File: calpha_modes.py

package info (click to toggle)
mmtk 2.7.9-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,788 kB
  • ctags: 6,600
  • sloc: python: 18,050; ansic: 12,400; makefile: 129; csh: 3
file content (51 lines) | stat: -rw-r--r-- 1,629 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# This example shows how to calculate approximate low-frequency
# modes for big proteins. For a description of the techniques,
# see
#
#    K. Hinsen
#    Analysis of domain motions by approximate normal mode calculations
#    Proteins 33, 417 (1998)
#
# and
#
#    K. Hinsen, A.J. Petrescu, S. Dellerue, M.C. Bellissent-Funel, G.R. Kneller
#    Harmonicity in slow protein dynamics
#    Chem. Phys. 261, 25 (2000)
#

from MMTK import *
from MMTK.Proteins import Protein
from MMTK.ForceFields import CalphaForceField
from MMTK.FourierBasis import FourierBasis, estimateCutoff
from MMTK.NormalModes import EnergeticModes
from MMTK.Visualization import view
import pylab

# Construct system
universe = InfiniteUniverse(CalphaForceField(2.5))
universe.protein = Protein('insulin.pdb', model='calpha')

# Find a reasonable basis set size and cutoff
nbasis = max(10, universe.numberOfAtoms()/5)
cutoff, nbasis = estimateCutoff(universe, nbasis)
print "Calculating %d low-frequency modes." % nbasis

if cutoff is None:
    # Do full normal mode calculation
    modes = EnergeticModes(universe, 300.*Units.K)
else:
    # Do subspace mode calculation with Fourier basis
    subspace = FourierBasis(universe, cutoff)
    modes = EnergeticModes(universe, 300.*Units.K, subspace)

# Plot the atomic fluctuations in the first three non-zero modes
# for chain A
chain = universe.protein[0]
pylab.xticks(range(len(chain)),
             [r.name for r in chain])
for i in range(6, 9):
    f = modes[i]*modes[i]
    pylab.plot([f[residue.peptide.C_alpha] for residue in chain])

# Show animation of the first non-trivial mode
view(modes[6], 15.)