComplementOf</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">vector</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        :param vector: a particle vector</span>
<span class="sd">        :type vector: :class:`~MMTK.ParticleProperties.ParticleVector`</span>
<span class="sd">        :returns: the projection of the vector onto the orthogonal complement</span>
<span class="sd">                  of the subspace.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">return</span> <span class="n">vector</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">projectionOf</span><span class="p">(</span><span class="n">vector</span><span class="p">)</span>
</div>
<div class="viewcode-block" id="Subspace.complement"><a class="viewcode-back" href="../../modules.html#MMTK.Subspace.Subspace.complement">[docs]</a>    <span class="k">def</span> <span class="nf">complement</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        :returns: the orthogonal complement subspace</span>
<span class="sd">        :rtype: :class:`~MMTK.Subspace.Subspace`</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">basis</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">universe</span><span class="o">.</span><span class="n">numberOfAtoms</span><span class="p">()):</span>
            <span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="p">[</span><span class="n">ex</span><span class="p">,</span> <span class="n">ey</span><span class="p">,</span> <span class="n">ez</span><span class="p">]:</span>
                <span class="n">p</span> <span class="o">=</span> <span class="n">ParticleProperties</span><span class="o">.</span><span class="n">ParticleVector</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">universe</span><span class="p">)</span>
                <span class="n">p</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">e</span>
                <span class="n">basis</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">projectionComplementOf</span><span class="p">(</span><span class="n">p</span><span class="p">))</span>
        <span class="k">return</span> <span class="n">Subspace</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">universe</span><span class="p">,</span> <span class="n">basis</span><span class="p">)</span>

</div></div>
<div class="viewcode-block" id="LinkedRigidBodyMotionSubspace"><a class="viewcode-back" href="../../modules.html#MMTK.Subspace.LinkedRigidBodyMotionSubspace">[docs]</a><span class="k">class</span> <span class="nc">LinkedRigidBodyMotionSubspace</span><span class="p">(</span><span class="n">Subspace</span><span class="p">):</span>
    
    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Subspace for the motion of linked rigid bodies</span>

<span class="sd">    This class describes the same subspace as RigidBodyMotionSubspace,</span>
<span class="sd">    and is used by the latter. For collections of several chains of</span>
<span class="sd">    linked rigid bodies, RigidBodyMotionSubspace is more efficient.</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">universe</span><span class="p">,</span> <span class="n">rigid_bodies</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        :param universe: the universe for which the subspace is created</span>
<span class="sd">        :type universe: :class:`~MMTK.Universe.Universe`</span>
<span class="sd">        :param rigid_bodies: a list or set of rigid bodies</span>
<span class="sd">                             with some common atoms</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">ex_ey_ez</span> <span class="o">=</span> <span class="p">[</span><span class="n">Vector</span><span class="p">(</span><span class="mf">1.</span><span class="p">,</span><span class="mf">0.</span><span class="p">,</span><span class="mf">0.</span><span class="p">),</span> <span class="n">Vector</span><span class="p">(</span><span class="mf">0.</span><span class="p">,</span><span class="mf">1.</span><span class="p">,</span><span class="mf">0.</span><span class="p">),</span> <span class="n">Vector</span><span class="p">(</span><span class="mf">0.</span><span class="p">,</span><span class="mf">0.</span><span class="p">,</span><span class="mf">1.</span><span class="p">)]</span>
        <span class="c"># Constructs</span>
        <span class="c"># 1) a list of vectors describing the rigid-body motions of each</span>
        <span class="c">#    rigid body as if it were independent.</span>
        <span class="c"># 2) a list of pair-distance constraint vectors for all pairs of</span>
        <span class="c">#    atoms inside a rigid body.</span>
        <span class="c"># The LRB subspace is constructed from the projections of the</span>
        <span class="c"># first set of vectors onto the orthogonal complement of the</span>
        <span class="c"># subspace generated by the second set of vectors.</span>
        <span class="n">vectors</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="n">c_vectors</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">for</span> <span class="n">rb</span> <span class="ow">in</span> <span class="n">rigid_bodies</span><span class="p">:</span>
            <span class="n">atoms</span> <span class="o">=</span> <span class="n">rb</span><span class="o">.</span><span class="n">atomList</span><span class="p">()</span>
            <span class="k">for</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">ex_ey_ez</span><span class="p">:</span>
                <span class="n">v</span> <span class="o">=</span> <span class="n">ParticleProperties</span><span class="o">.</span><span class="n">ParticleVector</span><span class="p">(</span><span class="n">universe</span><span class="p">)</span>
                <span class="k">for</span> <span class="n">a</span> <span class="ow">in</span> <span class="n">atoms</span><span class="p">:</span>
                    <span class="n">v</span><span class="p">[</span><span class="n">a</span><span class="p">]</span> <span class="o">=</span> <span class="n">d</span>
                <span class="n">vectors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
            <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">atoms</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
                <span class="n">center</span> <span class="o">=</span> <span class="n">rb</span><span class="o">.</span><span class="n">centerOfMass</span><span class="p">()</span>
                <span class="n">iv</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">vectors</span><span class="p">)</span><span class="o">-</span><span class="mi">3</span>
                <span class="k">for</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">ex_ey_ez</span><span class="p">:</span>
                    <span class="n">v</span> <span class="o">=</span> <span class="n">ParticleProperties</span><span class="o">.</span><span class="n">ParticleVector</span><span class="p">(</span><span class="n">universe</span><span class="p">)</span>
                    <span class="k">for</span> <span class="n">a</span> <span class="ow">in</span> <span class="n">atoms</span><span class="p">:</span>
                        <span class="n">v</span><span class="p">[</span><span class="n">a</span><span class="p">]</span> <span class="o">=</span> <span class="n">d</span><span class="o">.</span><span class="n">cross</span><span class="p">(</span><span class="n">a</span><span class="o">.</span><span class="n">position</span><span class="p">()</span><span class="o">-</span><span class="n">center</span><span class="p">)</span>
                    <span class="k">for</span> <span class="n">vt</span> <span class="ow">in</span> <span class="n">vectors</span><span class="p">[</span><span class="n">iv</span><span class="p">:]:</span>
                        <span class="n">v</span> <span class="o">-=</span> <span class="n">v</span><span class="o">.</span><span class="n">dotProduct</span><span class="p">(</span><span class="n">vt</span><span class="p">)</span><span class="o">*</span><span class="n">vt</span>
                    <span class="k">if</span> <span class="n">v</span><span class="o">.</span><span class="n">dotProduct</span><span class="p">(</span><span class="n">v</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mf">0.</span><span class="p">:</span>
                        <span class="n">vectors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
            <span class="k">for</span> <span class="n">a1</span><span class="p">,</span> <span class="n">a2</span> <span class="ow">in</span> <span class="n">Utility</span><span class="o">.</span><span class="n">pairs</span><span class="p">(</span><span class="n">atoms</span><span class="p">):</span>
                <span class="n">distance</span> <span class="o">=</span> <span class="n">universe</span><span class="o">.</span><span class="n">distanceVector</span><span class="p">(</span><span class="n">a1</span><span class="o">.</span><span class="n">position</span><span class="p">(),</span>
                                                   <span class="n">a2</span><span class="o">.</span><span class="n">position</span><span class="p">())</span>
                <span class="n">v</span> <span class="o">=</span> <span class="n">ParticleProperties</span><span class="o">.</span><span class="n">ParticleVector</span><span class="p">(</span><span class="n">universe</span><span class="p">)</span>
                <span class="n">v</span><span class="p">[</span><span class="n">a1</span><span class="p">]</span> <span class="o">=</span> <span class="n">distance</span>
                <span class="n">v</span><span class="p">[</span><span class="n">a2</span><span class="p">]</span> <span class="o">=</span> <span class="o">-</span><span class="n">distance</span>
                <span class="n">c_vectors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">c_vectors</span><span class="p">:</span>
            <span class="n">constraints</span> <span class="o">=</span> <span class="n">Subspace</span><span class="p">(</span><span class="n">universe</span><span class="p">,</span> <span class="n">c_vectors</span><span class="p">)</span>
            <span class="n">vectors</span> <span class="o">=</span> <span class="p">[</span><span class="n">constraints</span><span class="o">.</span><span class="n">projectionComplementOf</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
                       <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">vectors</span><span class="p">]</span>
        <span class="n">Subspace</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">universe</span><span class="p">,</span> <span class="n">vectors</span><span class="p">)</span>

</div>
<div class="viewcode-block" id="RigidMotionSubspace"><a class="viewcode-back" href="../../modules.html#MMTK.Subspace.RigidMotionSubspace">[docs]</a><span class="k">class</span> <span class="nc">RigidMotionSubspace</span><span class="p">(</span><span class="n">Subspace</span><span class="p">):</span>

    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Subspace of rigid-body motions</span>

<span class="sd">    A rigid-body motion subspace is the subspace which contains</span>
<span class="sd">    the rigid-body motions of any number of chemical objects.</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">universe</span><span class="p">,</span> <span class="n">objects</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        :param universe: the universe for which the subspace is created</span>
<span class="sd">        :type universe: :class:`~MMTK.Universe.Universe`</span>
<span class="sd">        :param objects: a sequence of objects whose rigid-body motion is</span>
<span class="sd">                        included in the subspace</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">Utility</span><span class="o">.</span><span class="n">isSequenceObject</span><span class="p">(</span><span class="n">objects</span><span class="p">):</span>
            <span class="n">objects</span> <span class="o">=</span> <span class="p">[</span><span class="n">objects</span><span class="p">]</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">objects</span> <span class="o">=</span> <span class="n">copy</span><span class="o">.</span><span class="n">copy</span><span class="p">(</span><span class="n">objects</span><span class="p">)</span>
        <span class="c"># Identify connected sets of linked rigid bodies and remove</span>
        <span class="c"># them from the plain rigid body list.</span>
        <span class="n">atom_map</span> <span class="o">=</span> <span class="p">{}</span>
        <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">objects</span><span class="p">:</span>
            <span class="k">for</span> <span class="n">a</span> <span class="ow">in</span> <span class="n">o</span><span class="o">.</span><span class="n">atomIterator</span><span class="p">():</span>
                <span class="n">am</span> <span class="o">=</span> <span class="n">atom_map</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="p">[])</span>
                <span class="n">am</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">o</span><span class="p">)</span>
                <span class="n">atom_map</span><span class="p">[</span><span class="n">a</span><span class="p">]</span> <span class="o">=</span> <span class="n">am</span>
        <span class="n">rb_map</span> <span class="o">=</span> <span class="p">{}</span>
        <span class="k">for</span> <span class="n">rbs</span> <span class="ow">in</span> <span class="n">atom_map</span><span class="o">.</span><span class="n">values</span><span class="p">():</span>
            <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">rbs</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
                <span class="k">for</span> <span class="n">rb</span> <span class="ow">in</span> <span class="n">rbs</span><span class="p">:</span>
                    <span class="n">rb_map</span><span class="p">[</span><span class="n">rb</span><span class="p">]</span> <span class="o">=</span> <span class="n">rb_map</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">rb</span><span class="p">,</span> <span class="nb">frozenset</span><span class="p">())</span> \
                                 <span class="o">.</span><span class="n">union</span><span class="p">(</span><span class="nb">frozenset</span><span class="p">(</span><span class="n">rbs</span><span class="p">))</span>
        <span class="k">for</span> <span class="n">rb</span> <span class="ow">in</span> <span class="n">rb_map</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
            <span class="n">objects</span><span class="o">.</span><span class="n">remove</span><span class="p">(</span><span class="n">rb</span><span class="p">)</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="n">changed</span> <span class="o">=</span> <span class="bp">False</span>
            <span class="k">for</span> <span class="n">rbs</span> <span class="ow">in</span> <span class="n">rb_map</span><span class="o">.</span><span class="n">values</span><span class="p">():</span>
                <span class="k">for</span> <span class="n">rb</span> <span class="ow">in</span> <span class="n">rbs</span><span class="p">:</span>
                    <span class="n">s</span> <span class="o">=</span> <span class="n">rb_map</span><span class="p">[</span><span class="n">rb</span><span class="p">]</span>
                    <span class="n">rb_map</span><span class="p">[</span><span class="n">rb</span><span class="p">]</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="n">union</span><span class="p">(</span><span class="n">rbs</span><span class="p">)</span>
                    <span class="k">if</span> <span class="n">s</span> <span class="o">!=</span> <span class="n">rb_map</span><span class="p">[</span><span class="n">rb</span><span class="p">]:</span>
                        <span class="n">changed</span> <span class="o">=</span> <span class="bp">True</span>
            <span class="k">if</span> <span class="ow">not</span> <span class="n">changed</span><span class="p">:</span>
                <span class="k">break</span>
        <span class="n">lrbs</span> <span class="o">=</span> <span class="nb">frozenset</span><span class="p">(</span><span class="n">rb_map</span><span class="o">.</span><span class="n">values</span><span class="p">())</span>

        <span class="c"># Generate the subspace vectors for the isolated rigid bodies.</span>
        <span class="n">ex_ey_ez</span> <span class="o">=</span> <span class="p">[</span><span class="n">Vector</span><span class="p">(</span><span class="mf">1.</span><span class="p">,</span><span class="mf">0.</span><span class="p">,</span><span class="mf">0.</span><span class="p">),</span> <span class="n">Vector</span><span class="p">(</span><span class="mf">0.</span><span class="p">,</span><span class="mf">1.</span><span class="p">,</span><span class="mf">0.</span><span class="p">),</span> <span class="n">Vector</span><span class="p">(</span><span class="mf">0.</span><span class="p">,</span><span class="mf">0.</span><span class="p">,</span><span class="mf">1.</span><span class="p">)]</span>
        <span class="n">vectors</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">for</span> <span class="n">o</span> <span class="ow">in</span> <span class="n">objects</span><span class="p">:</span>
            <span class="n">rb_atoms</span> <span class="o">=</span> <span class="n">o</span><span class="o">.</span><span class="n">atomList</span><span class="p">()</span>
            <span class="k">for</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">ex_ey_ez</span><span class="p">:</span>
                <span class="n">v</span> <span class="o">=</span> <span class="n">ParticleProperties</span><span class="o">.</span><span class="n">ParticleVector</span><span class="p">(</span><span class="n">universe</span><span class="p">)</span>
                <span class="k">for</span> <span class="n">a</span> <span class="ow">in</span> <span class="n">rb_atoms</span><span class="p">:</span>
                    <span class="n">v</span><span class="p">[</span><span class="n">a</span><span class="p">]</span> <span class="o">=</span> <span class="n">d</span>
                <span class="n">vectors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">v</span><span class="o">/</span><span class="n">N</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">rb_atoms</span><span class="p">)))</span>
            <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">rb_atoms</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
                <span class="n">center</span> <span class="o">=</span> <span class="n">o</span><span class="o">.</span><span class="n">centerOfMass</span><span class="p">()</span>
                <span class="n">iv</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">vectors</span><span class="p">)</span><span class="o">-</span><span class="mi">3</span>
                <span class="k">for</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">ex_ey_ez</span><span class="p">:</span>
                    <span class="n">v</span> <span class="o">=</span> <span class="n">ParticleProperties</span><span class="o">.</span><span class="n">ParticleVector</span><span class="p">(</span><span class="n">universe</span><span class="p">)</span>
                    <span class="k">for</span> <span class="n">a</span> <span class="ow">in</span> <span class="n">rb_atoms</span><span class="p">:</span>
                        <span class="n">v</span><span class="p">[</span><span class="n">a</span><span class="p">]</span> <span class="o">=</span> <span class="n">d</span><span class="o">.</span><span class="n">cross</span><span class="p">(</span><span class="n">a</span><span class="o">.</span><span class="n">position</span><span class="p">()</span><span class="o">-</span><span class="n">center</span><span class="p">)</span>
                    <span class="k">for</span> <span class="n">vt</span> <span class="ow">in</span> <span class="n">vectors</span><span class="p">[</span><span class="n">iv</span><span class="p">:]:</span>
                        <span class="n">v</span> <span class="o">-=</span> <span class="n">v</span><span class="o">.</span><span class="n">dotProduct</span><span class="p">(</span><span class="n">vt</span><span class="p">)</span><span class="o">*</span><span class="n">vt</span>
                    <span class="n">norm_sq</span> <span class="o">=</span> <span class="n">N</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">v</span><span class="o">.</span><span class="n">dotProduct</span><span class="p">(</span><span class="n">v</span><span class="p">))</span>
                    <span class="k">if</span> <span class="n">norm_sq</span> <span class="o">&gt;</span> <span class="mf">0.</span><span class="p">:</span>
                        <span class="n">vectors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">v</span><span class="o">/</span><span class="n">norm_sq</span><span class="p">)</span>

        <span class="c"># Generate the subspace vectors for the linked rigid bodies.</span>
        <span class="k">for</span> <span class="n">lrb</span> <span class="ow">in</span> <span class="n">lrbs</span><span class="p">:</span>
            <span class="n">lrb_ss</span> <span class="o">=</span> <span class="n">LinkedRigidBodyMotionSubspace</span><span class="p">(</span><span class="n">universe</span><span class="p">,</span> <span class="n">lrb</span><span class="p">)</span>
            <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">lrb_ss</span><span class="o">.</span><span class="n">getBasis</span><span class="p">():</span>
                <span class="n">vectors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>

        <span class="n">Subspace</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">universe</span><span class="p">,</span> <span class="n">vectors</span><span class="p">)</span>
        <span class="c"># The vector set is already orthonormal by construction,</span>
        <span class="c"># so we can skip the lengthy SVD procedure.</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">_basis</span> <span class="o">=</span> <span class="n">ParticleVectorSet</span><span class="p">(</span><span class="n">universe</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">vectors</span><span class="p">))</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">vectors</span><span class="p">)):</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">_basis</span><span class="o">.</span><span class="n">array</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">vectors</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">array</span>

</div>
<div class="viewcode-block" id="PairDistanceSubspace"><a class="viewcode-back" href="../../modules.html#MMTK.Subspace.PairDistanceSubspace">[docs]</a><span class="k">class</span> <span class="nc">PairDistanceSubspace</span><span class="p">(</span><span class="n">Subspace</span><span class="p">):</span>

    <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">    Subspace of pair-distance motions</span>

<span class="sd">    A pair-distance motion subspace is the subspace which contains</span>
<span class="sd">    the relative motions of any number of atom pairs along</span>
<span class="sd">    their distance vector, e.g. bond elongation between two</span>
<span class="sd">    bonded atoms.</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">universe</span><span class="p">,</span> <span class="n">atom_pairs</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        :param universe: the universe for which the subspace is created</span>
<span class="sd">        :type universe: :class:`~MMTK.Universe.Universe`</span>
<span class="sd">        :param atom_pairs: a sequence of atom pairs whose distance-vector</span>
<span class="sd">                           motion is included in the subspace</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="n">vectors</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="k">for</span> <span class="n">atom1</span><span class="p">,</span> <span class="n">atom2</span> <span class="ow">in</span> <span class="n">atom_pairs</span><span class="p">:</span>
            <span class="n">v</span> <span class="o">=</span> <span class="n">ParticleProperties</span><span class="o">.</span><span class="n">ParticleVector</span><span class="p">(</span><span class="n">universe</span><span class="p">)</span>
            <span class="n">distance</span> <span class="o">=</span> <span class="n">atom1</span><span class="o">.</span><span class="n">position</span><span class="p">()</span><span class="o">-</span><span class="n">atom2</span><span class="o">.</span><span class="n">position</span><span class="p">()</span>
            <span class="n">v</span><span class="p">[</span><span class="n">atom1</span><span class="p">]</span> <span class="o">=</span> <span class="n">distance</span>
            <span class="n">v</span><span class="p">[</span><span class="n">atom2</span><span class="p">]</span> <span class="o">=</span> <span class="o">-</span><span class="n">distance</span>
            <span class="n">vectors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
        <span class="n">Subspace</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">universe</span><span class="p">,</span> <span class="n">vectors</span><span class="p">)</span></div>
</pre></div>

          </div>
        </div>
      </div>
      <div class="sphinxsidebar">
        <div class="sphinxsidebarwrapper">
<div id="searchbox" style="display: none">
  <h3>Quick search</h3>
    <form class="search" action="../../search.html" method="get">
      <input type="text" name="q" />
      <input type="submit" value="Go" />
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
    <p class="searchtip" style="font-size: 90%">
    Enter search terms or a module, class or function name.
    </p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li><a href="../../index.html">MMTK User Guide 2.7.7 documentation</a> &raquo;</li>
          <li><a href="../index.html" >Module code</a> &raquo;</li> 
      </ul>
    </div>
    <div class="footer">
        &copy; Copyright 2010, Konrad Hinsen.
      Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.3.
    </div>
  </body>
</html>