File: Core.py

package info (click to toggle)
mmtk 2.7.9-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,788 kB
  • ctags: 6,600
  • sloc: python: 18,050; ansic: 12,400; makefile: 129; csh: 3
file content (405 lines) | stat: -rw-r--r-- 16,656 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# Common aspects of normal mode calculations.
#
# Written by Konrad Hinsen
#

__docformat__ = 'restructuredtext'

from MMTK import Units, ParticleProperties, Visualization
from Scientific import N
import copy

#
# Import LAPACK routines or equivalents
#
try:
    array_package = N.package
except AttributeError:
    array_package = "Numeric"

eigh = None
if array_package == "NumPy":
    # Use symeig (http://mdp-toolkit.sourceforge.net/symeig.html)
    # if it is installed and if NumPy is used (symeig works only
    # with NumPy). Symeig uses the LAPACK routine dsyevr, which
    # uses less memory than dsyevd. It is also said to be faster,
    # but in my tests on the Mac it turned out to be slightly slower.
    try:
        from scipy.linalg import eigh
    except ImportError:
        pass

dsyevd = None
dgesdd = None
try:
    if array_package == "Numeric":
        from lapack_lite import dsyevd, dgesdd, LapackError
    else:
        from numpy.linalg.lapack_lite import dsyevd, dgesdd, LapackError
except ImportError: pass
if dsyevd is None:
    try:
        # PyLAPACK
        from lapack_dsy import dsyevd, LapackError
    except ImportError: pass
if dgesdd is None:
    try:
        # PyLAPACK
        from lapack_dge import dgesdd
    except ImportError: pass
if dsyevd is None:
    from Scientific.LA import Heigenvectors
if dsyevd:
    n = 1
    array = N.zeros((n, n), N.Float)
    ev = N.zeros((n,), N.Float)
    work = N.zeros((1,), N.Float)
    int_types = [N.Int, N.Int8, N.Int16, N.Int32]
    try:
        int_types.append(N.Int64)
        int_types.append(N.Int128)
    except AttributeError:
        pass
    for int_type in int_types:
        iwork = N.zeros((1,), int_type)
        try:
            dsyevd('V', 'L', n, array, n, ev, work, -1, iwork, -1, 0)
            break
        except LapackError:
            pass
    del n, array, ev, work, iwork, int_types

del array_package

#
# Class for a single mode
#
class Mode(ParticleProperties.ParticleVector):

    def __init__(self, universe, n, mode):
        self.number = n
        ParticleProperties.ParticleVector.__init__(self, universe, mode)

    return_class = ParticleProperties.ParticleVector

    def view(self, factor=1., subset=None):
        """
        Start an animation of the mode. See :class:`~MMTK.Visualization` for
        the configuration of external viewers.

        :param factor: a scaling factor for the amplitude of the motion
        :type factor: float
        :param subset: the subset of the universe to be shown
                       (default: the whole universe)
        :type subset: :class:`~MMTK.Collections.GroupOfAtoms`
        """
        Visualization.viewMode(self, factor, subset)

#
# Class for a full set of normal modes
# This is an abstract base class, the real classes are
# EnergeticModes, VibrationalModes, and BrownianModes
#
class NormalModes(object):

    def __init__(self, universe, basis, delta, sparse, arrays):
        self.universe = universe
        self.basis = basis
        if sparse:
            if isinstance(basis, int):
                self.sparse = basis
                self.basis = None
            else:
                self.sparse = -1
        else:
            self.sparse = None
        self.delta = delta
        self._internal_arrays = arrays

    def cleanup(self):
        del self.basis
        if self.sparse is not None:
            del self.fc

    def __len__(self):
        return self.nmodes

    def __getslice__(self, first, last):
        last = min(last, self.nmodes)
        return [self[i] for i in range(first, last)]

    def reduceToRange(self, first, last):
        """
        Discards all modes outside a given range of mode numbers.
        This is done to reduce memory requirements, especially before
        saving the modesto a file.

        :param first: the number of the first mode to be kept
        :param last: the number of the last mode to be kept - 1
        """
        junk1 = list(self.sort_index[:first])
        junk2 = list(self.sort_index[last:])
        junk1.sort()
        junk2.sort()
        if junk1 == range(0, first) and \
           junk2 == range(last, len(self.sort_index)):
            # This is the most frequent case. It can be handled
            # without copying the mode array.
            for array in self._internal_arrays:
                setattr(self, array, getattr(self, array)[first:last])
            self.sort_index = self.sort_index[first:last]-first
        else:
            keep = self.sort_index[first:last]
            for array in self._internal_arrays:
                setattr(self, array, N.take(getattr(self, array), keep))
            self.sort_index = N.arange(0, last-first)
        self.nmodes = last-first

    def fluctuations(self, first_mode=6):
        """
        :param first_mode: the first mode to be taken into account for
                           the fluctuation calculation. The default value
                           of 6 is right for molecules in vacuum.
        :type first_mode: int
        :returns: the thermal fluctuations for each atom in the universe
        :rtype: :class:`~MMTK.ParticleProperties.ParticleScalar`
        """
        raise NotImplementedError

    def anisotropicFluctuations(self, first_mode=6):
        """
        :param first_mode: the first mode to be taken into account for
                           the fluctuation calculation. The default value
                           of 6 is right for molecules in vacuum.
        :type first_mode: int
        :returns: the anisotropic thermal fluctuations for each
                  atom in the universe
        :rtype: :class:`~MMTK.ParticleProperties.ParticleTensor`
        """
        raise NotImplementedError

    def _forceConstantMatrix(self):
        if self.basis is not None:
            self._setupBasis()
            if self.delta is not None:
                self.nmodes = len(self.basis)
                self.array = N.zeros((self.nmodes, self.nmodes), N.Float)
                conf = copy.copy(self.universe.configuration())
                conf_array = conf.array
                self.natoms = len(conf_array)
                small_change = 0
                for i in range(self.nmodes):
                    d = self.delta*N.reshape(self.basis[i],
                                             (self.natoms, 3))/self.weights
                    conf_array[:] = conf_array+d
                    self.universe.setConfiguration(conf)
                    energy, gradients1 = self.universe.energyAndGradients(
                                                     None, None, small_change)
                    small_change = 1
                    conf_array[:] = conf_array-2.*d
                    self.universe.setConfiguration(conf)
                    energy, gradients2 = self.universe.energyAndGradients(
                                                     None, None, small_change)
                    conf_array[:] = conf_array+d
                    v = (gradients1.array-gradients2.array) / \
                        (2.*self.delta*self.weights)
                    self.array[i] = N.dot(self.basis, N.ravel(v))
                self.universe.setConfiguration(conf)
                self.array = 0.5*(self.array+N.transpose(self.array))
                return
            elif self.sparse is not None:
                from MMTK_forcefield import SparseForceConstants
                nmodes, natoms = self.basis.shape
                natoms = natoms/3
                self.nmodes = nmodes
                self.natoms = natoms
                fc = SparseForceConstants(natoms, 5*natoms)
                eval = self.universe.energyEvaluator()
                energy, g, fc = eval(0, fc, 0)
                self.array = N.zeros((nmodes, nmodes), N.Float)
                for i in range(nmodes):
                    v = N.reshape(self.basis[i], (natoms, 3))/self.weights
                    v = fc.multiplyVector(v)
                    v = v/self.weights
                    v.shape = (3*natoms,)
                    self.array[i, :] = N.dot(self.basis, v)
                self.sparse = None
                return
        if self.sparse is None:
            energy, force_constants = self.universe.energyAndForceConstants()
            self.array = force_constants.array
            self.natoms = self.array.shape[0]
            self.nmodes = 3*self.natoms
            N.divide(self.array, self.weights[N.NewAxis, N.NewAxis, :, :],
                     self.array)
            N.divide(self.array, self.weights[:, :, N.NewAxis, N.NewAxis],
                     self.array)
            self.array.shape = 2*(self.nmodes,)
        else:
            from MMTK_forcefield import SparseForceConstants
            self.natoms = self.universe.numberOfCartesianCoordinates()
            fc = SparseForceConstants(self.natoms, 5*self.natoms)
            eval = self.universe.energyEvaluator()
            energy, g, fc = eval(0, fc, 0)
            self.fc = fc
            self.fc.scale(1./self.weights[:, 0])
        if self.basis is not None:
            _symmetrize(self.array)
            self.array = N.dot(N.dot(self.basis, self.array),
                               N.transpose(self.basis))
            self.nmodes = self.array.shape[0]

    def _diagonalize(self):
        if self.sparse is not None:
            from MMTK_sparseev import sparseMatrixEV
            eigenvalues, eigenvectors = sparseMatrixEV(self.fc, self.nmodes)
            self.array = eigenvectors[:self.nmodes]
            return eigenvalues

        # Calculate eigenvalues and eigenvectors of self.array
        if eigh is not None:
            _symmetrize(self.array)
            ev, modes = eigh(self.array, overwrite_a=True)
            self.array = N.transpose(modes)
        elif dsyevd is None:
            ev, modes = Heigenvectors(self.array)
            ev = ev.real
            modes = modes.real
            self.array = modes
        else:
            ev = N.zeros((self.nmodes,), N.Float)
            work = N.zeros((1,), N.Float)
            iwork = N.zeros((1,), int_type)
            results = dsyevd('V', 'L', self.nmodes, self.array, self.nmodes,
                             ev, work, -1, iwork, -1, 0)
            lwork = int(work[0])
            liwork = iwork[0]
            work = N.zeros((lwork,), N.Float)
            iwork = N.zeros((liwork,), int_type)
            results = dsyevd('V', 'L', self.nmodes, self.array, self.nmodes,
                             ev, work, lwork, iwork, liwork, 0)
            if results['info'] > 0:
                raise ValueError('Eigenvalue calculation did not converge')

        if self.basis is not None:
            self.array = N.dot(self.array, self.basis)
        return ev

    def _setupBasis(self):
        if isinstance(self.basis, tuple):
            excluded, basis = self.basis
        else:
            excluded = []
            basis = self.basis
        nexcluded = len(excluded)
        nmodes = len(basis)
        ntotal = nexcluded + nmodes
        natoms = len(basis[0])

        sv = N.zeros((min(ntotal, 3*natoms),), N.Float)
        work_size = N.zeros((1,), N.Float)
        if nexcluded > 0:
            self.basis = N.zeros((ntotal, 3*natoms), N.Float)
            for i in range(nexcluded):
                self.basis[i] = N.ravel(excluded[i].array*self.weights)
            min_n_m = min(3*natoms, nexcluded)
            vt = N.zeros((nexcluded, min_n_m), N.Float)
            iwork = N.zeros((8*min_n_m,), int_type)
            if 3*natoms >= nexcluded:
                result = dgesdd('O', 3*natoms, nexcluded, self.basis,
                                3*natoms, sv, self.basis, 3*natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                work = N.zeros((int(work_size[0]),), N.Float)
                result = dgesdd('O', 3*natoms, nexcluded, self.basis,
                                3*natoms, sv, self.basis, 3*natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
            else:
                u = N.zeros((min_n_m, 3*natoms), N.Float)
                result = dgesdd('S', 3*natoms, nexcluded, self.basis,
                                3*natoms, sv, u, 3*natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                work = N.zeros((int(work_size[0]),), N.Float)
                result = dgesdd('S', 3*natoms, nexcluded, self.basis,
                                3*natoms, sv, u, 3*natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
                self.basis[:min_n_m] = u
            if result['info'] != 0:
                raise ValueError('Lapack SVD: ' + `result['info']`)
            svmax = N.maximum.reduce(sv)
            nexcluded = N.add.reduce(N.greater(sv, 1.e-10*svmax))
            ntotal = nexcluded + nmodes
            for i in range(nmodes):
                self.basis[i+nexcluded] = N.ravel(basis[i].array*self.weights)
            min_n_m = min(3*natoms, ntotal)
            vt = N.zeros((ntotal, min_n_m), N.Float)
            if 3*natoms >= ntotal:
                result = dgesdd('O', 3*natoms, ntotal, self.basis, 3*natoms,
                                sv, self.basis, 3*natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                if int(work_size[0]) > work.shape[0]:
                    work = N.zeros((int(work_size[0]),), N.Float)
                result = dgesdd('O', 3*natoms, ntotal, self.basis, 3*natoms,
                                sv, self.basis, 3*natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
            else:
                u = N.zeros((min_n_m, 3*natoms), N.Float)
                result = dgesdd('S', 3*natoms, ntotal, self.basis, 3*natoms,
                                sv, u, 3*natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                if int(work_size[0]) > work.shape[0]:
                    work = N.zeros((int(work_size[0]),), N.Float)
                result = dgesdd('S', 3*natoms, ntotal, self.basis, 3*natoms,
                                sv, u, 3*natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
                self.basis[:min_n_m] = u
            if result['info'] != 0:
                raise ValueError('Lapack SVD: ' + `result['info']`)
            svmax = N.maximum.reduce(sv)
            ntotal = N.add.reduce(N.greater(sv, 1.e-10*svmax))
            nmodes = ntotal - nexcluded
        else:
            if hasattr(self.basis, 'may_modify') and \
               hasattr(self.basis, 'array'):
                self.basis = self.basis.array
            else:
                self.basis = N.array(map(lambda v: v.array, basis))
            N.multiply(self.basis, self.weights, self.basis)
            self.basis.shape = (nmodes, 3*natoms)
            min_n_m = min(3*natoms, nmodes)
            vt = N.zeros((nmodes, min_n_m), N.Float)
            iwork = N.zeros((8*min_n_m,), int_type)
            if 3*natoms >= nmodes:
                result = dgesdd('O', 3*natoms, nmodes, self.basis, 3*natoms,
                                sv, self.basis, 3*natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                work = N.zeros((int(work_size[0]),), N.Float)
                result = dgesdd('O', 3*natoms, nmodes, self.basis, 3*natoms,
                                sv, self.basis, 3*natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
            else:
                u = N.zeros((min_n_m, 3*natoms), N.Float)
                result = dgesdd('S', 3*natoms, nmodes, self.basis, 3*natoms,
                                sv, u, 3*natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                work = N.zeros((int(work_size[0]),), N.Float)
                result = dgesdd('S', 3*natoms, nmodes, self.basis, 3*natoms,
                                sv, u, 3*natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
                self.basis[:min_n_m] = u
            if result['info'] != 0:
                raise ValueError('Lapack SVD: ' + `result['info']`)
            svmax = N.maximum.reduce(sv)
            nmodes = N.add.reduce(N.greater(sv, 1.e-10*svmax))
            ntotal = nmodes
        self.basis = self.basis[nexcluded:ntotal, :]

#
# Helper functions
#
# Fill in the lower triangle of an upper-triangle symmetric matrix

def _symmetrize(a):
    n = a.shape[0]
    for i in range(n):
        for j in range(i+1, n):
            a[j,i] = a[i,j]