1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
# This module implements a Velocity Verlet integrator.
#
# Written by Konrad Hinsen
#
import numpy as N
cimport numpy as N
import cython
cimport MMTK_trajectory_generator
from MMTK import Units, ParticleProperties
import MMTK_trajectory
import MMTK_forcefield
include "MMTK/python.pxi"
include "MMTK/numeric.pxi"
include "MMTK/core.pxi"
include "MMTK/universe.pxi"
include "MMTK/trajectory.pxi"
include "MMTK/forcefield.pxi"
#
# Velocity Verlet integrator
#
cdef class VelocityVerletIntegrator(MMTK_trajectory_generator.EnergyBasedTrajectoryGenerator):
"""
Velocity-Verlet molecular dynamics integrator
The integrator is fully thread-safe.
The integration is started by calling the integrator object.
All the keyword options (see documnentation of __init__) can be
specified either when creating the integrator or when calling it.
The following data categories and variables are available for
output:
- category "time": time
- category "configuration": configuration and box size (for
periodic universes)
- category "velocities": atomic velocities
- category "gradients": energy gradients for each atom
- category "energy": potential and kinetic energy, plus
extended-system energy terms if a thermostat and/or barostat
are used
"""
def __init__(self, universe, **options):
"""
@param universe: the universe on which the integrator acts
@type universe: L{MMTK.Universe}
@keyword steps: the number of integration steps (default is 100)
@type steps: C{int}
@keyword delta_t: the time step (default is 1 fs)
@type delta_t: C{float}
@keyword actions: a list of actions to be executed periodically
(default is none)
@type actions: C{list}
@keyword threads: the number of threads to use in energy evaluation
(default set by MMTK_ENERGY_THREADS)
@type threads: C{int}
@keyword background: if True, the integration is executed as a
separate thread (default: False)
@type background: C{bool}
"""
MMTK_trajectory_generator.EnergyBasedTrajectoryGenerator.__init__(
self, universe, options, "Velocity Verlet integrator")
# Supported features: none for the moment, to keep it simple
self.features = []
default_options = {'first_step': 0, 'steps': 100, 'delta_t': 1.*Units.fs,
'background': False, 'threads': None,
'actions': []}
available_data = ['configuration', 'velocities', 'gradients',
'energy', 'time']
restart_data = ['configuration', 'velocities', 'energy']
# Cython compiler directives set for efficiency:
# - No bound checks on index operations
# - No support for negative indices
# - Division uses C semantics
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cdef start(self):
cdef N.ndarray[double, ndim=2] x, v, g, dv
cdef N.ndarray[double, ndim=1] m
cdef energy_data energy
cdef double time, delta_t, ke
cdef int natoms, nsteps, step
cdef Py_ssize_t i, j, k
# Check if velocities have been initialized
if self.universe.velocities() is None:
raise ValueError("no velocities")
# Gather state variables and parameters
configuration = self.universe.configuration()
velocities = self.universe.velocities()
gradients = ParticleProperties.ParticleVector(self.universe)
masses = self.universe.masses()
delta_t = self.getOption('delta_t')
nsteps = self.getOption('steps')
natoms = self.universe.numberOfAtoms()
# For efficiency, the Cython code works at the array
# level rather than at the ParticleProperty level.
x = configuration.array
v = velocities.array
g = gradients.array
m = masses.array
dv = N.zeros((natoms, 3), N.float)
# Ask for energy gradients to be calculated and stored in
# the array g. Force constants are not requested.
energy.gradients = <void *>g
energy.gradient_fn = NULL
energy.force_constants = NULL
energy.fc_fn = NULL
# Declare the variables accessible to trajectory actions.
self.declareTrajectoryVariable_double(
&time, "time", "Time: %lf\n", time_unit_name, PyTrajectory_Time)
self.declareTrajectoryVariable_array(
v, "velocities", "Velocities:\n", velocity_unit_name,
PyTrajectory_Velocities)
self.declareTrajectoryVariable_array(
g, "gradients", "Energy gradients:\n", energy_gradient_unit_name,
PyTrajectory_Gradients)
self.declareTrajectoryVariable_double(
&energy.energy,"potential_energy", "Potential energy: %lf\n",
energy_unit_name, PyTrajectory_Energy)
self.declareTrajectoryVariable_double(
&ke, "kinetic_energy", "Kinetic energy: %lf\n",
energy_unit_name, PyTrajectory_Energy)
self.initializeTrajectoryActions()
# Acquire the write lock of the universe. This is necessary to
# make sure that the integrator's modifications to positions
# and velocities are synchronized with other threads that
# attempt to use or modify these same values.
#
# Note that the write lock will be released temporarily
# for trajectory actions. It will also be converted to
# a read lock temporarily for energy evaluation. This
# is taken care of automatically by the respective methods
# of class EnergyBasedTrajectoryGenerator.
self.acquireWriteLock()
# Preparation: Calculate initial half-step accelerations
# and run the trajectory actions on the initial state.
ke = 0.
self.foldCoordinatesIntoBox()
self.calculateEnergies(x, &energy, 0)
for i in range(natoms):
for j in range(3):
dv[i, j] = -0.5*delta_t*g[i, j]/m[i]
ke += 0.5*m[i]*v[i, j]*v[i, j]
self.trajectoryActions(step)
# Main integration loop
time = 0.
for step in range(nsteps):
# First half-step
for i in range(natoms):
for j in range(3):
v[i, j] += dv[i, j]
x[i, j] += delta_t*v[i, j]
# Mid-step energy calculation
self.foldCoordinatesIntoBox()
self.calculateEnergies(x, &energy, 1)
# Second half-step
ke = 0.
for i in range(natoms):
for j in range(3):
dv[i, j] = -0.5*delta_t*g[i, j]/m[i]
v[i, j] += dv[i, j]
ke += 0.5*m[i]*v[i, j]*v[i, j]
time += delta_t
self.trajectoryActions(step)
# Release the write lock.
self.releaseWriteLock()
# Finalize all trajectory actions (close files etc.)
self.finalizeTrajectoryActions(nsteps)
|