1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>MMTK User’s Guide — MMTK User Guide 2.7.7 documentation</title>
<link rel="stylesheet" href="_static/default.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '',
VERSION: '2.7.7',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<link rel="top" title="MMTK User Guide 2.7.7 documentation" href="index.html" />
<link rel="next" title="Glossary" href="glossary.html" />
<link rel="prev" title="MMTK User Guide" href="index.html" />
</head>
<body>
<div class="related">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="glossary.html" title="Glossary"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="index.html" title="MMTK User Guide"
accesskey="P">previous</a> |</li>
<li><a href="index.html">MMTK User Guide 2.7.7 documentation</a> »</li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body">
<div class="section" id="mmtk-user-s-guide">
<h1>MMTK User’s Guide<a class="headerlink" href="#mmtk-user-s-guide" title="Permalink to this headline">¶</a></h1>
<p>for MMTK 2.7.7</p>
<p>by Konrad Hinsen</p>
</div>
<div class="section" id="introduction">
<h1>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline">¶</a></h1>
<p>The Molecular Modelling Toolkit (MMTK)
presents a new approach to molecular simulations. It is not a
“simulation program” with a certain set of functions that can be used
by writing more or less flexible “input files”, but a collection of
library modules written in an easy-to-learn high-level programming
language, <a class="reference external" href="http://www.python.org">Python</a>. This approach
offers three important advantages:</p>
<ul class="simple">
<li>Application programs can use the full power of a general and well-designed
programming language.</li>
<li>Application programs can profit from the large set of other
libraries that are available for Python. These may be scientific or
non-scientific; for example, it is very easy to write simulation or
analysis programs with graphical user interfaces (using the
module Tkinter in the Python standard library), or couple scientific
calculations with a Web server.</li>
<li>Any user can provide useful additions in separate modules, whereas adding
features to a monolithic program requires at least the cooperation of
the original author.</li>
</ul>
<p>To further encourage collaborative code development, MMTK uses a very
unrestrictive licensing policy. MMTK is free software, just like
Python. Although MMTK is copyrighted, anyone is allowed to use it for
any purpose, including commercial ones, as well as to modify and
redistribute it (a more precise description is given in the copyright
statement that comes with the code).</p>
<p>This manual describes version 2.7.7 of MMTK. The 2.x versions contain
some incompatible changes with respect to earlier versions (1.x), most
importantly a package structure that reduces the risk of name
conflicts with other Python packages, and facilitates future
enhancements. There are also many new features and improvements to
existing functions.</p>
<p>Using MMTK requires a basic knowledge of object-oriented programming
and Python. Newcomers to this subject should have a look at the
introductory section in this manual and at the <a class="reference external" href="http://www.python.org/doc/tut/tut.html">Python tutorial</a> (which also comes with the
Python interpreter). There are also numerous <a class="reference external" href="http://www.python.org/doc/Books.html">books on Python</a> that are useful in getting
started. Even without MMTK, Python is a very useful programming
language for scientific use, allowing rapid development and testing
and easy interfacing to code written in low-level languages such as
Fortran or C.</p>
<p>This manual consists of several introductory chapters and a
<a class="reference internal" href="modules.html#reference"><em>module reference</em></a>. The introductory chapters explain
how common tasks are handled with MMTK, but they do not describe all
of its features, nor do they contain a full documentation of functions
or classes. This information can be found in the
<a class="reference internal" href="modules.html#reference"><em>module -reference</em></a>, which describes all classes and functions
intended for end-user applications module by module, using
documentation extracted directly from the source code. References
from the introductory sections to the module reference facilitate
finding the relevant documentation.</p>
</div>
<div class="section" id="overview">
<h1>Overview<a class="headerlink" href="#overview" title="Permalink to this headline">¶</a></h1>
<p>This chapter explains the basic structure of MMTK and its view of
molecular systems. Every MMTK user should read it at least once.</p>
<div class="section" id="using-mmtk">
<h2>Using MMTK<a class="headerlink" href="#using-mmtk" title="Permalink to this headline">¶</a></h2>
<p>MMTK applications are ordinary Python programs, and can be written
using any standard text editor. For interactive use it is recommended
to use one of the many tools available for interactive Python
programming.</p>
<p>MMTK tries to be as user-friendly as possible for interactive use. For
example, lengthy calculations can usually be interrupted by typing
Control-C. This will result in an error message (“Keyboard
Interrupt”), but you can simply go on typing other commands.
Interruption is particularly useful for energy minimization and
molecular dynamics: you can interrupt the calculation at any time,
look at the current state or do some analysis, and then continue.</p>
</div>
<div class="section" id="modules">
<h2>Modules<a class="headerlink" href="#modules" title="Permalink to this headline">¶</a></h2>
<p>MMTK is a package consisting of various modules, most of them written
in Python, and some in C for efficiency. The individual modules are
described in the <a class="reference internal" href="modules.html#reference"><em>module -reference</em></a>. The basic
definitions that almost every application needs are collected in the
top-level module, MMTK. The first line of most applications is
therefore:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="kn">from</span> <span class="nn">MMTK</span> <span class="kn">import</span> <span class="o">*</span>
</pre></div>
</div>
<p>The definitions that are specific to particular applications reside in
submodules within the package MMTK. For example, force fields are
defined in <tt class="xref py py-mod docutils literal"><span class="pre">MMTK.ForceFields</span></tt>, and peptide
chain and protein objects are defined in <a class="reference internal" href="modules.html#module-MMTK.Proteins" title="MMTK.Proteins"><tt class="xref py py-mod docutils literal"><span class="pre">MMTK.Proteins</span></tt></a>.</p>
<p>Python provides two ways to access objects in modules and submodules.
The first one is importing a module and referring to objects in it,
e.g.:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="kn">import</span> <span class="nn">MMTK</span>
<span class="kn">import</span> <span class="nn">MMTK.ForceFields</span>
<span class="n">universe</span> <span class="o">=</span> <span class="n">MMTK</span><span class="o">.</span><span class="n">InfiniteUniverse</span><span class="p">(</span><span class="n">MMTK</span><span class="o">.</span><span class="n">ForceFields</span><span class="o">.</span><span class="n">Amber99ForceField</span><span class="p">())</span>
</pre></div>
</div>
<p>The second method is importing all or some objects <em>from</em>
a module:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="kn">from</span> <span class="nn">MMTK</span> <span class="kn">import</span> <span class="n">InfiniteUniverse</span>
<span class="kn">from</span> <span class="nn">MMTK.ForceFields</span> <span class="kn">import</span> <span class="n">Amber99ForceField</span>
<span class="n">universe</span> <span class="o">=</span> <span class="n">InfiniteUniverse</span><span class="p">(</span><span class="n">Amber99ForceField</span><span class="p">())</span>
</pre></div>
</div>
<p>These two import styles can also be mixed according to convience.
In order to prevent any confusion, all objects are referred to by
their full names in this manual. The Amber force field object
is thus called <tt class="xref py py-class docutils literal"><span class="pre">MMTK.ForceFields.Amber99ForceField</span></tt>.
Of course the user is free to use selective imports in order to
be able to use such objects with shorter names.</p>
</div>
<div class="section" id="objects">
<h2>Objects<a class="headerlink" href="#objects" title="Permalink to this headline">¶</a></h2>
<p>MMTK is an object-oriented system. Since objects are everywhere and
everything is an object, it is useful to know the most important
object types and what can be done with them. All object types in MMTK
have meaningful names, so it is easy to identify them in practice. The
following overview contains only those objects that a user will see
directly. There are many more object types used by MMTK internally,
and also some less common user objects that are not mentioned here.</p>
<div class="section" id="chemical-objects">
<h3>Chemical objects<a class="headerlink" href="#chemical-objects" title="Permalink to this headline">¶</a></h3>
<p>These are the objects that represent the parts of a molecular system:</p>
<ul class="simple">
<li>atoms</li>
<li>groups</li>
<li>molecules</li>
<li>molecular complexes</li>
</ul>
<p>These objects form a simple hierarchy: complexes consist of
molecules, molecules consist of groups and atoms, groups consist of
smaller groups and atoms. All of these, except for groups,
can be used directly to construct a molecular system. Groups can
only be used in the definitions of other groups and molecules in the
<a class="reference internal" href="#overview-database"><em>The chemical database</em></a>.</p>
<p>A number of operations can be performed on chemical objects, which
can roughly be classified into inquiry (constituent atoms, bonds, center
of mass etc.) and modification (translate, rotate).</p>
<p>There are also specialized versions of some of these objects. For example,
MMTK defines proteins as special complexes, consisting of peptide
chains, which are special molecules. They offer a range of special
operations (such as selecting residues or constructing the positions of
missing hydrogen atoms) that do not make sense for molecules in
general.</p>
</div>
<div class="section" id="collections">
<h3>Collections<a class="headerlink" href="#collections" title="Permalink to this headline">¶</a></h3>
<p>Collection objects represent arbitrary collections of chemical
objects. They are used to be able to refer to collections as single
entities. For example, you might want to call all water molecules
collectively “solvent”. Most of the operations on chemical objects
are also available for collections.</p>
</div>
<div class="section" id="force-fields">
<h3>Force fields<a class="headerlink" href="#force-fields" title="Permalink to this headline">¶</a></h3>
<p>Force field objects represent a precise description of force
fields, i.e. a complete recipe for calculating the potential energy
(and its derivatives) for a given molecular system. In other words,
they specify not only the functional form of the various interactions,
but also all parameters and the prescriptions for applying these
parameters to an actual molecular system.</p>
</div>
<div class="section" id="universes">
<h3>Universes<a class="headerlink" href="#universes" title="Permalink to this headline">¶</a></h3>
<p>Universes define complete molecular systems, i.e. they contain
chemical objects. In addition, they describe interactions within the
system (by a force field), boundary conditions, external fields,
etc. Many of the operations that can be used on chemical objects can
also be applied to complete universes.</p>
</div>
<div class="section" id="minimizers-and-integrators">
<h3>Minimizers and integrators<a class="headerlink" href="#minimizers-and-integrators" title="Permalink to this headline">¶</a></h3>
<p>A minimizer object is a special “machine” that can find local minima
in the potential energy surface of a universe. You may consider this a
function, if you wish, but of course functions are just special
objects. Similarly, an integrator is a special “machine” that can
determine a dynamical trajectory for a system on a given potential
energy surface.</p>
</div>
<div class="section" id="trajectories">
<h3>Trajectories<a class="headerlink" href="#trajectories" title="Permalink to this headline">¶</a></h3>
<p>Minimizers and integrators can produce trajectories, which are special
files containing a sequence of configurations and/or other related
information. Of course trajectory objects can also be read for
analysis.</p>
</div>
<div class="section" id="variables">
<h3>Variables<a class="headerlink" href="#variables" title="Permalink to this headline">¶</a></h3>
<p>Variable objects (not to be confused with standard Python variables)
describe quantities that have a value for each atom in a system, for
example positions, masses, or energy gradients. Their most common use
is for storing various configurations of a system.</p>
</div>
<div class="section" id="normal-modes">
<h3>Normal modes<a class="headerlink" href="#normal-modes" title="Permalink to this headline">¶</a></h3>
<p>Normal mode objects contain normal mode frequencies and atomic
displacements for a given universe. MMTK provides three kinds of
normal modes which correspond to three different physical situations:</p>
<ul class="simple">
<li>Energetic modes represent the principal axes of the potential
energy surface. They each have a force constant that is smallest
for the most collective motions and highest for the most localized
motions. Energetic modes are appropriate for describing the
potential energy surface without reference to any particular
dynamics, e.g. in flexibility analysis or Monte-Carlo sampling.</li>
<li>Vibrational modes represent the vibrational motions of a system
that have well-defined frequencies. Their use implies that the
system follows Newtonian dynamics or quantum dynamics. This is
appropriate for small molecules, and for the most localized motions
of macromolecules.</li>
<li>Brownian modes represent diffusional motions of an overdamped
system. They describe systems with Brownian dynamics and are
appropriate for describing the slow motions of macromolecules.</li>
</ul>
</div>
<div class="section" id="non-mmtk-objects">
<h3>Non-MMTK objects<a class="headerlink" href="#non-mmtk-objects" title="Permalink to this headline">¶</a></h3>
<p>An MMTK application program will typically also make use of objects
provided by Python or Python library modules. A particularly useful
library is the package Scientific, which
is also used by MMTK itself. The most important objects are</p>
<ul class="simple">
<li>numbers (integers, real number, complex numbers), provided by Python</li>
<li>vectors (in 3D coordinate space) provided by the module Scientific.Geometry.</li>
<li>character strings, provided by Python</li>
<li>files, provided by Python</li>
</ul>
<p>Of course MMTK applications can make use of the Python standard
library or any other Python modules. For example, it is possible
to write a simulation program that provides status reports via an
integrated Web server, using the Python standard module SimpleHTTPServer.</p>
</div>
</div>
<div class="section" id="the-chemical-database">
<span id="overview-database"></span><h2>The chemical database<a class="headerlink" href="#the-chemical-database" title="Permalink to this headline">¶</a></h2>
<p>For defining the chemical objects described above, MMTK uses a
database of descriptions. There is a database for atoms, one for
groups, etc. When you ask MMTK to make a specific chemical object, for
example a water molecule, MMTK looks for the definition of water in
the molecule database. A database entry contains everything there
is to know about the object it defines: its constituents and their
names, configurations, other names used e.g. for I/O, and all
information force fields might need about the objects.</p>
<p>MMTK comes with database entries for many common objects (water,
amino acids, etc.). For other objects you will have to write the definitions
yourself. as described in the section <a class="reference internal" href="#database"><em>Constructing the database</em></a>.</p>
</div>
<div class="section" id="id1">
<h2>Force fields<a class="headerlink" href="#id1" title="Permalink to this headline">¶</a></h2>
<p>MMTK contains everything necessary to use the
<a class="reference external" href="http://ambermd.org/#ff">Amber 99 force field</a>
on proteins, DNA, and
water molecules. It uses the standard Amber parameter and modification
file format. In addition to the Amber force field, there is a simple
Lennard-Jones force field for noble gases, and a deformation force
field for normal mode calculations on large proteins.</p>
<p>MMTK was designed to make the addition of force field terms and the
implementation of other force fields as easy as possible. Force field
terms can be defined in Python (for ease of implementation) or in
Cython, C, or Fortran (for efficiency). This is described in the
developer’s guide.</p>
</div>
<div class="section" id="units">
<h2>Units<a class="headerlink" href="#units" title="Permalink to this headline">¶</a></h2>
<p>Since MMTK is not a black-box program, but a modular library,
it is essential for it to use a consistent unit system in which, for
example, the inverse of a frequency is a time, and the product of
a mass and the square of a velocity is an energy, without additional
conversion factors. Black-box programs can (and usually do) use
a consistent unit system internally and convert to “conventional”
units for input and output.</p>
<p>The unit system of MMTK consists mostly of SI units of appropriate
magnitude for molecular systems:</p>
<table border="1" class="docutils">
<colgroup>
<col width="58%" />
<col width="42%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head"><strong>Measurement</strong></th>
<th class="head"><strong>Units</strong></th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>Length</td>
<td>nm</td>
</tr>
<tr class="row-odd"><td>Time</td>
<td>ps</td>
</tr>
<tr class="row-even"><td>Mass</td>
<td>amu (g/mol)</td>
</tr>
<tr class="row-odd"><td>Energy</td>
<td>kJ/mol</td>
</tr>
<tr class="row-even"><td>Frequency</td>
<td>THz (1/ps)</td>
</tr>
<tr class="row-odd"><td>Temperature</td>
<td>K</td>
</tr>
<tr class="row-even"><td>Charge</td>
<td>e</td>
</tr>
</tbody>
</table>
<p>The module <a class="reference internal" href="modules.html#module-MMTK.Units" title="MMTK.Units"><tt class="xref py py-mod docutils literal"><span class="pre">MMTK.Units</span></tt></a> contains convenient
conversion constants for the units commonly used in computational
chemistry. For example, a length of 2 Ångström can be
written as <tt class="docutils literal"><span class="pre">2*Units.Ang</span></tt>, and a frequency can be
printed in wavenumbers with <tt class="docutils literal"><span class="pre">print</span> <span class="pre">frequency/Units.invcm</span></tt>.</p>
</div>
<div class="section" id="a-simple-example">
<h2>A simple example<a class="headerlink" href="#a-simple-example" title="Permalink to this headline">¶</a></h2>
<p>The following simple example shows how a typical MMTK application
might look like. It constructs a system consisting of a single water
molecule and runs a short molecular dynamics trajectory. There are
many alternative ways to do this; this particular one was chosen
because it makes each step explicit and clear. The individual steps
are explained in the remaining chapters of the manual.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="c"># Import the necessary MMTK definitions.</span>
<span class="kn">from</span> <span class="nn">MMTK</span> <span class="kn">import</span> <span class="o">*</span>
<span class="kn">from</span> <span class="nn">MMTK.ForceFields</span> <span class="kn">import</span> <span class="n">Amber99ForceField</span>
<span class="kn">from</span> <span class="nn">MMTK.Trajectory</span> <span class="kn">import</span> <span class="n">Trajectory</span><span class="p">,</span> <span class="n">TrajectoryOutput</span><span class="p">,</span> <span class="n">StandardLogOutput</span>
<span class="kn">from</span> <span class="nn">MMTK.Dynamics</span> <span class="kn">import</span> <span class="n">VelocityVerletIntegrator</span>
<span class="c"># Create an infinite universe (i.e. no boundaries, non-periodic).</span>
<span class="n">universe</span> <span class="o">=</span> <span class="n">InfiniteUniverse</span><span class="p">(</span><span class="n">Amber99ForceField</span><span class="p">())</span>
<span class="c"># Create a water molecule in the universe.</span>
<span class="c"># Water is defined in the database.</span>
<span class="n">universe</span><span class="o">.</span><span class="n">molecule</span> <span class="o">=</span> <span class="n">Molecule</span><span class="p">(</span><span class="s">'water'</span><span class="p">)</span>
<span class="c"># Generate random velocities.</span>
<span class="n">universe</span><span class="o">.</span><span class="n">initializeVelocitiesToTemperature</span><span class="p">(</span><span class="mi">300</span><span class="o">*</span><span class="n">Units</span><span class="o">.</span><span class="n">K</span><span class="p">)</span>
<span class="c"># Create an integrator.</span>
<span class="n">integrator</span> <span class="o">=</span> <span class="n">VelocityVerletIntegrator</span><span class="p">(</span><span class="n">universe</span><span class="p">)</span>
<span class="c"># Generate a trajectory</span>
<span class="n">trajectory</span> <span class="o">=</span> <span class="n">Trajectory</span><span class="p">(</span><span class="n">universe</span><span class="p">,</span> <span class="s">"water.nc"</span><span class="p">,</span> <span class="s">"w"</span><span class="p">)</span>
<span class="c"># Run the integrator for 50 steps of 1 fs, printing time and energy</span>
<span class="c"># every fifth step and writing time, energy, temperature, and the positions</span>
<span class="c"># of all atoms to the trajectory at each step.</span>
<span class="n">t_actions</span> <span class="o">=</span> <span class="p">[</span><span class="n">StandardLogOutput</span><span class="p">(</span><span class="mi">5</span><span class="p">),</span> \
<span class="n">TrajectoryOutput</span><span class="p">(</span><span class="s">"time"</span><span class="p">,</span> <span class="s">"energy"</span><span class="p">,</span> \
<span class="s">"thermodynamic"</span><span class="p">,</span> <span class="s">"configuration"</span><span class="p">),</span> <span class="mi">0</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span>
<span class="n">integrator</span><span class="p">(</span><span class="n">delta_t</span> <span class="o">=</span> <span class="mf">1.</span><span class="o">*</span><span class="n">Units</span><span class="o">.</span><span class="n">fs</span><span class="p">,</span> <span class="n">steps</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span> <span class="n">actions</span> <span class="o">=</span> <span class="n">t_actions</span><span class="p">)</span>
<span class="c"># Close the trajectory</span>
<span class="n">trajectory</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="constructing-a-molecular-system">
<h1>Constructing a molecular system<a class="headerlink" href="#constructing-a-molecular-system" title="Permalink to this headline">¶</a></h1>
<p>The construction of a complete system for simulation or analysis
involves some or all of the following operations:</p>
<ul class="simple">
<li>Creating molecules and other chemical objects.</li>
<li>Defining the configuration of all objects.</li>
<li>Defining the “surroundings” (e.g. boundary conditions).</li>
<li>Choosing a force field.</li>
</ul>
<p>MMTK offers a large range of functions to deal with these tasks.</p>
<div class="section" id="creating-chemical-objects">
<h2>Creating chemical objects<a class="headerlink" href="#creating-chemical-objects" title="Permalink to this headline">¶</a></h2>
<p>Chemical objects (atoms, molecules, complexes) are created from
definitions in the <a class="reference internal" href="#database"><em>Constructing the database</em></a>. Since
these definitions contain most of the necessary information, the
subsequent creation of the objects is a simple procedure.</p>
<p>All objects are created by their class name
(<a class="reference internal" href="modules.html#MMTK.ChemicalObjects.Atom" title="MMTK.ChemicalObjects.Atom"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.ChemicalObjects.Atom</span></tt></a>, <a class="reference internal" href="modules.html#MMTK.ChemicalObjects.Molecule" title="MMTK.ChemicalObjects.Molecule"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.ChemicalObjects.Molecule</span></tt></a>,
and <a class="reference internal" href="modules.html#MMTK.ChemicalObjects.Complex" title="MMTK.ChemicalObjects.Complex"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.ChemicalObjects.Complex</span></tt></a>) with the name
of the definition file as first parameter. Additional optional parameters
can be specified to modify the object being created. The following optional
parameters can be used for all object types:</p>
<ul class="simple">
<li>name=string
Specifies a name for the object. The default name is the one given in
the definition file.</li>
<li>position=vector
Specifies the position of the center of mass. The default is the origin.</li>
<li>configuration=string
Indicates a configuration from the configuration dictionary in the
definition file. The default is ‘default’ if such an entry exists in the
configuration dictionary. Otherwise the object is created without atomic
positions.</li>
</ul>
<p>Some examples with additional explanations for specific types:</p>
<ul class="simple">
<li><tt class="docutils literal"><span class="pre">Atom('C')</span></tt> creates a carbon atom.</li>
<li><tt class="docutils literal"><span class="pre">Molecule('water',</span> <span class="pre">position=Vector(0.,0.,1.))</span></tt>
creates a water molecule using configuration ‘default’ and moves the
center of mass to the indicated position.</li>
</ul>
<div class="section" id="proteins-peptide-chains-and-nucleotide-chains">
<h3>Proteins, peptide chains, and nucleotide chains<a class="headerlink" href="#proteins-peptide-chains-and-nucleotide-chains" title="Permalink to this headline">¶</a></h3>
<p>MMTK contains special support for working with proteins, peptide
chains, and nucleotide chains. As described in the chapter
<a class="reference internal" href="#database"><em>Constructing the database</em></a>, proteins can be described by a special database
definition file. However, it is often simpler to create macromolecular
objects directly in an application program. The classes are
<a class="reference internal" href="modules.html#MMTK.Proteins.PeptideChain" title="MMTK.Proteins.PeptideChain"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Proteins.PeptideChain</span></tt></a>, <a class="reference internal" href="modules.html#MMTK.Proteins.Protein" title="MMTK.Proteins.Protein"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Proteins.Protein</span></tt></a>,
and <a class="reference internal" href="modules.html#MMTK.NucleicAcids.NucleotideChain" title="MMTK.NucleicAcids.NucleotideChain"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.NucleicAcids.NucleotideChain</span></tt></a>.</p>
<p>Proteins can be created from definition files in the database,
from previously constructed peptide chain objects, or directly
from PDB files if no special manipulations are necessary.</p>
<p>Examples:</p>
<ul class="simple">
<li>Protein(‘insulin’) creates a protein object for
insulin from a database file.</li>
<li>Protein(‘1mbd.pdb’) creates a protein object for myoglobin
directly from a PDB file, but leaving out the
heme group, which is not a peptide chain.</li>
</ul>
<p>Peptide chains are created from a sequence of residues, which can be
a <a class="reference internal" href="modules.html#MMTK.PDB.PDBPeptideChain" title="MMTK.PDB.PDBPeptideChain"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.PDB.PDBPeptideChain</span></tt></a> object, a list of three-letter
residue codes, or a string containing one-letter residue codes. In the
last two cases the atomic positions are not defined. MMTK provides
several models for the residues which provide different levels of
detail: an all-atom model, a model without hydrogen atoms, two models
containing only polar hydrogens (using different definitions of polar
hydrogens), and a model containing only the C<sub>α</sub> atoms, with each
C<sub>α</sub> atom having the mass of the entire residue. The last model
is useful for conformational analyses in which only the backbone
conformations are important.</p>
<p>The construction of nucleotide chains is very similar. The residue
list can be either a <a class="reference internal" href="modules.html#MMTK.PDB.PDBNucleotideChain" title="MMTK.PDB.PDBNucleotideChain"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.PDB.PDBNucleotideChain</span></tt></a> object or a
list of two-letter residue names. The first letter of a residue name
indicates the sugar type (‘R’ for ribose and’D’ for desoxyribose), and
the second letter defines the base (‘A’, ‘C’, and’G’, plus ‘T’ for DNA
and’U’ for RNA). The models are the same as for peptide chains, except
that the C<sub>α</sub> model does not exist.</p>
<p>Most frequently proteins and nucleotide chains are created from a PDB
file. The PDB files often contain solvent (water) as well, and perhaps
some other molecules. MMTK provides convenient functions for extracting
information from PDB files and for building molecules from them in the
module <a class="reference internal" href="modules.html#module-MMTK.PDB" title="MMTK.PDB"><tt class="xref py py-mod docutils literal"><span class="pre">MMTK.PDB</span></tt></a>. The first step is the creation of a
<a class="reference internal" href="modules.html#MMTK.PDB.PDBConfiguration" title="MMTK.PDB.PDBConfiguration"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.PDB.PDBConfiguration</span></tt></a> object from the PDB file:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="kn">from</span> <span class="nn">MMTK.PDB</span> <span class="kn">import</span> <span class="n">PDBConfiguration</span>
<span class="n">configuration</span> <span class="o">=</span> <span class="n">PDBConfiguration</span><span class="p">(</span><span class="s">'some_file.pdb'</span><span class="p">)</span>
</pre></div>
</div>
<p>The easiest way to generate MMTK objects for all molecules in the
PDB file is then</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">molecules</span> <span class="o">=</span> <span class="n">configuration</span><span class="o">.</span><span class="n">createAll</span><span class="p">()</span>
</pre></div>
</div>
<p>The result is a collection of molecules, peptide chains, and
nucleotide chains, depending on the contents of the PDB files.
There are also methods for modifying the PDBConfiguration before
creating MMTK objects from it, and for creating objects
selectively. See the documentation for the modules <a class="reference internal" href="modules.html#module-MMTK.PDB" title="MMTK.PDB"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.PDB</span></tt></a> and Scientific.IO.PDB for details,
as well as the <a class="reference internal" href="examples.html#example-proteins"><em>Proteins</em></a> and <a class="reference internal" href="examples.html#example-dna"><em>DNA</em></a> examples.</p>
</div>
<div class="section" id="lattices">
<h3>Lattices<a class="headerlink" href="#lattices" title="Permalink to this headline">¶</a></h3>
<p>Sometimes it is necessary to generate objects (atoms or molecules)
positioned on a lattice. To facilitate this task, MMTK defines lattice
objects which are essentially sequence objects containing points or
objects at points. Lattices can therefore be used like lists with
indexing and for-loops. The lattice classes
are <a class="reference internal" href="modules.html#MMTK.Geometry.RhombicLattice" title="MMTK.Geometry.RhombicLattice"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Geometry.RhombicLattice</span></tt></a>,
<a class="reference internal" href="modules.html#MMTK.Geometry.BravaisLattice" title="MMTK.Geometry.BravaisLattice"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Geometry.BravaisLattice</span></tt></a>, and
<a class="reference internal" href="modules.html#MMTK.Geometry.SCLattice" title="MMTK.Geometry.SCLattice"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Geometry.SCLattice</span></tt></a>.</p>
</div>
<div class="section" id="random-numbers">
<h3>Random numbers<a class="headerlink" href="#random-numbers" title="Permalink to this headline">¶</a></h3>
<p>The Python standard library and the Numerical Python package provide
random number generators, and more are available in seperate packages.
MMTK provides some convenience functions that return more specialized
random quantities: random points in a universe, random velocities,
random particle displacement vectors, random orientations. These
functions are defined in module <a class="reference internal" href="modules.html#module-MMTK.Random" title="MMTK.Random"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Random</span></tt></a>.</p>
</div>
<div class="section" id="id2">
<h3>Collections<a class="headerlink" href="#id2" title="Permalink to this headline">¶</a></h3>
<p>Often it is useful to treat a collection of several objects as a
single entity. Examples are a large number of solvent molecules
surrounding a solute, or all sidechains of a protein. MMTK has special
collection objects for this purpose, defined as
<a class="reference internal" href="modules.html#MMTK.Collections.Collection" title="MMTK.Collections.Collection"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Collections.Collection</span></tt></a>. Most of the methods
available for molecules can also be used on collections.</p>
<p>A variant of a collection is the partitioned collection, implemented in
class <a class="reference internal" href="modules.html#MMTK.Collections.PartitionedCollection" title="MMTK.Collections.PartitionedCollection"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Collections.PartitionedCollection</span></tt></a>. This class
acts much like a standard collection, but groups its elements by
geometrical position in small sub-boxes. As a consequence, some geometrical
algorithms (e.g. pair search within a cutoff) are much faster, but
other operations become somewhat slower.</p>
</div>
<div class="section" id="creating-universes">
<h3>Creating universes<a class="headerlink" href="#creating-universes" title="Permalink to this headline">¶</a></h3>
<p>A universe describes a complete molecular system consisting of any
number of chemical objects and a specification of their interactions
(i.e. a force field) and surroundings: boundary conditions, external
fields, thermostats, etc. The universe classes are defined in module
MMTK:</p>
<ul class="simple">
<li><a class="reference internal" href="modules.html#MMTK.Universe.InfiniteUniverse" title="MMTK.Universe.InfiniteUniverse"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Universe.InfiniteUniverse</span></tt></a> represents an infinite universe,
without any boundary or periodic boundary conditions.</li>
<li><a class="reference internal" href="modules.html#MMTK.Universe.ParallelepipedicPeriodicUniverse" title="MMTK.Universe.ParallelepipedicPeriodicUniverse"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Universe.ParallelepipedicPeriodicUniverse</span></tt></a> represents
a general periodic universe defined by three basis vectors.</li>
<li><a class="reference internal" href="modules.html#MMTK.Universe.OrthorhombicPeriodicUniverse" title="MMTK.Universe.OrthorhombicPeriodicUniverse"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Universe.OrthorhombicPeriodicUniverse</span></tt></a> represents a periodic
universe with an orthorhombic elementary cell, whose size is defined
by the three edge lengths. The edges are oriented along the axes of
the coordinate system.</li>
<li><a class="reference internal" href="modules.html#MMTK.Universe.CubicPeriodicUniverse" title="MMTK.Universe.CubicPeriodicUniverse"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Universe.CubicPeriodicUniverse</span></tt></a> is a special case
of <a class="reference internal" href="modules.html#MMTK.Universe.OrthorhombicPeriodicUniverse" title="MMTK.Universe.OrthorhombicPeriodicUniverse"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Universe.OrthorhombicPeriodicUniverse</span></tt></a> in which the
elementary cell is cubic.</li>
</ul>
<p>Universes are created empty; the contents are then added to them.
Three types of objects can be added to a universe: chemical objects
(atoms, molecules, etc.), collections, and environment objects
(thermostats etc.). It is also possible to remove objects from a
universe.</p>
</div>
<div class="section" id="id3">
<h3>Force fields<a class="headerlink" href="#id3" title="Permalink to this headline">¶</a></h3>
<p>MMTK comes with several force fields, and permits the definition of
additional force fields. Force fields are defined in module
<tt class="xref py py-class docutils literal"><span class="pre">MMTK.ForceFields.ForceField</span></tt>. The most important built-in force
field is the <a class="reference external" href="http://ambermd.org/#ff">Amber 99 force field</a>, represented by the
class
<tt class="xref py py-class docutils literal"><span class="pre">MMTK.ForceFields.Amber.AmberForceField.Amber99ForceField</span></tt>. It
offers several strategies for electrostatic interactions, including
Ewald summation and cutoff
with charge neutralization and optional screening <a class="reference internal" href="#wolf1999"><em>[Wolf1999]</em></a>..</p>
<p>In addition to the Amber 99 force field, there is the older Amber 94
forcefield, a Lennard-Jones force field for noble gases (Class
<tt class="xref py py-class docutils literal"><span class="pre">MMTK.ForceFields.LennardJonesFF</span></tt>) and an Elastic Network Model
force field for protein normal mode calculations
(<tt class="xref py py-class docutils literal"><span class="pre">MMTK.ForceFields.DeformationFF.CalphaForceField</span></tt>).</p>
</div>
</div>
<div class="section" id="referring-to-objects-and-parts-of-objects">
<h2>Referring to objects and parts of objects<a class="headerlink" href="#referring-to-objects-and-parts-of-objects" title="Permalink to this headline">¶</a></h2>
<p>Most MMTK objects (in fact all except for atoms) have a hierarchical
structure of parts of which they consist. For many operations it is
necessary to access specific parts in this hierarchy.</p>
<p>In most cases, parts are attributes with a specific name. For example,
the oxygen atom in every water molecule is an attribute with the name
“O”. Therefore if <tt class="docutils literal"><span class="pre">w</span></tt> refers to a water molecule, then <tt class="docutils literal"><span class="pre">w.O</span></tt>
refers to its oxygen atom. For a more complicated example, if <tt class="docutils literal"><span class="pre">m</span></tt>
refers to a molecule that has a methyl group called “M1”, then
<tt class="docutils literal"><span class="pre">m.M1.C</span></tt> refers to the carbon atom of that methyl group. The names
of attributes are defined in the database.</p>
<p>Some objects consist of parts that need not have unique names, for
example the elements of a collection, the residues in a peptide chain,
or the chains in a protein. Such parts are accessed by indices; the
objects that contain them are Python sequence types. Some examples:</p>
<ul class="simple">
<li>Asking for the number of items: if <tt class="docutils literal"><span class="pre">c</span></tt>
refers to a collection, then <tt class="docutils literal"><span class="pre">len(c)</span></tt> is
the number of its elements.</li>
<li>Extracting an item: if <tt class="docutils literal"><span class="pre">p</span></tt> refers to a
protein, then <tt class="docutils literal"><span class="pre">p[0]</span></tt> is its first peptide
chain.</li>
<li>Iterating over items: if <tt class="docutils literal"><span class="pre">p</span></tt> refers to a
peptide chain, then <tt class="docutils literal"><span class="pre">for</span> <span class="pre">residue</span> <span class="pre">in</span> <span class="pre">p:</span> <span class="pre">print</span>
<span class="pre">residue.position()</span></tt> will print the center of mass positions of
all its residues.</li>
</ul>
<p>Peptide and nucleotide chains also allow the operation of slicing: if
<tt class="docutils literal"><span class="pre">p</span></tt> refers to a peptide chain, then <tt class="docutils literal"><span class="pre">p[1:-1]</span></tt> is a subchain
extending from the second to the next-to-last residue.</p>
<div class="section" id="the-structure-of-peptide-and-nucleotide-chains">
<h3>The structure of peptide and nucleotide chains<a class="headerlink" href="#the-structure-of-peptide-and-nucleotide-chains" title="Permalink to this headline">¶</a></h3>
<p>Since peptide and nucleotide chains are not constructed from an explicit
definition file in the database, it is not evident where their
hierarchical structure comes from. But it is only the top-level
structure that is treated in a special way. The constituents of peptide
and nucleotide chains, residues, are normal group objects. The
definition files for these group objects are in the MMTK standard
database and can be freely inspected and even modified or overriden by
an entry in a database that is listed earlier in MMTKDATABASE.</p>
<p>Peptide chains are made up of amino acid residues, each of which is a
group consisting of two other groups, one being called “peptide” and
the other “sidechain”. The first group contains the peptide group and
the C and H atoms; everything else is contained in the sidechain. The
C atom of the fifth residue of peptide chain <tt class="docutils literal"><span class="pre">p</span></tt> is therefore
referred to as <tt class="docutils literal"><span class="pre">p[4].peptide.C_alpha</span></tt>.</p>
<p>Nucleotide chains are made up of nucleotide residues, each of which is
a group consisting of two or three other groups. One group is called
“sugar” and is either a ribose or a desoxyribose group, the second one
is called “base” and is one the five standard bases. All but the first
residue in a nucleotide chain also have a subgroup called “phosphate”
describing the phosphate group that links neighbouring residues.</p>
</div>
</div>
<div class="section" id="analyzing-and-modifying-atom-properties">
<h2>Analyzing and modifying atom properties<a class="headerlink" href="#analyzing-and-modifying-atom-properties" title="Permalink to this headline">¶</a></h2>
<div class="section" id="general-operations">
<h3>General operations<a class="headerlink" href="#general-operations" title="Permalink to this headline">¶</a></h3>
<p>Many inquiry and modification operations act at the atom level and can
equally well be applied to any object that is made up of atoms,
i.e. atoms, molecules, collections, universes, etc. These operations
are defined once in a <a class="reference internal" href="glossary.html#term-mix-in-class"><em class="xref std std-term">Mix-in class</em></a> called
<a class="reference internal" href="modules.html#MMTK.Collections.GroupOfAtoms" title="MMTK.Collections.GroupOfAtoms"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Collections.GroupOfAtoms</span></tt></a>, but are available for all
objects for which they make sense. They include inquiry-type functions
(total mass, center of mass, moment of inertia, bounding box, total
kinetic energy etc.), coordinate modifications (translation, rotation,
application of <a class="reference internal" href="#transformation"><em>Coordinate transformations</em></a>) and coordinate comparisons (RMS
difference, optimal fits).</p>
</div>
<div class="section" id="coordinate-transformations">
<span id="transformation"></span><h3>Coordinate transformations<a class="headerlink" href="#coordinate-transformations" title="Permalink to this headline">¶</a></h3>
<p>The most common coordinate manipulations involve translations and
rotations of specific parts of a system. It is often useful to refer
to such an operation by a special kind of object, which permits the
combination and analysis of transformations as well as its application
to atomic positions.</p>
<p>Transformation objects specify a general displacement consisting of a
rotation around the origin of the coordinate system followed by a
translation. They are defined in the module <tt class="docutils literal"><span class="pre">Scientific.Geometry</span></tt>,
but for convenience the module <tt class="docutils literal"><span class="pre">MMTK</span></tt> contains a reference to them
as well. Transformation objects corresponding to pure translations
can be created with <tt class="docutils literal"><span class="pre">Translation(displacement)</span></tt>; transformation
objects describing pure rotations with <tt class="docutils literal"><span class="pre">Rotation(axis,</span> <span class="pre">angle)</span></tt> or
<tt class="docutils literal"><span class="pre">Rotation(rotation_matrix)</span></tt>. Multiplication of transformation
objects returns a composite transformation.</p>
<p>The translational component of any transformation can be obtained by
calling the method <tt class="docutils literal"><span class="pre">translation()</span></tt>; the rotational component is
obtained analogously with <tt class="docutils literal"><span class="pre">rotation()</span></tt>. The displacement vector for
a pure translation can be extracted with the method
<tt class="docutils literal"><span class="pre">displacement()</span></tt>, a tuple of axis and angle can be extracted from a
pure rotation by calling <tt class="docutils literal"><span class="pre">axisAndAngle()</span></tt>.</p>
</div>
<div class="section" id="atomic-property-objects">
<span id="atom-property"></span><h3>Atomic property objects<a class="headerlink" href="#atomic-property-objects" title="Permalink to this headline">¶</a></h3>
<p>Many properties in a molecular system are defined for each individual
atom: position, velocity, mass, etc. Such properties are represented
in special objects, defined in module MMTK:
<a class="reference internal" href="modules.html#MMTK.ParticleProperties.ParticleScalar" title="MMTK.ParticleProperties.ParticleScalar"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.ParticleProperties.ParticleScalar</span></tt></a> for scalar quantities,
<a class="reference internal" href="modules.html#MMTK.ParticleProperties.ParticleVector" title="MMTK.ParticleProperties.ParticleVector"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.ParticleProperties.ParticleVector</span></tt></a> for vector quantities,
and <a class="reference internal" href="modules.html#MMTK.ParticleProperties.ParticleTensor" title="MMTK.ParticleProperties.ParticleTensor"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.ParticleProperties.ParticleTensor</span></tt></a> for rank-2
tensors. All these objects can be indexed with an atom object to
retrieve or change the corresponding value. Standard arithmetic
operations are also defined, as well as some useful methods.</p>
</div>
<div class="section" id="configurations">
<h3>Configurations<a class="headerlink" href="#configurations" title="Permalink to this headline">¶</a></h3>
<p>A configuration object, represented by the class
<a class="reference internal" href="modules.html#MMTK.ParticleProperties.Configuration" title="MMTK.ParticleProperties.Configuration"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.ParticleProperties.Configuration</span></tt></a> is a special variant of
a <a class="reference internal" href="modules.html#MMTK.ParticleProperties.ParticleVector" title="MMTK.ParticleProperties.ParticleVector"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.ParticleProperties.ParticleVector</span></tt></a> object. In addition
to the atomic coordinates of a universe, it stores geometric
parameters of a universe that are subject to change, e.g. the edge
lengths of the elementary cell of a periodic universe. Every universe
has a current configuration, which is what all operations act on by
default. It is also the configuration that is updated by
minimizations, molecular dynamics, etc. The current configuration can
be obtained by calling the method <tt class="docutils literal"><span class="pre">configuration()</span></tt>.</p>
<p>There are two ways to create configuration objects: by making a copy
of the current configuration (with <tt class="docutils literal"><span class="pre">universe.copyConfiguration()</span></tt>,
or by reading a configuration from a <a class="reference internal" href="#id5"><em>trajectory</em></a>.</p>
</div>
</div>
</div>
<div class="section" id="minimization-and-molecular-dynamics">
<h1>Minimization and Molecular Dynamics<a class="headerlink" href="#minimization-and-molecular-dynamics" title="Permalink to this headline">¶</a></h1>
<div class="section" id="id5">
<span id="id6"></span><h2>Trajectories<a class="headerlink" href="#id5" title="Permalink to this headline">¶</a></h2>
<p>Minimization and dynamics algorithms produce sequences of configurations
that are often stored for later analysis. In fact, they are often the
most valuable result of a lengthy simulation run. To make sure that the
use of trajectory files is not limited by machine compatibility, MMTK
stores trajectories in <a class="reference external" href="http://www.unidata.ucar.edu/packages/netcdf/">netCDF</a>
files. These files contain binary data, minimizing disk space usage, but
are freely interchangeable between different machines. In addition,
there are a number of programs that can perform standard operations on
arbitrary netCDF files, and which can therefore be used directly on MMTK
trajectory files. Finally, netCDF files are self-describing, i.e.
contain all the information needed to interpret their contents.
An MMTK trajectory file can thus be inspected and processed without
requiring any further information.</p>
<p>For illustrations of trajectory operations, see the <a class="reference internal" href="examples.html#example-trajectories"><em>examples</em></a>.</p>
<p>Trajectory file objects are represented by the class
<a class="reference internal" href="modules.html#MMTK.Trajectory.Trajectory" title="MMTK.Trajectory.Trajectory"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Trajectory.Trajectory</span></tt></a>. They can be opened for reading,
writing, or modification. The data in trajectory files can be stored
in single precision or double precision; single-precision is usually
sufficient, but double-precision files are required to reproduce a
given state of the system exactly.</p>
<p>A trajectory is closed by calling the method <tt class="docutils literal"><span class="pre">close()</span></tt>.
If anything has been written to a trajectory, closing it is required to
guarantee that all data has been written to the file. Closing a
trajectory after reading is recommended in order to prevent memory
leakage, but is not strictly required.</p>
<p>Newly created trajectories can contain all
objects in a universe or any subset; this is useful for limiting the
amount of disk space occupied by the file by not storing uninteresting
parts of the system, e.g. the solvent surrounding a protein. It is
even possible to create a trajectory for a subset of the atoms in a
molecule, e.g. for only the C<sub>α</sub> atoms of a protein. The universe
description that is stored in the trajectory file contains all
chemical objects of which at least one atom is represented.</p>
<p>When a trajectory is opened for reading, no universe object needs
to be specified. In that case, MMTK creates a universe from
the description contained in the trajectory file. This universe will
contain the same objects as the one for which the trajectory file was
created, but not necessarily have all the properties of the original
universe (the description contains only the names and types of the
objects in the universe, but not, for example, the force field). The
universe can be accessed via the attribute universe
of the trajectory.</p>
<p>If the trajectory was created with partial data for some of the objects,
reading data from it will set the data for the missing parts to
“undefined”. Analysis operations on such systems must be done very
carefully. In most cases, the trajectory data will contain the atomic
configurations, and in that case the “defined” atoms can be extracted
with the method <tt class="docutils literal"><span class="pre">atomsWithDefinedPositions()</span></tt>.</p>
<p>MMTK trajectory files can store various data: atomic positions,
velocities, energies, energy gradients etc. Each trajectory-producing
algorithm offers a set of quantities from which the user can choose what
to put into the trajectory. Since a detailed selection would be
tedious, the data is divided into classes, e.g. the class “energy”
stands for potential energy, kinetic energy, and whatever other
energy-related quantities an algorithm produces.</p>
<p>For optimizing I/O efficiency, the data layout in a trajectory file
can be modified by the block_size parameter. Small
block sizes favour reading or writing all data for one time step,
whereas large block sizes (up to the number of steps in the trajectory)
favour accessing a few values for all time steps, e.g. scalar
variables like energies or trajectories for individual atoms. The
default value of the block size is one.</p>
<p>Every trajectory file contains a history of its creation. The creation
of the file is logged with time and date, as well as each operation that
adds data to it with parameters and the time/date of start and end. This
information, together with the comment and the number of atoms and steps
contained in the file, can be obtained with the function
<a class="reference internal" href="modules.html#MMTK.Trajectory.trajectoryInfo" title="MMTK.Trajectory.trajectoryInfo"><tt class="xref py py-func docutils literal"><span class="pre">MMTK.Trajectory.trajectoryInfo()</span></tt></a>.</p>
<p>It is possible to read data from a trajectory file that is being
written to by another process. For efficiency, trajectory data is not
written to the file at every time step, but only approximately every
15 minutes. Therefore the amount of data available for reading may be
somewhat less than what has been produced already.</p>
</div>
<div class="section" id="options-for-minimization-and-dynamics">
<h2>Options for minimization and dynamics<a class="headerlink" href="#options-for-minimization-and-dynamics" title="Permalink to this headline">¶</a></h2>
<p>Minimizers and dynamics integrators accept various optional parameter
specifications. All of them are selected by keywords, have reasonable
default values, and can be specified when the minimizer or integrator
is created or when it is called. In addition to parameters that are
specific to each algorithm, there is a general parameter <tt class="docutils literal"><span class="pre">actions</span></tt>
that specifies actions that are executed periodically, including
trajectory and console output.</p>
<div class="section" id="periodic-actions">
<h3>Periodic actions<a class="headerlink" href="#periodic-actions" title="Permalink to this headline">¶</a></h3>
<p>Periodic actions are specified by the keyword parameter <tt class="docutils literal"><span class="pre">actions</span></tt>
whose value is a list of periodic actions, which defaults to an empty
list. Some of these actions are applicable to any
trajectory-generating algorithm, especially the output actions. Others
make sense only for specific algorithms or specific universes,
e.g. the periodic rescaling of velocities during a Molecular Dynamics
simulation.</p>
<p>Each action is described by an action object. The step numbers for
which an action is executed are specified by three parameters. The
parameter <tt class="docutils literal"><span class="pre">first</span></tt> indicates the number of the first step for which
the action is executed, and defaults to 0. The parameter <tt class="docutils literal"><span class="pre">last</span></tt>
indicates the last step for which the action is executed, and default
to <tt class="docutils literal"><span class="pre">None</span></tt>, meaning that the action is executed indefinitely. The
parameter <tt class="docutils literal"><span class="pre">skip</span></tt> speficies how many steps are skipped between two
executions of the action. The default value of 1 means that the action
is executed at each step. Of course an action object may have
additional parameters that are specific to its action.</p>
<p>The output actions are defined in the module <a class="reference internal" href="modules.html#module-MMTK.Trajectory" title="MMTK.Trajectory"><tt class="xref py py-mod docutils literal"><span class="pre">MMTK.Trajectory</span></tt></a>
and can be used with any trajectory-generating algorithm. They are:</p>
<ul class="simple">
<li><a class="reference internal" href="modules.html#MMTK.Trajectory.TrajectoryOutput" title="MMTK.Trajectory.TrajectoryOutput"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Trajectory.TrajectoryOutput</span></tt></a> for writing data to a
trajectory. Note that it is possible to use several trajectory
output actions simultaneously to write to multiple trajectories. It
is thus possible, for example, to write a short dense trajectory
during a dynamics run for analyzing short-time dynamics, and
simultaneously a long-time trajectory with a larger step spacing,
for analyzing long-time dynamics.</li>
<li><a class="reference internal" href="modules.html#MMTK.Trajectory.RestartTrajectoryOutput" title="MMTK.Trajectory.RestartTrajectoryOutput"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Trajectory.RestartTrajectoryOutput</span></tt></a>, which is a
specialized version of <a class="reference internal" href="modules.html#MMTK.Trajectory.TrajectoryOutput" title="MMTK.Trajectory.TrajectoryOutput"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Trajectory.TrajectoryOutput</span></tt></a>.
It writes the data that the algorithm needs in order to be restarted
to a restart trajectory file. A restart trajectory is a trajectory
that stores a fixed number of steps which are reused cyclically,
such that it always contain the last few steps of a trajectory.</li>
<li><a class="reference internal" href="modules.html#MMTK.Trajectory.LogOutput" title="MMTK.Trajectory.LogOutput"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Trajectory.LogOutput</span></tt></a> for text output
of data to a file.</li>
<li><a class="reference internal" href="modules.html#MMTK.Trajectory.StandardLogOutput" title="MMTK.Trajectory.StandardLogOutput"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Trajectory.StandardLogOutput</span></tt></a>, a specialized
version of <a class="reference internal" href="modules.html#MMTK.Trajectory.LogOutput" title="MMTK.Trajectory.LogOutput"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Trajectory.LogOutput</span></tt></a> that
writes the data classes “time” and “energy” during the whole
simulation run to standard output.</li>
</ul>
<p>The other periodic actions are meaningful only for Molecular Dynamics
simulations:</p>
<ul class="simple">
<li><a class="reference internal" href="modules.html#MMTK.Dynamics.VelocityScaler" title="MMTK.Dynamics.VelocityScaler"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Dynamics.VelocityScaler</span></tt></a> is used for
rescaling the velocities to force the kinetic energy to the value
defined by some temperature. This is usually done during initial
equilibration.</li>
<li><a class="reference internal" href="modules.html#MMTK.Dynamics.BarostatReset" title="MMTK.Dynamics.BarostatReset"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Dynamics.BarostatReset</span></tt></a> resets the
barostat coordinate to zero and is during initial equilibration
of systems in the NPT ensemble.</li>
<li><a class="reference internal" href="modules.html#MMTK.Dynamics.Heater" title="MMTK.Dynamics.Heater"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Dynamics.Heater</span></tt></a> rescales the velocities
like <a class="reference internal" href="modules.html#MMTK.Dynamics.VelocityScaler" title="MMTK.Dynamics.VelocityScaler"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Dynamics.VelocityScaler</span></tt></a>, but
increases the temperature step by step.</li>
<li><a class="reference internal" href="modules.html#MMTK.Dynamics.TranslationRemover" title="MMTK.Dynamics.TranslationRemover"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Dynamics.TranslationRemover</span></tt></a> subtracts
the global translational velocity of the system from all individual
atomic velocities. This prevents a slow but systematic energy flow
into the degrees of freedom of global translation, which occurs
with most MD integrators due to non-perfect conservation of momentum.</li>
<li><a class="reference internal" href="modules.html#MMTK.Dynamics.RotationRemover" title="MMTK.Dynamics.RotationRemover"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Dynamics.RotationRemover</span></tt></a> subtracts
the global angular velocity of the system from all individual
atomic velocities. This prevents a slow but systematic energy flow
into the degrees of freedom of global rotation, which occurs
with most MD integrators due to non-perfect conservation of angular
momentum.</li>
</ul>
</div>
<div class="section" id="fixed-atoms">
<h3>Fixed atoms<a class="headerlink" href="#fixed-atoms" title="Permalink to this headline">¶</a></h3>
<p>During the course of a minimization or molecular dynamics algorithm,
the atoms move to different positions. It is possible to exclude
specific atoms from this movement, i.e. fixing them at their initial
positions. This has no influence whatsoever on energy or force
calculations; the only effect is that the atoms’ positions never
change. Fixed atoms are specified by giving them an attribute fixed
with a value of one. Atoms that do not have an attributefixed, or one
with a value of zero, move according to the selected algorithm.</p>
</div>
</div>
<div class="section" id="energy-minimization">
<span id="id7"></span><h2>Energy minimization<a class="headerlink" href="#energy-minimization" title="Permalink to this headline">¶</a></h2>
<p>MMTK has two energy minimizers using different algorithms: steepest
descent (<a class="reference internal" href="modules.html#MMTK.Minimization.SteepestDescentMinimizer" title="MMTK.Minimization.SteepestDescentMinimizer"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Minimization.SteepestDescentMinimizer</span></tt></a>) and
conjugate gradient (<a class="reference internal" href="modules.html#MMTK.Minimization.ConjugateGradientMinimizer" title="MMTK.Minimization.ConjugateGradientMinimizer"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Minimization.ConjugateGradientMinimizer</span></tt></a>)
. Steepest descent minimization is very inefficient if the goal is to
find a local minimum of the potential energy. However, it has the
advantage of always moving towards the minimum that is closest to the
starting point and is therefore ideal for removing bad contacts in a
unreasonably high energy configuration. For finding local minima, the
conjugate gradient algorithm should be used.</p>
<p>Both minimizers accept three specific optional parameters:</p>
<ul class="simple">
<li><tt class="docutils literal"><span class="pre">steps</span></tt> (an integer) to specify the maximum number of
steps (default is 100)</li>
<li><tt class="docutils literal"><span class="pre">step_size</span></tt> (a number)
to specify an initial step length used in the search for a minimum
(default is 2 pm)</li>
<li><tt class="docutils literal"><span class="pre">convergence</span></tt> (a number)
to specify the gradient norm (more precisely the root-mean-square
length) at which the minimization should stop (default is 0.01
kJ/mol/nm)</li>
</ul>
<p>There are three classes of trajectory data: “energy” includes the
potential energy and the norm of its gradient, “configuration” stands
for the atomic positions, and “gradients” stands for the energy
gradients at each atom position.</p>
<p>The following example performs 100 steps of steepest descent
minimization without producing any trajectory or printed output:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="kn">from</span> <span class="nn">MMTK</span> <span class="kn">import</span> <span class="o">*</span>
<span class="kn">from</span> <span class="nn">MMTK.ForceFields</span> <span class="kn">import</span> <span class="n">Amber99ForceField</span>
<span class="kn">from</span> <span class="nn">MMTK.Minimization</span> <span class="kn">import</span> <span class="n">SteepestDescentMinimizer</span>
<span class="n">universe</span> <span class="o">=</span> <span class="n">InfiniteUniverse</span><span class="p">(</span><span class="n">Amber99ForceField</span><span class="p">())</span>
<span class="n">universe</span><span class="o">.</span><span class="n">protein</span> <span class="o">=</span> <span class="n">Protein</span><span class="p">(</span><span class="s">'insulin'</span><span class="p">)</span>
<span class="n">minimizer</span> <span class="o">=</span> <span class="n">SteepestDescentMinimizer</span><span class="p">(</span><span class="n">universe</span><span class="p">)</span>
<span class="n">minimizer</span><span class="p">(</span><span class="n">steps</span> <span class="o">=</span> <span class="mi">100</span><span class="p">)</span>
</pre></div>
</div>
<p>See also the example file <a class="reference internal" href="examples.html#example-normalmodes"><em>modes.py</em></a>.</p>
</div>
<div class="section" id="molecular-dynamics">
<h2>Molecular dynamics<a class="headerlink" href="#molecular-dynamics" title="Permalink to this headline">¶</a></h2>
<p>The techniques described in this section are illustrated by several
<a class="reference internal" href="examples.html#example-moleculardynamics"><em>examples</em></a>.</p>
<div class="section" id="velocities">
<h3>Velocities<a class="headerlink" href="#velocities" title="Permalink to this headline">¶</a></h3>
<p>The integration of the classical equations of motion for an atomic
system requires not only positions, but also velocities for all atoms.
Usually the velocities are initialized to random values drawn from a
normal distribution with a variance corresponding to a certain
temperature. This is done by calling the method
<a class="reference internal" href="modules.html#MMTK.Universe.Universe.initializeVelocitiesToTemperature" title="MMTK.Universe.Universe.initializeVelocitiesToTemperature"><tt class="xref py py-func docutils literal"><span class="pre">initializeVelocitiesToTemperature()</span></tt></a>
on a universe. Note that the velocities are assigned atom by atom; no
attempt is made to remove global translation or rotation of the total
system or any part of the system.</p>
<p>During equilibration of a system, it is common to multiply all
velocities by a common factor to restore the intended temperature. This
can done explicitly by calling the method
<a class="reference internal" href="modules.html#MMTK.Universe.Universe.scaleVelocitiesToTemperature" title="MMTK.Universe.Universe.scaleVelocitiesToTemperature"><tt class="xref py py-func docutils literal"><span class="pre">scaleVelocitiesToTemperature()</span></tt></a>
on a universe, or by using the action object <a class="reference internal" href="modules.html#MMTK.Dynamics.VelocityScaler" title="MMTK.Dynamics.VelocityScaler"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Dynamics.VelocityScaler</span></tt></a>.</p>
</div>
<div class="section" id="distance-constraints">
<h3>Distance constraints<a class="headerlink" href="#distance-constraints" title="Permalink to this headline">¶</a></h3>
<p>A common technique to eliminate the fastest (usually uninteresting)
degrees of freedom, permitting a larger integration time step,
is the use of distance constraints on some or all chemical bonds.
MMTK allows the use of distance constraints on any pair of
atoms, even though constraining anything but chemical bonds
is not recommended due to considerable modifications of the
dynamics of the system <a class="reference internal" href="#vangunsteren1982"><em>[vanGunsteren1982]</em></a>,
<a class="reference internal" href="#hinsen1995"><em>[Hinsen1995]</em></a>.</p>
<p>MMTK permits the definition of distance constraints on all atom pairs
in an object that are connected by a chemical bond by calling the
method setBondConstraints. Usually this is called
for a complete universe, but it can also be called for a chemical
object or a collection of chemical objects. The
<a class="reference internal" href="modules.html#MMTK.ChemicalObjects.ChemicalObject.removeDistanceConstraints" title="MMTK.ChemicalObjects.ChemicalObject.removeDistanceConstraints"><tt class="xref py py-func docutils literal"><span class="pre">removeDistanceConstraints()</span></tt></a>
removes all distance constraints from the object for which it is called.</p>
<p>Constraints defined as described above are automatically taken into
account by Molecular Dynamics integrators. It is also possible to
enforce the constraints explicitly by calling the method
<a class="reference internal" href="modules.html#MMTK.Universe.Universe.enforceConstraints" title="MMTK.Universe.Universe.enforceConstraints"><tt class="xref py py-func docutils literal"><span class="pre">enforceConstraints()</span></tt></a> for a universe. This has the
effect of modifying the configuration and the velocities (if
velocities exist) in order to make them compatible with the
constraints.</p>
</div>
<div class="section" id="thermostats-and-barostats">
<h3>Thermostats and barostats<a class="headerlink" href="#thermostats-and-barostats" title="Permalink to this headline">¶</a></h3>
<p>A standard Molecular Dynamics integration allows time averages
corresponding to the NVE ensemble, in which the number of molecules,
the system volume, and the total energy are constant. This ensemble
does not represent typical experimental conditions very well.
Alternative ensembles are the NVT ensemble, in which the temperature
is kept constant by a thermostat, and the NPT ensemble, in which
temperature and pressure are kept constant by a thermostat and a
barostat. To obtain these ensembles in MMTK, thermostat and barostat
objects must be added to a universe. In the presence of these objects,
the Molecular Dynamics integrator will use the extended-systems method
for producing the correct ensemble. The classes to be used are
<a class="reference internal" href="modules.html#MMTK.Environment.NoseThermostat" title="MMTK.Environment.NoseThermostat"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Environment.NoseThermostat</span></tt></a> and <a class="reference internal" href="modules.html#MMTK.Environment.AndersenBarostat" title="MMTK.Environment.AndersenBarostat"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Environment.AndersenBarostat</span></tt></a>.</p>
</div>
<div class="section" id="integration">
<h3>Integration<a class="headerlink" href="#integration" title="Permalink to this headline">¶</a></h3>
<p>A Molecular Dynamics integrator based on the “Velocity Verlet”
algorithm <a class="reference internal" href="#swope1982"><em>[Swope1982]</em></a>, which was extended
to handle distance constraints as well as thermostats and
barostats <a class="reference internal" href="#kneller1996"><em>[Kneller1996]</em></a>, is implemented by the
class <a class="reference internal" href="modules.html#MMTK.Dynamics.VelocityVerletIntegrator" title="MMTK.Dynamics.VelocityVerletIntegrator"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Dynamics.VelocityVerletIntegrator</span></tt></a>.
It has two optional keyword parameters:</p>
<ul class="simple">
<li><tt class="docutils literal"><span class="pre">steps</span></tt> (an integer) to specify the number
of steps (default is 100)</li>
<li><tt class="docutils literal"><span class="pre">delta_t</span></tt> (a number) to specify the time step
(default 1 fs)</li>
</ul>
<p>There are three classes of trajectory data: “energy” includes the
potential energy and the kinetic energy, as well as the energies of
thermostat and barostat coordinates if they exist, “time” stands for the time,
“thermodynamic” stand for temperature and pressure,
“configuration” stands for the atomic positions, “velocities” stands for
the atomic velocities, and “gradients” stands for the energy gradients
at each atom position.</p>
<p>The following example performs a 1000 step dynamics integration, storing
every 10th step in a trajectory file and removing the total translation
and rotation every 50th step:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="kn">from</span> <span class="nn">MMTK</span> <span class="kn">import</span> <span class="o">*</span>
<span class="kn">from</span> <span class="nn">MMTK.ForceFields</span> <span class="kn">import</span> <span class="n">Amber99ForceField</span>
<span class="kn">from</span> <span class="nn">MMTK.Dynamics</span> <span class="kn">import</span> <span class="n">VelocityVerletIntegrator</span><span class="p">,</span> \
<span class="n">TranslationRemover</span><span class="p">,</span> \
<span class="n">RotationRemover</span>
<span class="kn">from</span> <span class="nn">MMTK.Trajectory</span> <span class="kn">import</span> <span class="n">TrajectoryOutput</span>
<span class="n">universe</span> <span class="o">=</span> <span class="n">InfiniteUniverse</span><span class="p">(</span><span class="n">Amber99ForceField</span><span class="p">())</span>
<span class="n">universe</span><span class="o">.</span><span class="n">protein</span> <span class="o">=</span> <span class="n">Protein</span><span class="p">(</span><span class="s">'insulin'</span><span class="p">)</span>
<span class="n">universe</span><span class="o">.</span><span class="n">initializeVelocitiesToTemperature</span><span class="p">(</span><span class="mf">300.</span><span class="o">*</span><span class="n">Units</span><span class="o">.</span><span class="n">K</span><span class="p">)</span>
<span class="n">actions</span> <span class="o">=</span> <span class="p">[</span><span class="n">TranslationRemover</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="mi">50</span><span class="p">),</span> \
<span class="n">RotationRemover</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="mi">50</span><span class="p">),</span> \
<span class="n">TrajectoryOutput</span><span class="p">(</span><span class="s">"insulin.nc"</span><span class="p">,</span> \
<span class="p">(</span><span class="s">"configuration"</span><span class="p">,</span> <span class="s">"energy"</span><span class="p">,</span> <span class="s">"time"</span><span class="p">),</span> \
<span class="mi">0</span><span class="p">,</span> <span class="bp">None</span><span class="p">,</span> <span class="mi">10</span><span class="p">)]</span>
<span class="n">integrator</span> <span class="o">=</span> <span class="n">VelocityVerletIntegrator</span><span class="p">(</span><span class="n">universe</span><span class="p">,</span> <span class="n">delta_t</span> <span class="o">=</span> <span class="mf">1.</span><span class="o">*</span><span class="n">Units</span><span class="o">.</span><span class="n">fs</span><span class="p">,</span> \
<span class="n">actions</span> <span class="o">=</span> <span class="n">actions</span><span class="p">)</span>
<span class="n">integrator</span><span class="p">(</span><span class="n">steps</span> <span class="o">=</span> <span class="mi">1000</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="snapshots">
<h2>Snapshots<a class="headerlink" href="#snapshots" title="Permalink to this headline">¶</a></h2>
<p>A snapshot generator allows writing the current system state to a
trajectory. It works much like a zero-step minimization or dynamics run,
i.e. it takes the same optional arguments for specifying the trajectory
and protocol output. A snapshot generator is created using the
class <a class="reference internal" href="modules.html#MMTK.Trajectory.SnapshotGenerator" title="MMTK.Trajectory.SnapshotGenerator"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Trajectory.SnapshotGenerator</span></tt></a>.</p>
</div>
</div>
<div class="section" id="id8">
<h1>Normal modes<a class="headerlink" href="#id8" title="Permalink to this headline">¶</a></h1>
<p>Normal mode analysis provides an analytic description of the dynamics
of a system near a minimum using an harmonic approximation to the
potential. Before a normal mode analysis can be started, the system
must be brought to a local minimum of the potential energy by
<a class="reference internal" href="#energy-minimization"><em>energy minimization</em></a>, except when special
force fields designed only for normal mode analysis are used
(e.g. <a class="reference internal" href="modules.html#MMTK.ForceFields.CalphaFF.CalphaForceField" title="MMTK.ForceFields.CalphaFF.CalphaForceField"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.ForceFields.CalphaFF.CalphaForceField</span></tt></a>). See
also the <a class="reference internal" href="examples.html#example-normalmodes"><em>Normal Modes</em></a> examples.</p>
<p>A standard normal mode analysis is performed by creating a normal
modes object, implemented in the classes
<a class="reference internal" href="modules.html#MMTK.NormalModes.EnergeticModes.EnergeticModes" title="MMTK.NormalModes.EnergeticModes.EnergeticModes"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.NormalModes.EnergeticModes.EnergeticModes</span></tt></a>,
<a class="reference internal" href="modules.html#MMTK.NormalModes.VibrationalModes.VibrationalModes" title="MMTK.NormalModes.VibrationalModes.VibrationalModes"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.NormalModes.VibrationalModes.VibrationalModes</span></tt></a>, and
<a class="reference internal" href="modules.html#MMTK.NormalModes.BrownianModes.BrownianModes" title="MMTK.NormalModes.BrownianModes.BrownianModes"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.NormalModes.BrownianModes.BrownianModes</span></tt></a>. A normal
mode object behaves like a sequence of mode objects, which store the
atomic displacement vectors corresponding to each mode and the
associated force constant, vibrational frequency, or inverse
relaxation time.</p>
<p>For short-ranged potentials, it is advantageous to store the second
derivatives of the potential in a sparse-matrix form and to use
an iterative method to determine some or all modes. This permits
the treatment of larger systems that would normally require huge
amounts of memory.</p>
<p>Another approach to deal with large systems is the restriction to
low-frequency modes which are supposed to be well representable by
linear combinations of a given set of basis vectors. The basis vectors
can be obtained from a basis for the full Cartesian space by
elimination of known fast degrees of freedom (e.g. bonds); the
module <a class="reference internal" href="modules.html#module-MMTK.Subspace" title="MMTK.Subspace"><tt class="xref py py-mod docutils literal"><span class="pre">MMTK.Subspace</span></tt></a> contains support classes for this
approach. It is also possible to construct a suitable basis vector set
from small-deformation vector fields
(e.g. <a class="reference internal" href="modules.html#MMTK.FourierBasis.FourierBasis" title="MMTK.FourierBasis.FourierBasis"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.FourierBasis.FourierBasis</span></tt></a>).</p>
</div>
<div class="section" id="analysis-operations">
<h1>Analysis operations<a class="headerlink" href="#analysis-operations" title="Permalink to this headline">¶</a></h1>
<p>Analysis is the most non-standard part of molecular simulations.
The quantities that must be calculated depend strongly on the
system and the problem under study. MMTK provides a wide range
of elementary operations that inquire the state of the system,
as well as several more complex analysis tools. Some of them are
demonstrated in the <a class="reference internal" href="examples.html#examples"><em>example</em></a> section.</p>
<div class="section" id="properties-of-chemical-objects-and-universes">
<h2>Properties of chemical objects and universes<a class="headerlink" href="#properties-of-chemical-objects-and-universes" title="Permalink to this headline">¶</a></h2>
<p>Many operations access and modify various properties of an object. They
are defined for the most general type of object: anything that can be
broken down to atoms, i.e. atoms, molecules, collections, universes,
etc., i.e. in the class <a class="reference internal" href="modules.html#MMTK.Collections.GroupOfAtoms" title="MMTK.Collections.GroupOfAtoms"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Collections.GroupOfAtoms</span></tt></a>.</p>
<p>The most elementary operations are inquiries about specific properties
of an object: number of atoms, total mass, center of mass, total momentum,
total charge, etc. There are also operations that compare two different
conformations of a system. Finally, there are special operations
for analyzing conformations of peptide chains and proteins.</p>
<p>Geometrical operations in periodic universes require special care.
Whenever a distance vector between two points in a systems is
evaluated, the minimum-image convention must be used in order to
obtain consistent results. MMTK provides routines for finding
these distance vectors as well as distances, angles, and dihedral
angles between any points. Because these operations depend on the
topology and geometry of the universe, they are implemented as
methods in class <a class="reference internal" href="modules.html#MMTK.Universe.Universe" title="MMTK.Universe.Universe"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Universe.Universe</span></tt></a>
and its subclasses. Of course they are available for non-periodic
universes as well.</p>
<p>Universes also provide methods for obtaining <a class="reference internal" href="#atom-property"><em>atom property</em></a> objects that describe the state of the system
(configurations, velocities, masses), and for restoring the system
state from a <a class="reference internal" href="#id5"><em>trajectory</em></a> file.</p>
</div>
<div class="section" id="energy-evaluation">
<h2>Energy evaluation<a class="headerlink" href="#energy-evaluation" title="Permalink to this headline">¶</a></h2>
<p>Energy evaluation requires a force field, and therefore all the
methods in this section are defined only for universe objects, i.e. in
class <a class="reference internal" href="modules.html#MMTK.Universe.Universe" title="MMTK.Universe.Universe"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Universe.Universe</span></tt></a>. However, they all take an
optional arguments (anything that can be broken down into atoms) that
indicates for which subset of the universe the energy is to be
evaluated. In addition to the potential energy, energy gradients and
second derivatives (force constants) can be obtained, if the force
field implements them. There is also a method that returns a
dictionary containing the values for all the individual force field
terms, which is often useful for analysis.</p>
</div>
<div class="section" id="surfaces-and-volumes">
<h2>Surfaces and volumes<a class="headerlink" href="#surfaces-and-volumes" title="Permalink to this headline">¶</a></h2>
<p>Surfaces and volumes can be analyzed for anything consisting of
atoms. Both quantities are defined by assigning a radius to each atom;
the surface of the resulting conglomerate of overlapping spheres is
taken to be the surface of the atom group. Atom radii for surface
determination are usually called “van der Waals radii”, but there is
no unique method for determining them. MMTK uses the values from
<a class="reference internal" href="#bondi1964"><em>[Bondi1964]</em></a>. However, users can change these values for each
individual atom by assigning a new value to the attribute
<tt class="docutils literal"><span class="pre">vdW_radius</span></tt>.</p>
<p>The operations provided in <a class="reference internal" href="modules.html#module-MMTK.MolecularSurface" title="MMTK.MolecularSurface"><tt class="xref py py-mod docutils literal"><span class="pre">MMTK.MolecularSurface</span></tt></a>
include basic surface and volume calculation, determination of
exposed atoms, and identification of contacts between two objects.</p>
</div>
</div>
<div class="section" id="miscellaneous-operations">
<h1>Miscellaneous operations<a class="headerlink" href="#miscellaneous-operations" title="Permalink to this headline">¶</a></h1>
<div class="section" id="saving-loading-and-copying-objects">
<h2>Saving, loading, and copying objects<a class="headerlink" href="#saving-loading-and-copying-objects" title="Permalink to this headline">¶</a></h2>
<p>MMTK provides an easy way to store (almost) arbitrary objects in files
and retrieve them later. All objects of interest to users can be
stored, including chemical objects, collections, universes, normal
modes, configurations, etc. It is also possible to store standard
Python objects such as numbers, lists, dictionaries etc., as well as
practically any user-defined objects. Storage is based on the standard
Python module pickle.</p>
<p>Objects are saved with <tt class="xref py py-func docutils literal"><span class="pre">MMTK.save()</span></tt> and restored with
<tt class="xref py py-func docutils literal"><span class="pre">MMTK.load()</span></tt>. If several objects are to be stored in a single
file, use tuples: <tt class="docutils literal"><span class="pre">save((object1,</span> <span class="pre">object2),</span> <span class="pre">filename)</span></tt> and
<tt class="docutils literal"><span class="pre">object1,</span> <span class="pre">object2</span> <span class="pre">=</span> <span class="pre">load(filename)</span></tt> to retrieve the objects.</p>
<p>Note that storing an object in a file implies storing all objects
referenced by it as well, such that the size of the file can become
larger than expected. For example, a configuration object contains
a reference to the universe for which it is defined. Therefore
storing a configuration object means storing the whole universe
as well. However, nothing is ever written twice to the same
file. If you store a list or a tuple containing a universe and
a configuration for it, the universe is written only once.</p>
<p>Frequently it is also useful to copy an object, such as a molecule or
a configuration. There are two functions (which are actually taken
from the Python standard library module copy) for this purpose, which
have a somewhat different behaviour for container-type objects (lists,
dictionaries, collections etc.). <tt class="xref py py-func docutils literal"><span class="pre">MMTK.copy()</span></tt> returns a copy of
the given object. For a container object, it returns a new container
object which contains the same objects as the original one. If the
intention is to get a container object which contains copies of the
original contents, then <tt class="docutils literal"><span class="pre">MMTK.deepcopy(object)</span></tt> should be used. For
objects that are not container-type objects, there is no difference
between the two functions.</p>
</div>
<div class="section" id="exporting-to-specific-file-formats-and-visualization">
<h2>Exporting to specific file formats and visualization<a class="headerlink" href="#exporting-to-specific-file-formats-and-visualization" title="Permalink to this headline">¶</a></h2>
<p>MMTK can write objects in specific file formats that can be used by
other programs. Three file formats are supported: the PDB format,
widely used in computational chemistry, the DCD format for
trajectories, written by the programs CHARMM, X-Plor, and NAMDm, and
read by many visualization programs, and the VRML format, understood
by VRML browsers as a representation of a three-dimensional scene for
visualization. MMTK also provides a more general interface that can
generate graphics objects in any representation if a special module
for that representation exists. In addition to facilitating the
implementation of new graphics file formats, this approach also
permits the addition of custom graphics elements (lines, arrows,
spheres, etc.) to molecular representations.</p>
<div class="section" id="pdb-vrml-and-dcd-files">
<h3>PDB, VRML, and DCD files<a class="headerlink" href="#pdb-vrml-and-dcd-files" title="Permalink to this headline">¶</a></h3>
<p>Any chemical object, collection, or universe can be written to a PDB
or VRML file by calling the method <tt class="docutils literal"><span class="pre">writeToFile</span></tt>, defined in class
<a class="reference internal" href="modules.html#MMTK.Collections.GroupOfAtoms" title="MMTK.Collections.GroupOfAtoms"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Collections.GroupOfAtoms</span></tt></a>. PDB files are read via the
class <a class="reference internal" href="modules.html#MMTK.PDB.PDBConfiguration" title="MMTK.PDB.PDBConfiguration"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.PDB.PDBConfiguration</span></tt></a>. DCD files can be read by a
<a class="reference internal" href="modules.html#MMTK.DCD.DCDReader" title="MMTK.DCD.DCDReader"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.DCD.DCDReader</span></tt></a> object. For writing DCD files, there is
the function <a class="reference internal" href="modules.html#MMTK.DCD.writeDCDPDB" title="MMTK.DCD.writeDCDPDB"><tt class="xref py py-func docutils literal"><span class="pre">MMTK.DCD.writeDCDPDB()</span></tt></a>, which also creates a
compatible PDB file without which the DCD file could not be
interpreted.</p>
<p>Special care must be taken to ensure a correct mapping of atom numbers
when reading from a DCD file. In MMTK, each atom object has a unique
identity and atom numbers, also used internally for efficiency, are
not strictly necessary and are not used anywhere in MMTK’s application
programming interface. DCD file, however, simply list coordinates
sorted by atom number. For interpreting DCD files, another file must
be available which allows the identification of atoms from their
number and vice versa; this can for example be a PDB file.</p>
<p>When reading DCD files, MMTK assumes that the atom order in the DCD
file is identical to the internal atom numbering of the universe for
which the DCD file is read. This assumption is in general valid only
if the universe has been created from a PDB file that is compatible
with the DCD file, without any additions or removals.</p>
</div>
<div class="section" id="visualization-and-animation">
<h3>Visualization and animation<a class="headerlink" href="#visualization-and-animation" title="Permalink to this headline">¶</a></h3>
<p>The most common need for file export is visualization. All objects
that can be visualized (chemical systems and subsets thereof, normal
mode objects, trajectories) provide a method view
which creates temporary export files, starts a visualization program,
and deletes the temporary files. Depending on the object type there are
various optional parameters.</p>
<p>MMTK also allows visualization of normal modes and trajectories using
animation. Since not all visualization programs permit animation, and
since there is no standard way to ask for it, animation is implemented
only for the programs <a class="reference external" href="http://www.msc.edu/msc/docs/xmol/">XMol</a>
and <a class="reference external" href="http://www.ks.uiuc.edu/Research/vmd/">VMD</a>. Animation is available for
normal modes, trajectories, and arbitrary sequences of configurations
(see function <a class="reference internal" href="modules.html#MMTK.Visualization.viewSequence" title="MMTK.Visualization.viewSequence"><tt class="xref py py-func docutils literal"><span class="pre">MMTK.Visualization.viewSequence()</span></tt></a>).</p>
<p>For more specialized needs, MMTK permits the creation of graphical
representations of most of its objects via general graphics modules that
have to be provided externally. Suitable modules are provided in the
package Scientific.Visualization and cover VRML (version 1), VRML2
(aka VRML97), and the molecular visualization program VMD. Modules for other
representations (e.g. rendering programs) can be written easily; it is
recommended to use the existing modules as an example. The generation
of graphics objects is handled by the method graphicsObjects,
defined in the class <a class="reference internal" href="modules.html#MMTK.Visualization.Viewable" title="MMTK.Visualization.Viewable"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Visualization.Viewable</span></tt></a>,
which is a <a class="reference internal" href="glossary.html#term-mix-in-class"><em class="xref std std-term">Mix-in class</em></a> that makes
graphics objects generation available for all objects that define
chemical systems or parts thereof, as well as for certain other objects
that are viewable.</p>
<p>The explicit generation of graphics objects permits the mixture of
different graphical representations for various parts of a system,
as well as the combination of MMTK-generated graphics objects with
arbitrary other graphics objects, such as lines, arrows, or spheres.
All graphics objects are finally combined into a scene object (also
defined in the various graphics modules) in order to be displayed.
See also the <a class="reference internal" href="examples.html#example-visualization"><em>visualization</em></a> examples.</p>
</div>
</div>
<div class="section" id="fields">
<h2>Fields<a class="headerlink" href="#fields" title="Permalink to this headline">¶</a></h2>
<p>For analyzing or visualizing atomic properties that change little over
short distances, it is often convenient to represent these properties as
functions of position instead of one value per atom. Functions of
position are also known as fields, and mathematical techniques for the
analysis of fields have proven useful in many branches of physics. Such
a field can be obtained by averaging over the values corresponding to
the atoms in a small region of space. MMTK provides classes for
scalar and vector field in module <a class="reference internal" href="modules.html#module-MMTK.Field" title="MMTK.Field"><tt class="xref py py-mod docutils literal"><span class="pre">MMTK.Field</span></tt></a>.
See also the example <a class="reference internal" href="examples.html#example-miscellaneous"><em>vector_field.py</em></a>.</p>
</div>
<div class="section" id="charge-fitting">
<h2>Charge fitting<a class="headerlink" href="#charge-fitting" title="Permalink to this headline">¶</a></h2>
<p>A frequent problem in determining force field parameters is the
determination of partial charges for the atoms of a molecule by fitting
to the electrostatic potential around the molecule, which is obtained
from quantum chemistry programs. Although this is essentially a
straightforward linear least-squares problem, many procedures that are
in common use do not use state-of-the-art techniques and may yield
erroneous results. MMTK provides a charge fitting method that is
numerically stable and allows the imposition of constraints on the
charges. It is implemented in module <a class="reference internal" href="modules.html#module-MMTK.ChargeFit" title="MMTK.ChargeFit"><tt class="xref py py-mod docutils literal"><span class="pre">MMTK.ChargeFit</span></tt></a>.
See also the example <a class="reference internal" href="examples.html#example-miscellaneous"><em>charge_fit.py</em></a>.</p>
</div>
</div>
<div class="section" id="constructing-the-database">
<span id="database"></span><h1>Constructing the database<a class="headerlink" href="#constructing-the-database" title="Permalink to this headline">¶</a></h1>
<p>MMTK uses a database of chemical entities to define the properties of
atoms, molecules, and related objects. This database consists of plain
text files, more precisely short Python programs, whose names are the
names of the object types. This chapter explains how to construct and
manage these files. Note that the standard database already contains
many definitions, in particular for proteins and nucleic acids.
You do not need to read this chapter unless you want to add your
own molecule definitions.</p>
<p>MMTK’s database does not have to reside in a single place. It can
consist of any number of subdatabases, each of which can be a
directory or a URL. Typically the database consists of at least two
parts: MMTK’s standard definitions and a user’s personal definitions.
When looking up an object type in the database, MMTK checks the value
of the environment variable MMTKDATABASE. The value of this variable
must be a list of subdatabase locations seperated by white space. If
the variable MMTKDATABASE is not defined, MMTK uses a default value
that contains the path ”.mmtk/Database” in the user’s home directory
followed by MMTK’s standard database, which resides in the directory
Database within the MMTK package directory (on many Unix systems this
is <tt class="docutils literal"><span class="pre">/usr/local/lib/python2.x/site-packages/MMTK</span></tt>). MMTK checks the
subdatabases in the order in which they are mentioned in MMTKDATABASE.</p>
<p>Each subdatabase contains directories corresponding to the object
classes, i.e. Atoms (atom definitions), Groups (group definitions),
Molecules (molecule definitions), Complexes (complex definitions),
Proteins (protein definitions), and PDB (Protein Data Bank files).
These directories contain the definition files, whose names may
not contain any upper-case letters. These file names correspond
to the object types, e.g. the call <tt class="docutils literal"><span class="pre">MMTK.Molecule('Water')</span></tt>
will cause MMTK to look for the file Molecules/water in the database
(note that the names are converted to lower case).</p>
<p>The remaining sections of this chapter explain how the individual
definition files are constructed. Keep in mind that each file is
actually a Python program, so of course standard Python syntax rules
apply.</p>
<div class="section" id="atom-definitions">
<h2>Atom definitions<a class="headerlink" href="#atom-definitions" title="Permalink to this headline">¶</a></h2>
<p>An atom definition in MMTK describes a chemical element, such as
“hydrogen”. This should not be confused with the “atom types” used in
force field descriptions and in some modelling programs. As a
consequence, it is rarely necessary to add atom definitions to MMTK.</p>
<p>Atom definition files are short and of essentially identical format.
This is the definition for carbon:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">name</span> <span class="o">=</span> <span class="s">'carbon'</span>
<span class="n">symbol</span> <span class="o">=</span> <span class="s">'C'</span>
<span class="n">mass</span> <span class="o">=</span> <span class="p">[(</span><span class="mi">12</span><span class="p">,</span> <span class="mf">98.90</span><span class="p">),</span> <span class="p">(</span><span class="mf">13.003354826</span><span class="p">,</span> <span class="mf">1.10</span><span class="p">)]</span>
<span class="n">color</span> <span class="o">=</span> <span class="s">'black'</span>
<span class="n">vdW_radius</span> <span class="o">=</span> <span class="mf">0.17</span>
</pre></div>
</div>
<p>The name should be meaningful to users, but is not used by MMTK
itself. The symbol, however, is used to identify chemical elements. It
must be exactly equal to the symbol defined by IUPAC, including
capitalization (e.g. ‘Cl’ for chlorine). The mass can be either a number
or a list of tuples, as shown above. Each tuple defines an isotope by
its mass and its percentage of occurrence; the percentages must add up
to 100. The color is used for VRML output and must equal one of the
color names defined in the module VRML. The van der Waals radius is used
for the calculation of molecular volumes and surfaces; the values are
taken from <a class="reference internal" href="#bondi1964"><em>[Bondi1964]</em></a>.</p>
<p>An application program can create an isolated atom with <tt class="docutils literal"><span class="pre">Atom('c')</span></tt>
or, specifying an initial position, with <tt class="docutils literal"><span class="pre">Atom('c',</span>
<span class="pre">position=Vector(0.,1.,0.))</span></tt>. The element name can use any combination
of upper and lower case letters, which are considered equivalent.</p>
</div>
<div class="section" id="group-definitions">
<h2>Group definitions<a class="headerlink" href="#group-definitions" title="Permalink to this headline">¶</a></h2>
<p>Group definitions in MMTK exist to facilitate the definition of
molecules by avoiding the frequent repetition of common combinations.
MMTK doesn’t give any physical meaning to groups. Groups can contain
atoms and other groups. Their definitions look exactly like molecule
definitions; the only difference between groups and molecules is the way
they are used.</p>
<p>This is the definition of a methyl group:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">name</span> <span class="o">=</span> <span class="s">'methyl group'</span>
<span class="n">C</span> <span class="o">=</span> <span class="n">Atom</span><span class="p">(</span><span class="s">'C'</span><span class="p">)</span>
<span class="n">H1</span> <span class="o">=</span> <span class="n">Atom</span><span class="p">(</span><span class="s">'H'</span><span class="p">)</span>
<span class="n">H2</span> <span class="o">=</span> <span class="n">Atom</span><span class="p">(</span><span class="s">'H'</span><span class="p">)</span>
<span class="n">H3</span> <span class="o">=</span> <span class="n">Atom</span><span class="p">(</span><span class="s">'H'</span><span class="p">)</span>
<span class="n">bonds</span> <span class="o">=</span> <span class="p">[</span><span class="n">Bond</span><span class="p">(</span><span class="n">C</span><span class="p">,</span> <span class="n">H1</span><span class="p">),</span> <span class="n">Bond</span><span class="p">(</span><span class="n">C</span><span class="p">,</span> <span class="n">H2</span><span class="p">),</span> <span class="n">Bond</span><span class="p">(</span><span class="n">C</span><span class="p">,</span> <span class="n">H3</span><span class="p">)]</span>
<span class="n">pdbmap</span> <span class="o">=</span> <span class="p">[(</span><span class="s">'MTH'</span><span class="p">,</span> <span class="p">{</span><span class="s">'C'</span><span class="p">:</span> <span class="n">C</span><span class="p">,</span> <span class="s">'H1'</span><span class="p">:</span> <span class="n">H1</span><span class="p">,</span> <span class="s">'H2'</span><span class="p">:</span> <span class="n">H2</span><span class="p">,</span> <span class="s">'H3'</span><span class="p">:</span> <span class="n">H3</span><span class="p">})]</span>
<span class="n">amber_atom_type</span> <span class="o">=</span> <span class="p">{</span><span class="n">C</span><span class="p">:</span> <span class="s">'CT'</span><span class="p">,</span> <span class="n">H1</span><span class="p">:</span> <span class="s">'HC'</span><span class="p">,</span> <span class="n">H2</span><span class="p">:</span> <span class="s">'HC'</span><span class="p">,</span> <span class="n">H3</span><span class="p">:</span> <span class="s">'HC'</span><span class="p">}</span>
<span class="n">amber_charge</span> <span class="o">=</span> <span class="p">{</span><span class="n">C</span><span class="p">:</span> <span class="mf">0.</span><span class="p">,</span> <span class="n">H1</span><span class="p">:</span> <span class="mf">0.1</span><span class="p">,</span> <span class="n">H2</span><span class="p">:</span> <span class="mf">0.1</span><span class="p">,</span> <span class="n">H3</span><span class="p">:</span> <span class="mf">0.1</span><span class="p">}</span>
</pre></div>
</div>
<p>The name should be meaningful to users, but is not used by MMTK
itself. The following lines create the atoms in the group and assign
them to variables. These variables become attributes of whatever
object uses this group; their names can be anything that is a legal
Python name. The list of bonds, however, must be assigned to the name
<tt class="docutils literal"><span class="pre">bonds</span></tt>. The bond list is used by force fields and for
visualization.</p>
<p>The name <tt class="docutils literal"><span class="pre">pdbmap</span></tt> is used for reading and writing PDB files. Its
value must be a list of tuples, where each tuple defines one PDB
residue. The first element of the tuple is the residue name, which is
used only for output. The second element is a dictionary that maps PDB
atom names to the actual atoms. The <tt class="docutils literal"><span class="pre">pdbmap</span></tt> entry of any object can be
overridden by an entry in a higher-level object. Therefore the entry for
a group is only used for atoms that do not occur in the entry for a
molecule that contains this group.</p>
<p>The remaining lines in the definition file contain information
specific to force fields, in this case the Amber force field. The
dictionary <tt class="docutils literal"><span class="pre">amber_atom_type</span></tt> defines the atom type for each atom;
the dictionary <tt class="docutils literal"><span class="pre">amber_charge</span></tt> defines the partial charges. As for
<tt class="docutils literal"><span class="pre">pdbmap</span></tt> entries, these definitions can be overridden by
higher-level definitions.</p>
</div>
<div class="section" id="molecule-definitions">
<h2>Molecule definitions<a class="headerlink" href="#molecule-definitions" title="Permalink to this headline">¶</a></h2>
<p>Molecules are typically used directly in application programs, but they
can also be used in the definition of complexes. Molecule definitions
can use atoms and groups.</p>
<p>This is the definition of a water molecule:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">name</span> <span class="o">=</span> <span class="s">'water'</span>
<span class="n">structure</span> <span class="o">=</span> \
<span class="s">" O </span><span class="se">\n</span><span class="s">"</span> <span class="o">+</span> \
<span class="s">" / \ </span><span class="se">\n</span><span class="s">"</span> <span class="o">+</span> \
<span class="s">"H H </span><span class="se">\n</span><span class="s">"</span>
<span class="n">O</span> <span class="o">=</span> <span class="n">Atom</span><span class="p">(</span><span class="s">'O'</span><span class="p">)</span>
<span class="n">H1</span> <span class="o">=</span> <span class="n">Atom</span><span class="p">(</span><span class="s">'H'</span><span class="p">)</span>
<span class="n">H2</span> <span class="o">=</span> <span class="n">Atom</span><span class="p">(</span><span class="s">'H'</span><span class="p">)</span>
<span class="n">bonds</span> <span class="o">=</span> <span class="p">[</span><span class="n">Bond</span><span class="p">(</span><span class="n">O</span><span class="p">,</span> <span class="n">H1</span><span class="p">),</span> <span class="n">Bond</span><span class="p">(</span><span class="n">O</span><span class="p">,</span> <span class="n">H2</span><span class="p">)]</span>
<span class="n">pdbmap</span> <span class="o">=</span> <span class="p">[(</span><span class="s">'HOH'</span><span class="p">,</span> <span class="p">{</span><span class="s">'O'</span><span class="p">:</span> <span class="n">O</span><span class="p">,</span> <span class="s">'H1'</span><span class="p">:</span> <span class="n">H1</span><span class="p">,</span> <span class="s">'H2'</span><span class="p">:</span> <span class="n">H2</span><span class="p">})]</span>
<span class="n">pdb_alternative</span> <span class="o">=</span> <span class="p">{</span><span class="s">'OH2'</span><span class="p">:</span> <span class="s">'O'</span><span class="p">}</span>
<span class="n">amber_atom_type</span> <span class="o">=</span> <span class="p">{</span><span class="n">O</span><span class="p">:</span> <span class="s">'OW'</span><span class="p">,</span> <span class="n">H1</span><span class="p">:</span> <span class="s">'HW'</span><span class="p">,</span> <span class="n">H2</span><span class="p">:</span> <span class="s">'HW'</span><span class="p">}</span>
<span class="n">amber_charge</span> <span class="o">=</span> <span class="p">{</span><span class="n">O</span><span class="p">:</span> <span class="o">-</span><span class="mf">0.83400</span><span class="p">,</span> <span class="n">H1</span><span class="p">:</span> <span class="mf">0.41700</span><span class="p">,</span> <span class="n">H2</span><span class="p">:</span> <span class="mf">0.41700</span><span class="p">}</span>
<span class="n">configurations</span> <span class="o">=</span> <span class="p">{</span>
<span class="s">'default'</span><span class="p">:</span> <span class="n">ZMatrix</span><span class="p">([[</span><span class="n">H1</span><span class="p">],</span> \
<span class="p">[</span><span class="n">O</span><span class="p">,</span> <span class="n">H1</span><span class="p">,</span> <span class="mf">0.9572</span><span class="o">*</span><span class="n">Ang</span><span class="p">],</span> \
<span class="p">[</span><span class="n">H2</span><span class="p">,</span> <span class="n">O</span><span class="p">,</span> <span class="mf">0.9572</span><span class="o">*</span><span class="n">Ang</span><span class="p">,</span> <span class="n">H1</span><span class="p">,</span> <span class="mf">104.52</span><span class="o">*</span><span class="n">deg</span><span class="p">]])</span>
<span class="p">}</span>
</pre></div>
</div>
<p>The name should be meaningful to users, but is not used by MMTK
itself. The structure is optional and not used by MMTK either. The
following lines create the atoms in the group and assign them to
variables. These variables become attributes of the molecule,
i.e. when a water molecule is created in an application program by <tt class="docutils literal"><span class="pre">w</span>
<span class="pre">=</span> <span class="pre">Molecule('water')</span></tt>, then <tt class="docutils literal"><span class="pre">w.H1</span></tt> will refer to its first hydrogen
atom. The names of these variables can be any legal Python names. The
list of bonds, however, must be assigned to the name <tt class="docutils literal"><span class="pre">bonds</span></tt>. The
bond list is used by force fields and for visualization.</p>
<p>The name <tt class="docutils literal"><span class="pre">pdbmap</span></tt> is used for reading and writing PDB files. Its
value must be a list of tuples, where each tuple defines one PDB
residue. The first element of the tuple is the residue name, which is
used only for output. The second element is a dictionary that maps PDB
atom names to the actual atoms. The <tt class="docutils literal"><span class="pre">pdbmap</span></tt> entry of any object can be
overridden by an entry in a higher-level object, i.e. in the case of a
molecule a complex containing it. The name <tt class="docutils literal"><span class="pre">pdb_alternative</span></tt> allows
to read PDB files that use non-standard names. When a
PDB atom name is not found in the <tt class="docutils literal"><span class="pre">pdbmap</span></tt>, an attempt is made to
translate it to another name using <tt class="docutils literal"><span class="pre">pdb_alternative</span></tt>.</p>
<p>The two following lines in the definition file contain information
specific to force fields, in this case the Amber force field. The
dictionary <tt class="docutils literal"><span class="pre">amber_atom_type</span></tt> defines the atom type for each atom; the
dictionary <tt class="docutils literal"><span class="pre">amber_charge</span></tt> defines the partial charges. As for pdbmap
entries, these definitions can be overridden by higher-level
definitions.</p>
<p>The name <tt class="docutils literal"><span class="pre">configurations</span></tt> can be defined to be a dictionary of
configurations for the molecule. During the construction of a molecule,
a configuration can be specified via an optional parameter, e.g.
<tt class="docutils literal"><span class="pre">w</span> <span class="pre">=</span> <span class="pre">Molecule('water',</span> <span class="pre">configuration='default')</span></tt>. The names of the
configurations can be arbitrary; only the name “default” has a special
meaning; it is applied by default if no other configuration is specified
when constructing the molecule. If there is no default configuration,
and no other configuration is explicitly specified, then the molecule is
created with undefined atomic positions.</p>
<p>There are three ways of describing configurations:</p>
<ul>
<li><p class="first">By a Z-Matrix:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">ZMatrix</span><span class="p">([[</span><span class="n">H1</span><span class="p">],</span> \
<span class="p">[</span><span class="n">O</span><span class="p">,</span> <span class="n">H1</span><span class="p">,</span> <span class="mf">0.9572</span><span class="o">*</span><span class="n">Ang</span><span class="p">],</span> \
<span class="p">[</span><span class="n">H2</span><span class="p">,</span> <span class="n">O</span><span class="p">,</span> <span class="mf">0.9572</span><span class="o">*</span><span class="n">Ang</span><span class="p">,</span> <span class="n">H1</span><span class="p">,</span> <span class="mf">104.52</span><span class="o">*</span><span class="n">deg</span><span class="p">]])</span>
</pre></div>
</div>
</li>
<li><p class="first">By Cartesian coordinates:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">Cartesian</span><span class="p">({</span><span class="n">O</span><span class="p">:</span> <span class="p">(</span> <span class="mf">0.004</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.00518</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">),</span>
<span class="n">H1</span><span class="p">:</span> <span class="p">(</span><span class="o">-</span><span class="mf">0.092</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.00518</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">),</span>
<span class="n">H2</span><span class="p">:</span> <span class="p">(</span> <span class="mf">0.028</span><span class="p">,</span> <span class="mf">0.0875</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">)})</span>
</pre></div>
</div>
</li>
<li><p class="first">By a PDB file:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">PDBFile</span><span class="p">(</span><span class="s">'water.pdb'</span><span class="p">)</span>
</pre></div>
</div>
<p>The PDB file must be in the database subdirectory PDB, unless a full
path name is specified for it.</p>
</li>
</ul>
</div>
<div class="section" id="complex-definitions">
<h2>Complex definitions<a class="headerlink" href="#complex-definitions" title="Permalink to this headline">¶</a></h2>
<p>Complexes are defined much like molecules, except that they are composed
of molecules and atoms; no groups are allowed, and neither are bonds.</p>
</div>
<div class="section" id="protein-definitions">
<h2>Protein definitions<a class="headerlink" href="#protein-definitions" title="Permalink to this headline">¶</a></h2>
<p>Protein definitions can take many different forms, depending on the
source of input data and the type of information that is to be stored.
For proteins it is particularly useful that database definition files
are Python programs with all their flexibility.</p>
<p>The most common way of constructing a protein is from a PDB file. This
is an example for a protein definition:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">name</span> <span class="o">=</span> <span class="s">'insulin'</span>
<span class="c"># Read the PDB file.</span>
<span class="n">conf</span> <span class="o">=</span> <span class="n">PDBConfiguration</span><span class="p">(</span><span class="s">'insulin.pdb'</span><span class="p">)</span>
<span class="c"># Construct the peptide chains.</span>
<span class="n">chains</span> <span class="o">=</span> <span class="n">conf</span><span class="o">.</span><span class="n">createPeptideChains</span><span class="p">()</span>
<span class="c"># Clean up</span>
<span class="k">del</span> <span class="n">conf</span>
</pre></div>
</div>
<p>The name should be meaningful to users, but is not used by MMTK
itself. The second command reads the sequences of all peptide chains
from a PDB file. Everything which is not a peptide chain is ignored.
The following line constructs a PeptideChain object (a special
molecule) for each chain from the PDB sequence. This involves
constructing positions for any missing hydrogen atoms.
Finally, the temporary data (“conf”) is deleted, otherwise
it would remain in memory forever.</p>
<p>The net result of a protein definition file is the assignment of a list
of molecules (usually PeptideChain objects) to the variable “chains”.
MMTK then constructs a protein object from it. To use the above example,
an application program would use the command
<tt class="docutils literal"><span class="pre">p</span> <span class="pre">=</span> <span class="pre">Protein('insulin')</span></tt>. The construction of the protein involves
one nontrivial (but automatic) step: the construction of disulfide
bridges for pairs of cystein residues whose sulfur atoms have a distance
of less then 2.5 Ångström.</p>
</div>
</div>
<div class="section" id="threads-and-parallelization">
<h1>Threads and parallelization<a class="headerlink" href="#threads-and-parallelization" title="Permalink to this headline">¶</a></h1>
<p>This chapter explains the use of threads by MMTK and MMTK’s
parallelization support. This is an advanced topic, and not essential
for the majority MMTK applications. You need to read this chapter only
if you use multiprocessor computers, or if you want to implement
multi-threaded programs that use MMTK.</p>
<p>Threads are different execution paths through a program that are
executed in parallel, at least in principle; real parallel execution
is possible only on multiprocessor systems. MMTK makes use of threads
in two ways, which are conceptually unrelated: parallelization of
energy evaluation on shared-memory multiprocessor computers, and
support for multithreaded applications. Thread support is not
available on all machines; you can check if yous system supports
threads by starting a Python interpreter and typing import
threading. If this produces an error message, then your
system does not support threads, otherwise it is available in Python
and also in MMTK. If you do not have thread support in Python although
you know that your operating system supports threads, you might have
compiled your Python interpreter without thread support; in that case,
MMTK does not have thread support either.</p>
<p>Another approach to parallelization is message passing: several
processors work on a program and communicate via a fast network to
share results. A standard library, called MPI (Message Passing
Interface), has been developped for sharing data by message passing,
and implementations are available for all parallel computers currently
on the market. MMTK contains elementary support for parallelization by
message passing: only the energy evaluation has been paralellized,
using a data-replication strategy, which is simple but not the most
efficient for large systems. MPI support is disabled by default.
Enabling it involves modifying the file Src/Setup.template prior
to compilation of MMTK. Furthermore, an MPI-enabled installation of
ScientificPython is required, and the mpipython executable must
be used instead of the standard Python interpreter.</p>
<p>Threads and message passing can be used together to use a cluster of
shared-memory machines most efficiently. However, this requires that
the thread and MPI implementations being used work together; sometimes
there are conflicts, for example due to the use of the same signal in
both libraries. Refer to your system documentation for details.</p>
<p>The use of threads for parallelization on shared-memory systems is
very simple: Just set the environment variable MMTK_ENERGY_THREADS to
the desired value. If this variable is not defined, the default value
is 1, i.e. energy evaluations are performed serially. For choosing an
appropriate value for this environment variable, the following points
should be considered:</p>
<ul class="simple">
<li>The number of energy evaluation threads should not be larger than the
number of processors that are fully dedicated to the MMTK application.
A larger number of threads does not lead to wrong results,
but it can increase the total execution time.</li>
<li>MMTK assumes that all processors are equally fast. If you use a
heteregenous multiprocessor machine, in which the processors have
different speeds, you might find that the total execution time is
larger than without threads.</li>
<li>The use of threads incurs some computational overhead. For very small
systems, it is usually faster not to use threads.</li>
<li>Not all energy terms necessarily support threads. Of the force field
terms that part of MMTK, only the multipole algorithms for
electrostatic interactions does not support threads, but additional
force fields defined outside MMTK might also be affected. MMTK
automatically evaluates such energy terms with a single thread, such
that there is no risk of getting wrong results. However, you might not
get the performance you expect.</li>
<li>If second derivatives of the potential energy are requested, energy
evaluation is handled by a single thread. An efficient implementation
of multi-threaded energy evaluation would require a separate copy of
the second-derivative matrix per thread. This approach needs too much
memory for big systems to be feasible. Since second derivatives are
almost exclusively used for normal mode calculations, which need only
a single energy evaluation, multi-thread support is not particularly
important anyway.</li>
</ul>
<p>Parallelization via message passing is somewhat more complicated.
In the current MMTK parallelization model, all processors execute
the same program and replicate all tasks, with the important exception
of energy evaluation. Energy terms are divided evenly between the
processors, and at the end the energy and gradient values are shared
by all machines. This is the only step involving network communication.
Like thread-based parallelization, message-passing parallelization
does not support the evaluation of second derivatives.</p>
<p>A special problem with message-passing systems is input and output.
The MMTK application must ensure that output files are written by
only one processor, and that all processors correctly access input
files, especially in the case of each processor having its own
disk space. See the example <a class="reference internal" href="examples.html#example-mpi"><em>md.py</em></a>
for illustration.</p>
<p>Multithreaded applications are applications that use multiple threads
in order to simplify the implementation of certain algorithms, i.e.
not necessarily with the goal of profiting from multiple processors.
If you plan to write a multithreaded application that uses MMTK,
you should first make sure you understand threading support in
Python. In particular, you should keep in mind that the global
interpreter lock prevents the effective use of multiple processors
by Python code; only one thread at a time can execute interpreted
Python code. C code called from Python can permit other threads
to execute simultaneously; MMTK does this for energy evaluation,
molecular dynamics integration, energy minimization, and normal
mode calculation.</p>
<p>A general problem in multithreaded applications is access to resources
that are shared among the threads. In MMTK applications, the most
important shared resource is the description of the chemical systems,
i.e. universe objects and their contents. Chaos would result if two
threads tried to modify the state of a universe simultaneously, or
even if one thread uses information that is simultaneously being
modified by another thread. Synchronization is therefore a critical
part of multithreaded application. MMTK provides two synchronization
aids, both of which described in the documentation of the class
<a class="reference internal" href="modules.html#MMTK.Universe.Universe" title="MMTK.Universe.Universe"><tt class="xref py py-class docutils literal"><span class="pre">MMTK.Universe.Universe</span></tt></a>: the configuration change
lock (methods <a class="reference internal" href="modules.html#MMTK.Universe.Universe.acquireConfigurationChangeLock" title="MMTK.Universe.Universe.acquireConfigurationChangeLock"><tt class="xref py py-func docutils literal"><span class="pre">acquireConfigurationChangeLock()</span></tt></a>
and <a class="reference internal" href="modules.html#MMTK.Universe.Universe.releaseConfigurationChangeLock" title="MMTK.Universe.Universe.releaseConfigurationChangeLock"><tt class="xref py py-func docutils literal"><span class="pre">releaseConfigurationChangeLock()</span></tt></a>),
and the universe state lock (methods
<tt class="xref py py-func docutils literal"><span class="pre">acquireReadStateChangeLock()</span></tt>,
<tt class="xref py py-func docutils literal"><span class="pre">releaseReadStateChangeLock()</span></tt>,
<tt class="xref py py-func docutils literal"><span class="pre">acquireWriteStateChangeLock()</span></tt>, and
<tt class="xref py py-func docutils literal"><span class="pre">releaseWriteStateChangeLock()</span></tt>).
Only a few common universe operations manipulate the universe
state lock in order to avoid conflicts with other threads;
these methods are marked as thread-safe in the description.
All other operations should only be
used inside a code section that is protected by the appropriate
manipulation of the state lock. The configuration change lock is less
critical; it is used only by the molecular dynamics and energy
minimization algorithms in MMTK.</p>
</div>
<div class="section" id="bibliography">
<h1>Bibliography<a class="headerlink" href="#bibliography" title="Permalink to this headline">¶</a></h1>
<p id="bondi1964">[Bondi1964]</p>
<blockquote>
<div><div class="line-block">
<div class="line">A. Bondi</div>
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1021/j100785a001">van der Waals Volumes and Radii</a></div>
<div class="line">1964</div>
</div>
</div></blockquote>
<p id="eisenhaber1993">[Eisenhaber1993]</p>
<blockquote>
<div><div class="line-block">
<div class="line">F. Eisenhaber, P. Argos</div>
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1002/jcc.540141103">Improved Strategy in Analytic Surface Calculation for Molecular
Systems: Handling of Singularities and Computational Efficiency</a></div>
<div class="line">1993</div>
</div>
</div></blockquote>
<p id="eisenhaber1995">[Eisenhaber1995]</p>
<blockquote>
<div><div class="line-block">
<div class="line">F. Eisenhaber, P. Lijnzaad, P. Argos, M. Scharf</div>
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1002/jcc.540160303(YoYo)">The Double Cubic Lattice Method: Efficient Approaches to Numerical
Integration of Surface Area and Volume and to Dot Surface
Contouring of Molecular Assemblies</a></div>
<div class="line">1995</div>
</div>
</div></blockquote>
<p id="hinsen1995">[Hinsen1995]</p>
<blockquote>
<div><div class="line-block">
<div class="line">Konrad Hinsen, Gerald R. Kneller</div>
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1103/PhysRevE.52.6868">Influence of constraints on the dynamics of polypeptide chains</a></div>
<div class="line">1995</div>
</div>
</div></blockquote>
<p id="hinsen1997">[Hinsen1997]</p>
<blockquote>
<div><div class="line-block">
<div class="line">Konrad Hinsen, Benoit Roux</div>
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1002/(SICI)1096-987X(199702)18:3%3C368::AID-JCC7%3E3.0.CO;2-S">An accurate potential for simulating proton transfer in acetylacetone</a></div>
<div class="line">1997</div>
</div>
</div></blockquote>
<p id="hinsen1998">[Hinsen1998]</p>
<blockquote>
<div><div class="line-block">
<div class="line">Konrad Hinsen</div>
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1002/(SICI)1097-0134(19981115)33:3%3C417::AID-PROT10%3E3.0.CO;2-8">Analysis of domain motions by approximate normal mode calculations</a></div>
<div class="line">1998</div>
</div>
</div></blockquote>
<p id="hinsen1999">[Hinsen1999]</p>
<blockquote>
<div><div class="line-block">
<div class="line">Konrad Hinsen, Aline Thomas, Martin J. Field</div>
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1002/(SICI)1097-0134(19990215)34:3%3C369::AID-PROT9%3E3.0.CO;2-F">Analysis of domain motions in large proteins</a></div>
<div class="line">1999</div>
</div>
</div></blockquote>
<p id="hinsen1999a">[Hinsen1999a]</p>
<blockquote>
<div><div class="line-block">
<div class="line">Konrad Hinsen, Gerald R. Kneller</div>
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1080/08927020008025373">Projection methods for the analysis of complex motions in macromolecules</a></div>
<div class="line">1999</div>
</div>
</div></blockquote>
<p id="hinsen1999b">[Hinsen1999b]</p>
<blockquote>
<div><div class="line-block">
<div class="line">Konrad Hinsen, Gerald R. Kneller</div>
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1063/1.480441">A simplified force field for describing vibrational protein
dynamics over the whole frequency range</a></div>
<div class="line">1999</div>
</div>
</div></blockquote>
<p id="hinsen2000">[Hinsen2000]</p>
<blockquote>
<div><div class="line-block">
<div class="line">Konrad Hinsen, Andrei J. Petrescu, Serge Dellerue,
Marie-Claire Bellissent-Funel, Gerald R. Kneller.</div>
<div class="line-block">
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1016/S0301-0104(00)00222-6">Harmonicity in slow protein dynamics</a></div>
</div>
<div class="line">2000</div>
</div>
</div></blockquote>
<p id="kneller1990">[Kneller1990]</p>
<blockquote>
<div><div class="line-block">
<div class="line">Gerald R. Kneller</div>
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1080/08927029108022453">Superposition of molecular structures using quaternions</a></div>
<div class="line">1990</div>
</div>
</div></blockquote>
<p id="kneller1996">[Kneller1996]</p>
<blockquote>
<div><div class="line-block">
<div class="line">Gerald R. Kneller, Thomas Mülders</div>
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1103/PhysRevE.54.6825">Nosé-Andersen dynamics of partially rigid molecules:
Coupling of all degrees of freedom to heat and pressure baths</a></div>
<div class="line">1996</div>
</div>
</div></blockquote>
<p id="swope1982">[Swope1982]</p>
<blockquote>
<div><div class="line-block">
<div class="line">W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson</div>
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1063/1.442716">A computer simulation method for the calculation of equilibrium
constants for the formation of physical clusters of molecules:
application to small water clusters</a></div>
<div class="line">1982</div>
</div>
</div></blockquote>
<p id="vangunsteren1982">[vanGunsteren1982]</p>
<blockquote>
<div><div class="line-block">
<div class="line">Wilfred F. van Gunsteren, Martin Karplus</div>
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1021/ma00234a015">Effect of Constraints on the Dynamics of Macromolecules</a></div>
<div class="line">1982</div>
</div>
</div></blockquote>
<p id="viduna2000">[Viduna2000]</p>
<blockquote>
<div><div class="line-block">
<div class="line">David Viduna, Konrad Hinsen, Gerald R. Kneller</div>
<div class="line-block">
<div class="line"><a class="reference external" href="http://dx.doi.org/10.1103/PhysRevE.62.3986">The influence of molecular flexibility on DNA radiosensitivity:
A simulation study</a></div>
</div>
<div class="line">2000</div>
</div>
</div></blockquote>
<p id="wolf1999">[Wolf1999]</p>
<blockquote>
<div><div class="line-block">
<div class="line">D. Wolf, P. Keblinski, S.R. Philpot, J. Eggebrecht</div>
<div class="line"><cite>Exact method for the simulation of Coulombic systems by spherically
truncated, pairwise r:sup:</cite>-1` summation
<<a class="reference external" href="http://dx.doi.org/10.1063/1.478738">http://dx.doi.org/10.1063/1.478738</a>>`_</div>
<div class="line">1999</div>
</div>
</div></blockquote>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar">
<div class="sphinxsidebarwrapper">
<h3><a href="index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">MMTK User’s Guide</a></li>
<li><a class="reference internal" href="#introduction">Introduction</a></li>
<li><a class="reference internal" href="#overview">Overview</a><ul>
<li><a class="reference internal" href="#using-mmtk">Using MMTK</a></li>
<li><a class="reference internal" href="#modules">Modules</a></li>
<li><a class="reference internal" href="#objects">Objects</a><ul>
<li><a class="reference internal" href="#chemical-objects">Chemical objects</a></li>
<li><a class="reference internal" href="#collections">Collections</a></li>
<li><a class="reference internal" href="#force-fields">Force fields</a></li>
<li><a class="reference internal" href="#universes">Universes</a></li>
<li><a class="reference internal" href="#minimizers-and-integrators">Minimizers and integrators</a></li>
<li><a class="reference internal" href="#trajectories">Trajectories</a></li>
<li><a class="reference internal" href="#variables">Variables</a></li>
<li><a class="reference internal" href="#normal-modes">Normal modes</a></li>
<li><a class="reference internal" href="#non-mmtk-objects">Non-MMTK objects</a></li>
</ul>
</li>
<li><a class="reference internal" href="#the-chemical-database">The chemical database</a></li>
<li><a class="reference internal" href="#id1">Force fields</a></li>
<li><a class="reference internal" href="#units">Units</a></li>
<li><a class="reference internal" href="#a-simple-example">A simple example</a></li>
</ul>
</li>
<li><a class="reference internal" href="#constructing-a-molecular-system">Constructing a molecular system</a><ul>
<li><a class="reference internal" href="#creating-chemical-objects">Creating chemical objects</a><ul>
<li><a class="reference internal" href="#proteins-peptide-chains-and-nucleotide-chains">Proteins, peptide chains, and nucleotide chains</a></li>
<li><a class="reference internal" href="#lattices">Lattices</a></li>
<li><a class="reference internal" href="#random-numbers">Random numbers</a></li>
<li><a class="reference internal" href="#id2">Collections</a></li>
<li><a class="reference internal" href="#creating-universes">Creating universes</a></li>
<li><a class="reference internal" href="#id3">Force fields</a></li>
</ul>
</li>
<li><a class="reference internal" href="#referring-to-objects-and-parts-of-objects">Referring to objects and parts of objects</a><ul>
<li><a class="reference internal" href="#the-structure-of-peptide-and-nucleotide-chains">The structure of peptide and nucleotide chains</a></li>
</ul>
</li>
<li><a class="reference internal" href="#analyzing-and-modifying-atom-properties">Analyzing and modifying atom properties</a><ul>
<li><a class="reference internal" href="#general-operations">General operations</a></li>
<li><a class="reference internal" href="#coordinate-transformations">Coordinate transformations</a></li>
<li><a class="reference internal" href="#atomic-property-objects">Atomic property objects</a></li>
<li><a class="reference internal" href="#configurations">Configurations</a></li>
</ul>
</li>
</ul>
</li>
<li><a class="reference internal" href="#minimization-and-molecular-dynamics">Minimization and Molecular Dynamics</a><ul>
<li><a class="reference internal" href="#id5">Trajectories</a></li>
<li><a class="reference internal" href="#options-for-minimization-and-dynamics">Options for minimization and dynamics</a><ul>
<li><a class="reference internal" href="#periodic-actions">Periodic actions</a></li>
<li><a class="reference internal" href="#fixed-atoms">Fixed atoms</a></li>
</ul>
</li>
<li><a class="reference internal" href="#energy-minimization">Energy minimization</a></li>
<li><a class="reference internal" href="#molecular-dynamics">Molecular dynamics</a><ul>
<li><a class="reference internal" href="#velocities">Velocities</a></li>
<li><a class="reference internal" href="#distance-constraints">Distance constraints</a></li>
<li><a class="reference internal" href="#thermostats-and-barostats">Thermostats and barostats</a></li>
<li><a class="reference internal" href="#integration">Integration</a></li>
</ul>
</li>
<li><a class="reference internal" href="#snapshots">Snapshots</a></li>
</ul>
</li>
<li><a class="reference internal" href="#id8">Normal modes</a></li>
<li><a class="reference internal" href="#analysis-operations">Analysis operations</a><ul>
<li><a class="reference internal" href="#properties-of-chemical-objects-and-universes">Properties of chemical objects and universes</a></li>
<li><a class="reference internal" href="#energy-evaluation">Energy evaluation</a></li>
<li><a class="reference internal" href="#surfaces-and-volumes">Surfaces and volumes</a></li>
</ul>
</li>
<li><a class="reference internal" href="#miscellaneous-operations">Miscellaneous operations</a><ul>
<li><a class="reference internal" href="#saving-loading-and-copying-objects">Saving, loading, and copying objects</a></li>
<li><a class="reference internal" href="#exporting-to-specific-file-formats-and-visualization">Exporting to specific file formats and visualization</a><ul>
<li><a class="reference internal" href="#pdb-vrml-and-dcd-files">PDB, VRML, and DCD files</a></li>
<li><a class="reference internal" href="#visualization-and-animation">Visualization and animation</a></li>
</ul>
</li>
<li><a class="reference internal" href="#fields">Fields</a></li>
<li><a class="reference internal" href="#charge-fitting">Charge fitting</a></li>
</ul>
</li>
<li><a class="reference internal" href="#constructing-the-database">Constructing the database</a><ul>
<li><a class="reference internal" href="#atom-definitions">Atom definitions</a></li>
<li><a class="reference internal" href="#group-definitions">Group definitions</a></li>
<li><a class="reference internal" href="#molecule-definitions">Molecule definitions</a></li>
<li><a class="reference internal" href="#complex-definitions">Complex definitions</a></li>
<li><a class="reference internal" href="#protein-definitions">Protein definitions</a></li>
</ul>
</li>
<li><a class="reference internal" href="#threads-and-parallelization">Threads and parallelization</a></li>
<li><a class="reference internal" href="#bibliography">Bibliography</a></li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="index.html"
title="previous chapter">MMTK User Guide</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="glossary.html"
title="next chapter">Glossary</a></p>
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/mmtk.txt"
rel="nofollow">Show Source</a></li>
</ul>
<div id="searchbox" style="display: none">
<h3>Quick search</h3>
<form class="search" action="search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
<p class="searchtip" style="font-size: 90%">
Enter search terms or a module, class or function name.
</p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="glossary.html" title="Glossary"
>next</a> |</li>
<li class="right" >
<a href="index.html" title="MMTK User Guide"
>previous</a> |</li>
<li><a href="index.html">MMTK User Guide 2.7.7 documentation</a> »</li>
</ul>
</div>
<div class="footer">
© Copyright 2010, Konrad Hinsen.
Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.3.
</div>
</body>
</html>
|