File: ChemicalObjects.py

package info (click to toggle)
mmtk 2.7.9-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,788 kB
  • ctags: 6,600
  • sloc: python: 18,050; ansic: 12,400; makefile: 129; csh: 3
file content (1261 lines) | stat: -rw-r--r-- 43,918 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
# This module implements classes that represent atoms, molecules, and
# complexes. They are made as copies from blueprints in the database.
#
# Written by Konrad Hinsen
#

"""
Atoms, groups, molecules and similar objects
"""

__docformat__ = 'restructuredtext'

from MMTK import Bonds, Collections, Database, \
                 Units, Utility, Visualization
from Scientific.Geometry import Vector
from Scientific.Geometry import Objects3D
from Scientific import N
import copy

#
# The base class for all chemical objects.
#
class ChemicalObject(Collections.GroupOfAtoms, Visualization.Viewable):

    """
    General chemical object

    This is an abstract base class that implements methods which
    are applicable to any chemical object (atom, molecule, etc.).
    """

    def __init__(self, blueprint, memo):
        if isinstance(blueprint, basestring):
            blueprint = self.blueprintclass(blueprint)
        self.type = blueprint.type
        if hasattr(blueprint, 'name'):
            self.name = blueprint.name
        if memo is None: memo = {}
        memo[id(blueprint)] = self
        for attr in blueprint.instance:
            setattr(self, attr,
                    Database.instantiate(getattr(blueprint, attr), memo))

    is_chemical_object = True
    is_incomplete = False
    is_modified = False

    __safe_for_unpickling__ = True
    __had_initargs__ = True

    def __hash__(self):
        return id(self)

    def __getattr__(self, attr):
        if attr[:1] == '_' or attr[:3] == 'is_':
            raise AttributeError
        else:
            return getattr(self.type, attr)

    def isSubsetModel(self):
        return False

    def addProperties(self, properties):
        if properties:
            for item in properties.items():
                if hasattr(self, item[0]) and item[0] != 'name':
                    raise TypeError('attribute '+item[0]+' already defined')
                setattr(self, item[0], item[1])

    def binaryProperty(self, properties, name, default):
        value = default
        try:
            value = properties[name]
            del properties[name]
        except KeyError:
            pass
        return value

    def topLevelChemicalObject(self):
        """Returns the highest-level chemical object of which
        the current object is a part."""
        if self.parent is None or not isChemicalObject(self.parent):
            return self
        else:
            return self.parent.topLevelChemicalObject()

    def universe(self):
        """
        :returns: the universe to which the object belongs,
                  or None if the object does not belong to any universe
        :rtype: :class:`~MMTK.Universe.Universe`
        """
        if self.parent is None:
            return None
        else:
            return self.parent.universe()

    def bondedUnits(self):
        """
        :returns: the largest subobjects which can contain bonds.
                  There are no bonds between any of the subobjects
                  in the list.
        :rtype: list
        """
        return [self]

    def atomList(self):
        """
        :returns: a list containing all atoms in the object
        :rtype: list
        """
        pass

    def atomIterator(self):
        """
        :returns: an iterator over all atoms in the object
        :rtype: iterator
        """
        pass

    def fullName(self):
        """
        :returns: the full name of the object. The full name consists
                  of the proper name of the object preceded by
                  the full name of its parent separated by a dot.
        :rtype: str
        """
        if self.parent is None or not isChemicalObject(self.parent):
            return self.name
        else:
            return self.parent.fullName() + '.' + self.name

    def degreesOfFreedom(self):
        """
        :returns: the number of degrees of freedom of the object
        :rtype: int
        """
        return Collections.GroupOfAtoms.degreesOfFreedom(self) \
               - self.numberOfDistanceConstraints()

    def distanceConstraintList(self):
        """
        :returns: the distance constraints of the object
        :rtype: list
        """
        return []

    def _distanceConstraintList(self):
        return []

    def traverseBondTree(self, function = None):
        return []

    def numberOfDistanceConstraints(self):
        """
        :returns: the number of distance constraints of the object
        :rtype: int
        """
        return 0

    def setBondConstraints(self, universe=None):
        """
        Sets distance constraints for all bonds.
        """
        pass

    def removeDistanceConstraints(self, universe=None):
        """
        Removes all distance constraints.
        """
        pass

    def setRigidBodyConstraints(self, universe = None):
        """
        Sets distance constraints that make the object fully rigid.
        """
        if universe is None:
            universe = self.universe()
        if universe is None:
            import Universe
            universe = Universe.InfiniteUniverse()
        atoms = self.atomList()
        if len(atoms) > 1:
            self.addDistanceConstraint(atoms[0], atoms[1],
                                       universe.distance(atoms[0], atoms[1]))
        if len(atoms) > 2:
            self.addDistanceConstraint(atoms[0], atoms[2],
                                       universe.distance(atoms[0], atoms[2]))
            self.addDistanceConstraint(atoms[1], atoms[2],
                                       universe.distance(atoms[1], atoms[2]))
        if len(atoms) > 3:
            for a in atoms[3:]:
                self.addDistanceConstraint(atoms[0], a,
                                           universe.distance(atoms[0], a))
                self.addDistanceConstraint(atoms[1], a,
                                           universe.distance(atoms[1], a))
                self.addDistanceConstraint(atoms[2], a,
                                           universe.distance(atoms[2], a))

    def getAtomProperty(self, atom, property):
        """
        Retrieve atom properties from the chemical database.

        Note: the property is first looked up in the database entry
        for the object on which the method is called. If the lookup
        fails, the complete hierarchy from the atom to the top-level
        object is constructed and traversed starting from the top-level
        object until the property is found. This permits database entries
        for higher-level objects to override property definitions in
        its constituents.

        At the atom level, the property is retrieved from an attribute
        with the same name. This means that properties at the atom
        level can be defined both in the chemical database and for
        each atom individually by assignment to the attribute.
        
        :returns: the value of the specified property for the given
                  atom from the chemical database.
        """

    def writeXML(self, file, memo, toplevel=1):
        if self.type is None:
            name = 'm' + `memo['counter']`
            memo['counter'] = memo['counter'] + 1
            memo[id(self)] = name
            atoms = copy.copy(self.atoms)
            bonds = copy.copy(self.bonds)
            for group in self.groups:
                group.writeXML(file, memo, 0)
                for atom in group.atoms:
                    atoms.remove(atom)
                for bond in group.bonds:
                    bonds.remove(bond)
            file.write('<molecule id="%s">\n' % name)
            for group in self.groups:
                file.write('  <molecule ref="%s" title="%s"/>\n'
                           % (memo[id(group.type)], group.name))
            if atoms:
                file.write('  <atomArray>\n')
                for atom in atoms:
                    file.write('    <atom title="%s" elementType="%s"/>\n'
                               % (atom.name, atom.type.symbol))
                file.write('  </atomArray>\n')
            if bonds:
                file.write('  <bondArray>\n')
                for bond in bonds:
                    a1n = self.relativeName(bond.a1)
                    a2n = self.relativeName(bond.a2)
                    file.write('    <bond atomRefs2="%s %s"/>\n' % (a1n, a2n))
                file.write('  </bondArray>\n')
            file.write('</molecule>\n')
        else:
            name = self.name
            self.type.writeXML(file, memo)
            atom_names = self.type.getXMLAtomOrder()
        if toplevel:
            return ['<molecule ref="%s"/>' % name]
        else:
            return None

    def getXMLAtomOrder(self):
        if self.type is None:
            atoms = []
            for group in self.groups:
                atoms.extend(group.getXMLAtomOrder())
            for atom in self.atoms:
                if atom not in atoms:
                    atoms.append(atom)
        else:
            atom_names = self.type.getXMLAtomOrder()
            atoms = []
            for name in atom_names:
                parts = name.split(':')
                object = self
                for attr in parts:
                    object = getattr(object, attr)
                atoms.append(object)
        return atoms

    def relativeName(self, object):
        name = ''
        while object is not None and object != self:
            name = object.name + ':' + name
            object = object.parent
        return name[:-1]

    def relativeName_unused(self, object):
        name = ''
        while object is not None and object != self:
            for attr, value in object.parent.__dict__.items():
                if value is object:
                    name = attr + ':' + name
                    break
            object = object.parent
        return name[:-1]

    def description(self, index_map = None):
        tag = Utility.uniqueAttribute()
        s = self._description(tag, index_map, 1)
        for a in self.atomList():
            delattr(a, tag)
        return s

    def __repr__(self):
        return self.__class__.__name__ + ' ' + self.fullName()
    __str__ = __repr__

    def __copy__(self):
        return copy.deepcopy(self, {id(self.parent): None})

# Type check

def isChemicalObject(object):
    """
    :returns: True if object is a chemical object
    """
    return hasattr(object, 'is_chemical_object')

#
# The second base class for all composite chemical objects.
#
class CompositeChemicalObject(object):

    """
    Chemical object containing subobjects

    This is an abstract base class that implements methods
    which can be used with any composite chemical object,
    i.e. any chemical object that is not an atom.
    """

    def __init__(self, properties):
        if properties.has_key('configuration'):
            conf = properties['configuration']
            self.configurations[conf].applyTo(self)
            del properties['configuration']
        elif hasattr(self, 'configurations') and \
             self.configurations.has_key('default'):
            self.configurations['default'].applyTo(self)
        if properties.has_key('position'):
            self.translateTo(properties['position'])
            del properties['position']
        self.addProperties(properties)

    def atomList(self):
        return self.atoms

    def atomIterator(self):
        return iter(self.atoms)

    def setPosition(self, atom, position):
        if atom.__class__ is Database.AtomReference:
            atom = self.atoms[atom.number]
        atom.setPosition(position)

    def setIndex(self, atom, index):
        if atom.__class__ is Database.AtomReference:
            atom = self.atoms[atom.number]
        atom.setIndex(index)

    def getAtom(self, atom):
        if atom.__class__ is Database.AtomReference:
            atom = self.atoms[atom.number]
        return atom

    def getReference(self, atom):
        if atom.__class__ is Database.AtomReference:
            return atom
        return Database.AtomReference(self.atoms.index(atom))

    def getAtomProperty(self, atom, property, levels = None):
        try:
            return atom.__dict__[property]
        except KeyError:
            try:
                return getattr(self, property)[self.getReference(atom)]
            except (AttributeError, KeyError):
                if levels is None:
                    object = atom
                    levels = []
                    while object != self:
                        levels.append(object)
                        object = object.parent
                if not levels:
                    raise KeyError('Property ' + property +
                                    ' not defined for  ', `atom`)
                return levels[-1].getAtomProperty(atom, property, levels[:-1])

    def deleteUndefinedAtoms(self):
        delete = [a for a in self.atoms if a.position() is None]
        for a in delete:
            a.delete()

    def _deleteAtom(self, atom):
        self.atoms.remove(atom)
        self.is_modified = True
        self.type = None
        if self.parent is not None:
            self.parent._deleteAtom(atom)

    def distanceConstraintList(self):
        dc = self._distanceConstraintList()
        for o in self._subunits():
            dc = dc + o._distanceConstraintList()
        return dc

    def _distanceConstraintList(self):
        try:
            return self.distance_constraints
        except AttributeError:
            return []

    def numberOfDistanceConstraints(self):
        n = len(self._distanceConstraintList()) + \
            sum(len(o._distanceConstraintList()) for o in self._subunits())
        return n

    def setBondConstraints(self, universe=None):
        if universe is None:
            universe = self.universe()
        bond_database = universe.bondLengthDatabase()
        for o in self.bondedUnits():
            o._setBondConstraints(universe, bond_database)

    def _setBondConstraints(self, universe, bond_database):
        self.distance_constraints = []
        for bond in self.bonds:
            d = bond_database.bondLength(bond)
            if d is None:
                d = universe.distance(bond.a1, bond.a2)
            self.addDistanceConstraint(bond.a1, bond.a2, d)

    def addDistanceConstraint(self, atom1, atom2, distance):
        try:
            self.distance_constraints.append((atom1, atom2, distance))
        except AttributeError:
            self.distance_constraints = [(atom1, atom2, distance)]

    def removeDistanceConstraints(self, universe=None):
        try:
            del self.distance_constraints
        except AttributeError:
            pass
        for o in self._subunits():
            o.removeDistanceConstraints()

    def traverseBondTree(self, function = None):
        self.setBondAttributes()
        todo = [self.atoms[0]]
        done = {todo[0]: True}
        bonds = []
        while todo:
            next_todo = []
            for atom in todo:
                bonded = atom.bondedTo()
                for other in bonded:
                    if not done.get(other, False):
                        if function is None:
                            bonds.append((atom, other))
                        else:
                            bonds.append((function(atom), function(other)))
                        next_todo.append(other)
                        done[other] = True
            todo = next_todo
        self.clearBondAttributes()
        return bonds

    def _description(self, tag, index_map, toplevel):
        letter, kwargs = self._descriptionSpec()
        s = [letter, '(', `self.name`, ',[']
        s.extend([o._description(tag, index_map, 0) + ','
                  for o in self._subunits()])
        s.extend([a._description(tag, index_map, 0) + ','
                  for a in self.atoms if not hasattr(a, tag)])
        s.append(']')
        if toplevel:
            s.extend([',', `self._typeName()`])
        if kwargs is not None:
            s.extend([',', kwargs])
        constraints = self._distanceConstraintList()
        if constraints:
            s.append(',dc=[')
            if index_map is None:
                s.extend(['(%d,%d,%f),' % (c[0].index, c[1].index, c[2])
                          for c in constraints])
            else:
                s.extend(['(%d,%d,%f),' % (index_map[c[0].index],
                                           index_map[c[1].index], c[2])
                          for c in constraints])
            s.append(']')
        s.append(')')
        return ''.join(s)

    def _typeName(self):
        return self.type.name

    def _graphics(self, conf, distance_fn, model, module, options):
        glist = []
        for bu in self.bondedUnits():
            for a in bu.atomList():
                glist.extend(a._graphics(conf, distance_fn, model,
                                         module, options))
            if hasattr(bu, 'bonds'):
                for b in bu.bonds:
                    glist.extend(b._graphics(conf, distance_fn, model,
                                             module, options))
        return glist

#
# The classes for atoms, groups, molecules, and complexes.
#
class Atom(ChemicalObject):

    """
    Atom
    """

    def __init__(self, atom_spec, _memo = None, **properties):
        """
        :param atom_spec: a string (not case sensitive) specifying
                          the chemical element
        :type atom_spec: str
        :keyword position: the position of the atom
        :type position: Scientific.Geometry.Vector
        :keyword name: a name given to the atom
        :type name: str
        """
        Utility.uniqueID.registerObject(self)
        ChemicalObject.__init__(self, atom_spec, _memo)
        self._mass = self.type.average_mass
        self.array = None
        self.index = None
        if properties.has_key('position'):
            self.setPosition(properties['position'])
            del properties['position']
        self.addProperties(properties)

    blueprintclass = Database.BlueprintAtom

    def __getstate__(self):
        state = copy.copy(self.__dict__)
        if self.array is not None:
            state['array'] = None
            state['pos'] = Vector(self.array[self.index,:])
        return state

    def atomList(self):
        return [self]

    def atomIterator(self):
        yield self

    def setPosition(self, position):
        """
        Changes the position of the atom.

        :param position: the new position
        :type position: Scientific.Geometry.Vector
        """
        if position is None:
            if self.array is None:
                try: del self.pos
                except AttributeError: pass
            else:
                self.array[self.index,0] = Utility.undefined
                self.array[self.index,1] = Utility.undefined
                self.array[self.index,2] = Utility.undefined
        else:
            if self.array is None:
                self.pos = position
            else:
                self.array[self.index,0] = position[0]
                self.array[self.index,1] = position[1]
                self.array[self.index,2] = position[2]

    translateTo = setPosition

    def position(self, conf = None):
        """
        :returns: the position in configuration conf. If conf is 
                  'None', use the current configuration. If the atom has
                  not been assigned a position, the return value is None.
        :rtype: Scientific.Geometry.Vector
        """
        if conf is None:
            if self.array is None:
                try:
                    return self.pos
                except AttributeError:
                    return None
            else:
                if N.logical_or.reduce(
                    N.greater(self.array[self.index, :],
                              Utility.undefined_limit)):
                    return None
                else:
                    return Vector(self.array[self.index,:])
        else:
            return conf[self]

    centerOfMass = position

    def setMass(self, mass):
        """
        Changes the mass of the atom.

        :param mass: the mass
        :type mass: float
        """
        self._mass = mass
        universe = self.universe()
        if universe is not None:
            universe._changed(True)

    def getAtom(self, atom):
        return self

    def translateBy(self, vector):
        if self.array is None:
            self.pos = self.pos + vector
        else:
            self.array[self.index,0] = self.array[self.index,0] + vector[0]
            self.array[self.index,1] = self.array[self.index,1] + vector[1]
            self.array[self.index,2] = self.array[self.index,2] + vector[2]

    def numberOfPoints(self):
        return 1

    numberOfCartesianCoordinates = numberOfPoints

    def setIndex(self, index):
        if self.index is not None and self.index != index:
            raise ValueError('Wrong atom index')
        self.index = index

    def setArray(self, index):
        self.index = index
        self.array = None

    def getArray(self):
        return self.array

    def unsetArray(self):
        self.pos = self.position()
        self.array = None

    def setBondAttribute(self, atom):
        try:
            self.bonded_to__.append(atom)
        except AttributeError:
            self.bonded_to__ = [atom]

    def clearBondAttribute(self):
        try:
            del self.bonded_to__
        except AttributeError:
            pass

    def bondedTo(self):
        """
        :returns: a list of all atoms to which a chemical bond exists.
        :rtype: list
        """
        try:
            return self.bonded_to__
        except AttributeError:
            if self.parent is None or not isChemicalObject(self.parent):
                return []
            else:
                return self.parent.bondedTo(self)

    def delete(self):
        if self.parent is not None:
            self.parent._deleteAtom(self)           

    def getAtomProperty(self, atom, property, levels = None):
        if self != atom:
            raise ValueError("Wrong atom")
        return getattr(self, property)

    def _description(self, tag, index_map, toplevel):
        setattr(self, tag, None)
        if index_map is None:
            index = self.index
        else:
            index = index_map[self.index]
        if toplevel:
            return 'A(' + `self.name` + ',' + `index` + ',' + \
                   `self.symbol` + ')'
        else:
            return 'A(' + `self.name` + ',' + `index` + ')'

    def _graphics(self, conf, distance_fn, model, module, options):
        #PJC change:
        if model == 'ball_and_stick':
            color = self._atomColor(self, options)
            material = module.DiffuseMaterial(color)
            radius = options.get('ball_radius', 0.03)
            return [module.Sphere(self.position(), radius, material=material)]
        elif model == 'vdw' or model == 'vdw_and_stick':
            color = self._atomColor(self, options)
            material = module.DiffuseMaterial(color)
            try:
                radius = self.vdW_radius
            except:
                radius = options.get('ball_radius', 0.03)
            return [module.Sphere(self.position(), radius, material=material)]
        else:
            return []

        if model != 'ball_and_stick':
            return []
        color = self._atomColor(self, options)
        material = module.DiffuseMaterial(color)
        radius = options.get('ball_radius', 0.03)
        return [module.Sphere(self.position(), radius, material=material)]

    def writeXML(self, file, memo, toplevel=1):
        return ['<atom title="%s" elementType="%s"/>'
                % (self.name, self.type.symbol)]

    def getXMLAtomOrder(self):
        return [self]

class Group(CompositeChemicalObject, ChemicalObject):

    """
    Group of bonded atoms

    Groups can contain atoms and other groups, and link them by chemical
    bonds. They are used to represent functional groups or any other
    part of a molecule that has a well-defined identity.

    Groups cannot be created in application programs, but only in
    database definitions for molecules or through a MoleculeFactory.
    """

    def __init__(self, group_spec, _memo = None, **properties):
        """
        :param group_spec: a string (not case sensitive) that specifies
                           the group name in the chemical database
        :type group_spec: str
        :keyword position: the position of the center of mass of the group
        :type position: Scientific.Geometry.Vector
        :keyword name: a name given to the group
        :type name: str
        """
        if group_spec is not None:
            # group_spec is None when called from MoleculeFactory
            ChemicalObject.__init__(self, group_spec, _memo)
            self.addProperties(properties)

    blueprintclass = Database.BlueprintGroup
    is_incomplete = True

    def bondedTo(self, atom):
        if self.parent is None or not isChemicalObject(self.parent):
            return []
        else:
            return self.parent.bondedTo(atom)

    def setBondAttributes(self):
        pass

    def clearBondAttributes(self):
        pass

    def _subunits(self):
        return self.groups

    def _descriptionSpec(self):
        return "G", None

class Molecule(CompositeChemicalObject, ChemicalObject):

    """Molecule

    Molecules consist of atoms and groups linked by bonds.
    """

    def __init__(self, molecule_spec, _memo = None, **properties):
        """
        :param molecule_spec: a string (not case sensitive) that specifies
                              the molecule name in the chemical database
        :type molecule_spec: str
        :keyword position: the position of the center of mass of the molecule
        :type position: Scientific.Geometry.Vector
        :keyword name: a name given to the molecule
        :type name: str
        :keyword configuration: the name of a configuration listed in the
                                database definition of the molecule, which
                                is used to initialize the atom positions.
                                If no configuration is specified, the
                                configuration named "default" will be used,
                                if it exists. Otherwise the atom positions
                                are undefined.
        :type configuration: str
        """
        if molecule_spec is not None:
            # molecule_spec is None when called from MoleculeFactory
            ChemicalObject.__init__(self, molecule_spec, _memo)
            properties = copy.copy(properties)
            CompositeChemicalObject.__init__(self, properties)
            self.bonds = Bonds.BondList(self.bonds)

    blueprintclass = Database.BlueprintMolecule

    def bondedTo(self, atom):
        return self.bonds.bondedTo(atom)

    def setBondAttributes(self):
        self.bonds.setBondAttributes()

    def clearBondAttributes(self):
        for a in self.atoms:
            a.clearBondAttribute()

    def _subunits(self):
        return self.groups

    def _descriptionSpec(self):
        return "M", None

    def addGroup(self, group, bond_atom_pairs):
        for a1, a2 in bond_atom_pairs:
            o1 = a1.topLevelChemicalObject()
            o2 = a2.topLevelChemicalObject()
            if set([o1, o2]) != set([self, group]):
                raise ValueError("bond %s-%s outside object" %
                                  (str(a1), str(a2)))
        self.groups.append(group)
        self.atoms = self.atoms + group.atoms
        group.parent = self
        self.clearBondAttributes()
        for a1, a2 in bond_atom_pairs:
            self.bonds.append(Bonds.Bond((a1, a2)))
        for b in group.bonds:
            self.bonds.append(b)

    # construct positions of missing hydrogens
    def findHydrogenPositions(self):
        """
        Find reasonable positions for hydrogen atoms that have no
        position assigned.

        This method uses a heuristic approach based on standard geometry
        data. It was developed for proteins and DNA and may not give
        good results for other molecules. It raises an exception
        if presented with a topology it cannot handle.
        """
        self.setBondAttributes()
        try:
            unknown = {}
            for a in self.atoms:
                if a.position() is None:
                    if a.symbol != 'H':
                        raise ValueError('position of ' + a.fullName() + \
                                          ' is undefined')
                    bonded = a.bondedTo()[0]
                    unknown.setdefault(bonded, []).append(a)
            for a, list in unknown.items():
                bonded = a.bondedTo()
                n = len(bonded)
                known = [b for b in bonded if b.position() is not None]
                nb = len(list)
                try:
                    method = self._h_methods[a.symbol][n][nb]
                except KeyError:
                    raise ValueError("Can't handle this yet: " +
                                      a.symbol + ' with ' + `n` + ' bonds (' +
                                      a.fullName() + ').')
                method(self, a, known, list)
        finally:
            self.clearBondAttributes()

    # default C-H bond length and X-C-H angle
    _ch_bond = 1.09*Units.Ang
    _hch_angle = N.arccos(-1./3.)*Units.rad
    _nh_bond = 1.03*Units.Ang
    _hnh_angle = 120.*Units.deg
    _oh_bond = 0.95*Units.Ang
    _coh_angle = 114.9*Units.deg
    _sh_bond = 1.007*Units.Ang
    _csh_angle = 96.5*Units.deg

    def _C4oneH(self, atom, known, unknown):
        r = atom.position()
        n0 = (known[0].position()-r).normal()
        n1 = (known[1].position()-r).normal()
        n2 = (known[2].position()-r).normal()
        n3 = (n0 + n1 + n2).normal()
        unknown[0].setPosition(r-self._ch_bond*n3)

    def _C4twoH(self, atom, known, unknown):
        r = atom.position()
        r1 = known[0].position()
        r2 = known[1].position()
        plane = Objects3D.Plane(r, r1, r2)
        axis = -((r1-r)+(r2-r)).normal()
        plane = plane.rotate(Objects3D.Line(r, axis), 90.*Units.deg)
        cone = Objects3D.Cone(r, axis, 0.5*self._hch_angle)
        sphere = Objects3D.Sphere(r, self._ch_bond)
        circle = sphere.intersectWith(cone)
        points = circle.intersectWith(plane)
        unknown[0].setPosition(points[0])
        unknown[1].setPosition(points[1])

    def _C4threeH(self, atom, known, unknown):
        self._tetrahedralH(atom, known, unknown, self._ch_bond)

    def _C3oneH(self, atom, known, unknown):
        r = atom.position()
        n1 = (known[0].position()-r).normal()
        n2 = (known[1].position()-r).normal()
        n3 = -(n1 + n2).normal()
        unknown[0].setPosition(r+self._ch_bond*n3)

    def _C3twoH(self, atom, known, unknown):
        r = atom.position()
        r1 = known[0].position()
        others = filter(lambda a: a.symbol != 'H', known[0].bondedTo())
        r2 = others[0].position()
        try:
            plane = Objects3D.Plane(r, r1, r2)
        except ZeroDivisionError:
            # We get here if all three points are colinear.
            # Add a small random displacement as a fix.
            from MMTK.Random import randomPointInSphere
            plane = Objects3D.Plane(r, r1, r2 + randomPointInSphere(0.001))
        axis = (r-r1).normal()
        cone = Objects3D.Cone(r, axis, 0.5*self._hch_angle)
        sphere = Objects3D.Sphere(r, self._ch_bond)
        circle = sphere.intersectWith(cone)
        points = circle.intersectWith(plane)
        unknown[0].setPosition(points[0])
        unknown[1].setPosition(points[1])

    def _C2oneH(self, atom, known, unknown):
        r = atom.position()
        r1 = known[0].position()
        x = r + self._ch_bond * (r - r1).normal()
        unknown[0].setPosition(x)

    def _N2oneH(self, atom, known, unknown):
        r = atom.position()
        r1 = known[0].position()
        others = filter(lambda a: a.symbol != 'H', known[0].bondedTo())
        r2 = others[0].position()
        try:
            plane = Objects3D.Plane(r, r1, r2)
        except ZeroDivisionError:
            # We get here when all three points are colinear.
            # Add a small random displacement as a fix.
            from MMTK.Random import randomPointInSphere
            plane = Objects3D.Plane(r, r1, r2 + randomPointInSphere(0.001))
        axis = (r-r1).normal()
        cone = Objects3D.Cone(r, axis, 0.5*self._hch_angle)
        sphere = Objects3D.Sphere(r, self._nh_bond)
        circle = sphere.intersectWith(cone)
        points = circle.intersectWith(plane)
        unknown[0].setPosition(points[0])

    def _N3oneH(self, atom, known, unknown):
        r = atom.position()
        n1 = (known[0].position()-r).normal()
        n2 = (known[1].position()-r).normal()
        n3 = -(n1 + n2).normal()
        unknown[0].setPosition(r+self._nh_bond*n3)

    def _N3twoH(self, atom, known, unknown):
        r = atom.position()
        r1 = known[0].position()
        others = filter(lambda a: a.symbol != 'H', known[0].bondedTo())
        r2 = others[0].position()
        plane = Objects3D.Plane(r, r1, r2)
        axis = (r-r1).normal()
        cone = Objects3D.Cone(r, axis, 0.5*self._hnh_angle)
        sphere = Objects3D.Sphere(r, self._nh_bond)
        circle = sphere.intersectWith(cone)
        points = circle.intersectWith(plane)
        unknown[0].setPosition(points[0])
        unknown[1].setPosition(points[1])

    def _N4threeH(self, atom, known, unknown):
        self._tetrahedralH(atom, known, unknown, self._nh_bond)

    def _N4twoH(self, atom, known, unknown):
        r = atom.position()
        r1 = known[0].position()
        r2 = known[1].position()
        plane = Objects3D.Plane(r, r1, r2)
        axis = -((r1-r)+(r2-r)).normal()
        plane = plane.rotate(Objects3D.Line(r, axis), 90.*Units.deg)
        cone = Objects3D.Cone(r, axis, 0.5*self._hnh_angle)
        sphere = Objects3D.Sphere(r, self._nh_bond)
        circle = sphere.intersectWith(cone)
        points = circle.intersectWith(plane)
        unknown[0].setPosition(points[0])
        unknown[1].setPosition(points[1])

    def _N4oneH(self, atom, known, unknown):
        r = atom.position()
        n0 = (known[0].position()-r).normal()
        n1 = (known[1].position()-r).normal()
        n2 = (known[2].position()-r).normal()
        n3 = (n0 + n1 + n2).normal()
        unknown[0].setPosition(r-self._nh_bond*n3)

    def _O2(self, atom, known, unknown):
        others = known[0].bondedTo()
        for a in others:
            r = a.position()
            if a != atom and r is not None: break
        dihedral = 180.*Units.deg
        self._findPosition(unknown[0], atom.position(), known[0].position(), r,
                           self._oh_bond, self._coh_angle, dihedral)

    def _S2(self, atom, known, unknown):
        c2 = filter(lambda a: a.symbol == 'C', known[0].bondedTo())[0]
        self._findPosition(unknown[0], atom.position(), known[0].position(),
                           c2.position(),
                           self._sh_bond, self._csh_angle,
                           180.*Units.deg)

    def _tetrahedralH(self, atom, known, unknown, bond):
        r = atom.position()
        n = (known[0].position()-r).normal()
        cone = Objects3D.Cone(r, n, N.arccos(-1./3.))
        sphere = Objects3D.Sphere(r, bond)
        circle = sphere.intersectWith(cone)
        others = filter(lambda a: a.symbol != 'H', known[0].bondedTo())
        others.remove(atom)
        other = others[0]
        ref = (Objects3D.Plane(circle.center, circle.normal) \
               .projectionOf(other.position())-circle.center).normal()
        p0 = circle.center + ref*circle.radius
        p0 = Objects3D.rotatePoint(p0,
                                  Objects3D.Line(circle.center, circle.normal),
                                  60.*Units.deg)
        p1 = Objects3D.rotatePoint(p0,
                                  Objects3D.Line(circle.center, circle.normal),
                                  120.*Units.deg)
        p2 = Objects3D.rotatePoint(p1,
                                  Objects3D.Line(circle.center, circle.normal),
                                  120.*Units.deg)
        unknown[0].setPosition(p0)
        unknown[1].setPosition(p1)
        unknown[2].setPosition(p2)

    def _findPosition(self, unknown, a1, a2, a3, bond, angle, dihedral):
        sphere = Objects3D.Sphere(a1, bond)
        cone = Objects3D.Cone(a1, a2-a1, angle)
        plane = Objects3D.Plane(a3, a2, a1)
        plane = plane.rotate(Objects3D.Line(a1, a2-a1), dihedral)
        points = sphere.intersectWith(cone).intersectWith(plane)
        for p in points:
            if (a1-a2).cross(p-a1)*(plane.normal) > 0:
                unknown.setPosition(p)
                break

    _h_methods = {'C': {4: {3: _C4threeH,
                            2: _C4twoH,
                            1: _C4oneH},
                        3: {2: _C3twoH,
                            1: _C3oneH},
                        2: {1: _C2oneH}},
                  'N': {4: {3: _N4threeH,
                            2: _N4twoH,
                            1: _N4oneH},
                        3: {2: _N3twoH,
                            1: _N3oneH},
                        2: {1: _N2oneH}},
                  'O': {2: {1: _O2}},
                  'S': {2: {1: _S2}},
                  }


class ChainMolecule(Molecule):

    """
    ChainMolecule

    ChainMolecules are generated by a MoleculeFactory from
    templates that have a sequence attribute.
    """

    def __len__(self):
        return len(self.sequence)

    def __getitem__(self, item):
        return getattr(self, self.sequence[item])


class Crystal(CompositeChemicalObject, ChemicalObject):

    def __init__(self, blueprint, _memo = None, **properties):
        ChemicalObject.__init__(self, blueprint, _memo)
        properties = copy.copy(properties)
        CompositeChemicalObject.__init__(self, properties)
        self.bonds = Bonds.BondList(self.bonds)

    blueprintclass = Database.BlueprintCrystal

    def _subunits(self):
        return self.groups

    def _descriptionSpec(self):
        return "X", None

class Complex(CompositeChemicalObject, ChemicalObject):

    """
    Complex

    A complex is an assembly of molecules that are not connected by
    chemical bonds.
    """

    def __init__(self, complex_spec, _memo = None, **properties):
        """
        :param complex_spec: a string (not case sensitive) that specifies
                              the complex name in the chemical database
        :type complex_spec: str
        :keyword position: the position of the center of mass of the complex
        :type position: Scientific.Geometry.Vector
        :keyword name: a name given to the complex
        :type name: str
        :keyword configuration: the name of a configuration listed in the
                                database definition of the complex, which
                                is used to initialize the atom positions.
                                If no configuration is specified, the
                                configuration named "default" will be used,
                                if it exists. Otherwise the atom positions
                                are undefined.
        :type configuration: str
        """
        ChemicalObject.__init__(self, complex_spec, _memo)
        properties = copy.copy(properties)
        CompositeChemicalObject.__init__(self, properties)

    blueprintclass = Database.BlueprintComplex

    def recreateAtomList(self):
        self.atoms = []
        for m in self.molecules:
            self.atoms.extend(m.atoms)

    def bondedUnits(self):
        return self.molecules

    def setBondAttributes(self):
        for m in self.molecules:
            m.setBondAttributes()

    def clearBondAttributes(self):
        for m in self.molecules:
            m.clearBondAttributes()

    def _subunits(self):
        return self.molecules

    def _descriptionSpec(self):
        return "C", None

    def writeXML(self, file, memo, toplevel=1):
        if self.type is None:
            name = 'm' + `memo['counter']`
            memo['counter'] = memo['counter'] + 1
            memo[id(self)] = name
            for molecule in self.molecules:
                molecule.writeXML(file, memo, 0)
            file.write('<molecule id="%s">\n' % name)
            for molecule in self.molecules:
                file.write('  <molecule ref="%s"/>\n' % memo[id(molecule)])
            file.write('</molecule>\n')
        else:
            ChemicalObject.writeXML(self, file, memo, toplevel)
        if toplevel:
            return ['<molecule ref="%s"/>' % name]
        else:
            return None

    def getXMLAtomOrder(self):
        if self.type is None:
            atoms = []
            for molecule in self.molecules:
                atoms.extend(molecule.getXMLAtomOrder())
            return atoms
        else:
            return ChemicalObject.getXMLAtomOrder(self)

Database.registerInstanceClass(Atom.blueprintclass, Atom)
Database.registerInstanceClass(Group.blueprintclass, Group)
Database.registerInstanceClass(Molecule.blueprintclass, Molecule)
Database.registerInstanceClass(Crystal.blueprintclass, Crystal)
Database.registerInstanceClass(Complex.blueprintclass, Complex)


class AtomCluster(CompositeChemicalObject, ChemicalObject):

    """
    An agglomeration of atoms

    An atom cluster acts like a molecule without any bonds or atom
    properties. It can be used to represent a group of atoms that
    are known to form a chemical unit but whose chemical properties
    are not sufficiently known to define a molecule.
    """

    def __init__(self, atoms, **properties):
        """
        :param atoms: a list of atoms in the cluster
        :type atoms: list
        :keyword position: the position of the center of mass of the cluster
        :type position: Scientific.Geometry.Vector
        :keyword name: a name given to the cluster
        :type name: str
        """
        self.atoms = list(atoms)
        self.parent = None
        self.name = ''
        self.type = None
        for a in self.atoms:
            if a.parent is not None:
                raise ValueError(repr(a)+' is part of ' + repr(a.parent))
            a.parent = self
            if a.name != '':
                setattr(self, a.name, a)
        properties = copy.copy(properties)
        CompositeChemicalObject.__init__(self, properties)
        self.bonds = Bonds.BondList([])

    def bondedTo(self, atom):
        return []

    def setBondAttributes(self):
        pass

    def clearBondAttributes(self):
        pass

    def _subunits(self):
        return []

    def _description(self, tag, index_map, toplevel):
        s = 'AC(' + `self.name` + ',['
        for a in self.atoms:
            s = s + a._description(tag, index_map, 1) + ','
        s = s + ']'
        constraints = self._distanceConstraintList()
        if constraints:
            s = s + ',dc=['
            if index_map is None:
                for c in constraints:
                    s = s + '(%d,%d,%f),' % (c[0].index, c[1].index, c[2])
            else:
                for c in constraints:
                    s = s + '(%d,%d,%f),' % (index_map[c[0].index],
                                             index_map[c[1].index], c[2])
            s = s + ']'
        return s + ')'