File: Universe.py

package info (click to toggle)
mmtk 2.7.9-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,788 kB
  • ctags: 6,600
  • sloc: python: 18,050; ansic: 12,400; makefile: 129; csh: 3
file content (1685 lines) | stat: -rw-r--r-- 63,859 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
# This module implements the various types of universes
# (infinite, periodic etc.). A universe defines the
# geometry of space, the force field, and external interactions
# (boundary conditions, external fields, etc.)
#
# Written by Konrad Hinsen
#

"""
Universes
"""

__docformat__ = 'restructuredtext'

from MMTK import Bonds, ChemicalObjects, Collections, Environment, \
                 Random, Utility, ParticleProperties, Visualization
from Scientific.Geometry import Transformation
from Scientific.Geometry import Vector, isVector
from Scientific import N
import copy

try:
    import threading
    if not hasattr(threading, 'Thread'):
        threading = None
except ImportError:
    threading = None

#
# The base class for all universes.
#
class Universe(Collections.GroupOfAtoms, Visualization.Viewable):

    """
    Universe

    A universe represents a complete model of a chemical system, i.e.
    the molecules, their environment (topology, boundary conditions,
    thermostats, etc.), and optionally a force field.

    The class Universe is an abstract base class that defines
    properties common to all kinds of universes. To create universe
    objects, use one of its subclasses.

    In addition to the methods listed below, universe objects support
    the following operations (u is any universe object, o is any
    chemical object):

     * len(u) yields the number of chemical objects in the universe
     * u[i] returns object number i
     * u.name = o adds o to the universe and also makes it accessible as
       an attribute
     * del u.name removes the object that was assigned to u.name from
       the universe
    """

    def __init__(self, forcefield, properties):
        self._forcefield = forcefield
        self._evaluator = {}
        self.name = ''
        if properties.has_key('name'):
            self.name = properties['name']
            del properties['name']
        self._objects = Collections.Collection()
        self._environment = []
        self._configuration = None
        self._masses = None
        self._atom_properties = {}
        self._atoms = None
        self._bond_database = None
        self._bond_pairs = None
        self._version = 0
        self._np = None

    is_universe = True
    is_periodic = False
    is_orthogonal = False

    def __getstate__(self):
        state = copy.copy(self.__dict__)
        state['_evaluator'] = {}
        state['_configuration'] = None
        del state['_masses']
        del state['_bond_database']
        del state['_bond_pairs']
        del state['_np']
        del state['_spec']
        return state

    def __setstate__(self, state):
        state['_np'] = None
        state['_atoms'] = None
        state['_bond_database'] = None
        state['_bond_pairs'] = None
        self.__dict__['_environment'] = []
        if state.has_key('atom_properties'):
            self.__dict__['_atom_properties'] = state['atom_properties']
            del state['atom_properties']
        for attr, value in state.items():
            self.__dict__[attr] = value
        self._evaluator = {}
        self._masses = None
        self._createSpec()

    def __len__(self):
        return len(self._objects)

    def __getitem__(self, item):
        return self._objects[item]

    def __setattr__(self, attr, value):
        if attr[0] != '_' and self.__dict__.has_key(attr):
            try:
                self.removeObject(self.__dict__[attr])
            except ValueError:
                pass
        self.__dict__[attr] = value
        if attr[0] != '_' and (ChemicalObjects.isChemicalObject(value)
                               or Environment.isEnvironmentObject(value)):
            self.addObject(value)

    def __delattr__(self, attr):
        try:
            self.removeObject(self.__dict__[attr])
        except ValueError:
            pass
        del self.__dict__[attr]

    def __repr__(self):
        return self.__class__.__name__ + ' ' + self.name + ' containing ' + \
               `len(self._objects)` + ' objects.'
    __str__ = __repr__

    def __copy__(self):
        return copy.deepcopy(self)

    def objectList(self, klass = None):
        """
        :param klass: an optional class argument
        :type klass: class
        :returns: a list of all chemical objects in the universe.
                  If klass is given, only objects that are instances
                  of klass are returned.
        :rtype: list
        """
        return self._objects.objectList(klass)

    def environmentObjectList(self, klass = None):
        """
        :param klass: an optional class argument
        :type klass: class
        :returns: a list of all environment objects in the universe.
                  If klass is given, only objects that are instances
                  of klass are returned.
        :rtype: list
        """
        if klass is None:
            return self._environment
        else:
            return filter(lambda o, k=klass: o.__class__ is k,
                          self._environment)

    def atomList(self):
        """
        :returns: a list of all atoms in the universe
        :rtype: list
        """
        if self._atoms is None:
            self._atoms = self._objects.atomList()
        return self._atoms

    def atomIterator(self):
        return self._objects.atomIterator()

    def bondedUnits(self):
        return self._objects.bondedUnits()

    def universe(self):
        """
        :returns: the universe itself
        """
        return self

    def addObject(self, object, steal = False):
        """
        Adds object to the universe. If object is a Collection,
        all elements of the Collection are added to the universe.

        :param object: the object (chemical or environment) to be added
        :param steal: if True, permit stealing the object from another
                      universe, otherwise the object must not yet be
                      attached to any universe.
        :type steal: bool
        """
        if ChemicalObjects.isChemicalObject(object):
            if (not steal) and object.parent is not None:
                if isUniverse(object.parent):
                    raise ValueError(`object` +
                                      ' is already in another universe')
                else:
                    raise ValueError(`object` + ' is part of another object')
            object.parent = self
            self._objects.addObject(object)
            self._changed(True)
        elif Environment.isEnvironmentObject(object):
            for o in self._environment:
                o.checkCompatibilityWith(object)
            self._environment.append(object)
            self._changed(False)
        elif Collections.isCollection(object) \
             or Utility.isSequenceObject(object):
            for o in object:
                self.addObject(o, steal)
        else:
            raise TypeError(repr(object) + ' cannot be added to a universe')

    def removeObject(self, object):
        """
        Removes object from the universe. If object is a Collection,
        each of its elements is removed. The object to be removed must
        be in the universe.

        :param object: the object (chemical or environment) to be removed
        """
        if ChemicalObjects.isChemicalObject(object):
            if object.parent != self:
                raise ValueError(`object` + ' is not in this universe.')
            object.parent = None
            self._objects.removeObject(object)
            self._changed(True)
        elif Collections.isCollection(object) \
                 or (Utility.isSequenceObject(object)
                     # Strings are nasty because their elements are strings
                     # as well. This creates infinite recursion without
                     # this special-case handling.
                     and not isinstance(object, basestring)):
            for o in object:
                self.removeObject(o)
        elif Environment.isEnvironmentObject(object):
            self._environment.remove(object)
            self._changed(False)
        else:
            raise ValueError(`object` + ' is not in this universe.')

    def selectShell(self, point, r1, r2=0.):
        """
        :param point: a point in space
        :type point: Scientific.Geometry.Vector
        :param r1: one of the radii of a spherical shell
        :type r1: float
        :param r2: the other of the two radii of a spherical shell
        :type r2: float
        :returns: a Collection of all objects in the universe whose
                  distance from point lies between r1 and r2.
        """
        return self._objects.selectShell(point, r1, r2)

    def selectBox(self, p1, p2):
        """
        :param p1: one corner of a box in space
        :type p1: Scientific.Geometry.Vector
        :param p2: the other corner of a box in space
        :type p2: Scientific.Geometry.Vector
        :returns: a Collection of all objects in the universe that lie
                   within the box whose diagonally opposite corners are
                   given by p1 and p2.
        """
        return self._objects.selectBox(p1, p2)

    def _changed(self, system_size_changed):
        self._evaluator = {}
        self._bond_database = None
        self._version += 1
        if system_size_changed:
            if self._configuration is not None:
                for a in self.atomList():
                    a.unsetArray()
                self._configuration = None
                self._masses = None
                self._atom_properties = {}
            self._atoms = None
            self._np = None
            self._bond_pairs = None
        else:
            if self._configuration is not None:
                self._configuration.version = self._version
            if self._masses is not None:
                self._masses.version = self._version

    def acquireReadStateLock(self):
        """
        Acquire the universe read state lock. Any application that
        uses threading must acquire this lock prior to accessing the
        current state of the universe, in particular its configuration
        (particle positions). This guarantees the consistency of the
        data; while any thread holds the read state lock, no other
        thread can obtain the write state lock that permits modifying
        the state. The read state lock should be released as soon as
        possible.

        The read state lock can be acquired only if no thread holds
        the write state lock. If the read state lock cannot be
        acquired immediately, the thread will be blocked until
        it becomes available. Any number of threads can acquire
        the read state lock simultaneously.
        """
        return self._spec.stateLock(1)

    def acquireWriteStateLock(self):
        """
        Acquire the universe write state lock. Any application that
        uses threading must acquire this lock prior to modifying the
        current state of the universe, in particular its configuration
        (particle positions). This guarantees the consistency of the
        data; while any thread holds the write state lock, no other
        thread can obtain the read state lock that permits accessing
        the state. The write state lock should be released as soon as
        possible.

        The write state lock can be acquired only if no other thread
        holds either the read state lock or the write state lock. If
        the write state lock cannot be acquired immediately, the
        thread will be blocked until it becomes available.
        """
        return self._spec.stateLock(-1)

    def releaseReadStateLock(self, write=False):
        """
        Release the universe read state lock.
        """
        return self._spec.stateLock(2)

    def releaseWriteStateLock(self, write=False):
        """
        Release the universe write state lock.
        """
        return self._spec.stateLock(-2)

    def acquireConfigurationChangeLock(self, waitflag=True):
        """
        Acquire the configuration change lock. This lock should be
        acquired before starting an algorithm that changes the
        configuration continuously, e.g. minimization or molecular dynamics
        algorithms. This guarantees the proper order of execution when
        several such operations are started in succession. For example,
        when a minimization should be followed by a dynamics run,
        the use of this flag permits both operations to be started
        as background tasks which will be executed one after the other,
        permitting other threads to run in parallel.

        The configuration change lock should not be confused with
        the universe state lock. The former guarantees the proper
        sequence of long-running algorithms, whereas the latter
        guarantees the consistency of the data. A dynamics algorithm,
        for example, keeps the configuration change lock from the
        beginning to the end, but acquires the universe state lock
        only immediately before modifying configuration and velocities,
        and releases it immediately afterwards.

        :param waitflag: if true, the method waits until the lock
                         becomes available; this is the most common mode.
                         If false, the method returns immediately even
                         if another thread holds the lock.
        :type waitflag: bool
        :returns: a flag indicating if the lock was successfully
                  acquired (1) or not (0).
        :rtype: int
        """
        if waitflag:
            return self._spec.configurationChangeLock(1)
        else:
            return self._spec.configurationChangeLock(0)

    def releaseConfigurationChangeLock(self):
        """
        Releases the configuration change lock.
        """
        self._spec.configurationChangeLock(2)

    def setForceField(self, forcefield):
        """
        :param forcefield: the new forcefield for this universe
        :type forcefield: :class:`~MMTK.ForceFields.ForceField.ForceField`
        """
        self._forcefield = forcefield
        self._evaluator = {}
        self._bond_database = None

    def position(self, object, conf):
        if ChemicalObjects.isChemicalObject(object) \
           or Collections.isCollection(object):
            return object.position(conf)
        elif isVector(object):
            return object
        else:
            return Vector(object)

    def numberOfAtoms(self):
        return self._objects.numberOfAtoms()

    def numberOfPoints(self):
        if self._np is None:
            self._np = Collections.GroupOfAtoms.numberOfPoints(self)
        return self._np

    numberOfCartesianCoordinates = numberOfPoints

    def configuration(self):
        """
        :returns: the configuration object describing the current
                  configuration of the universe. Note that this is not a
                  copy of the current state, but a reference: the positions
                  in the configuration object will change when coordinate
                  changes are applied to the universe in whatever way.
        :rtype: :class:`~MMTK.ParticleProperties.Configuration`
        """
        if self._configuration is None:
            np = self.numberOfAtoms()
            coordinates = N.zeros((np, 3), N.Float)
            index_map = {}
            redef = []
            for a in self.atomList():
                if a.index is None or a.index >= np:
                    redef.append(a)
                else:
                    if index_map.get(a.index, None) is None:
                        index_map[a.index] = a
                    else:
                        redef.append(a)
            free_indices = [i for i in xrange(np)
                            if index_map.get(i, None) is None]
            assert len(free_indices) == len(redef)
            for a, i in zip(redef, free_indices):
                a.index = i
            # At this point a.index runs from 0 to np-1 in the universe.
            for a in self.atomList():
                if a.array is None:
                    try:
                        coordinates[a.index, :] = a.pos.array
                        del a.pos
                    except AttributeError:
                        coordinates[a.index, :] = Utility.undefined
                else:
                    coordinates[a.index, :] = a.array[a.index, :]
                a.array = coordinates
            # Define configuration object.
            self._configuration = 1 # a hack to prevent endless recursion
            self._configuration = \
                         ParticleProperties.Configuration(self, coordinates)
        return self._configuration

    def copyConfiguration(self):
        """
        This operation is thread-safe; it won't return inconsistent
        data even when another thread is modifying the configuration.

        :returns: a copy of the current configuration
        :rtype: :class:`~MMTK.ParticleProperties.Configuration`
        """
        self.acquireReadStateLock()
        try:
            conf = copy.copy(self.configuration())
        finally:
            self.releaseReadStateLock()
        return conf

    def atomNames(self):
        self.configuration()
        names = self.numberOfAtoms()*[None]
        for a in self.atomList():
            names[a.index] = a.fullName()
        return names

    def setConfiguration(self, configuration, block=True):
        """
        Update the current configuration of the universe by copying
        the given input configuration.
        
        :param configuration: the new configuration
        :type configuration: :class:`~MMTK.ParticleProperties.Configuration`
        :param block: if True, the operation blocks other threads
                      from accessing the configuration before the update
                      is completed. If False, it is assumed that the
                      caller takes care of locking.
        :type block: bool
        """
        if not ParticleProperties.isConfiguration(configuration):
            raise TypeError('not a universe configuration')
        conf = self.configuration()
        if block:
            self.acquireWriteStateLock()
        try:
            conf.assign(configuration)
            self.setCellParameters(configuration.cell_parameters)
        finally:
            if block:
                self.releaseWriteStateLock()

    def addToConfiguration(self, displacement, block=True):
        """
        Update the current configuration of the universe by adding
        the given displacement vector.
        
        :param displacement: the displacement vector for each atom
        :type displacement: :class:`~MMTK.ParticleProperties.ParticleVector`
        :param block: if True, the operation blocks other threads
                      from accessing the configuration before the update
                      is completed. If False, it is assumed that the
                      caller takes care of locking.
        :type block: bool
        """
        conf = self.configuration()
        if block:
            self.acquireWriteStateLock()
        try:
            conf.assign(conf+displacement)
        finally:
            if block:
                self.releaseWriteStateLock()

    def getParticleScalar(self, name, datatype = N.Float):
        """
        :param name: the name of an atom attribute
        :type name: str
        :param datatype: the datatype of the array allocated to hold the data
        :returns: the values of the attribute 'name' for each atom
                  in the universe.
        :rtype: :class:`~MMTK.ParticleProperties.ParticleScalar`
        """
        conf = self.configuration()
        array = N.zeros((len(conf),), datatype)
        for a in self.atomList():
            array[a.index] = getattr(a, name)
        return ParticleProperties.ParticleScalar(self, array)
    getAtomScalarArray = getParticleScalar

    def getParticleBoolean(self, name):
        """
        :param name: the name of an atom attribute
        :type name: str
        :returns: the values of the boolean attribute 'name' for each atom
                  in the universe, or False for atoms that do not have
                  the attribute.
        :rtype: :class:`~MMTK.ParticleProperties.ParticleScalar`
        """
        conf = self.configuration()
        array = N.zeros((len(conf),), N.Int)
        for a in self.atomList():
            try:
                array[a.index] = getattr(a, name)
            except AttributeError: pass
        return ParticleProperties.ParticleScalar(self, array)
    getAtomBooleanArray = getParticleBoolean

    def masses(self):
        """
        :returns: the masses of all atoms in the universe
        :rtype: :class:`~MMTK.ParticleProperties.ParticleScalar`
        """
        if self._masses is None:
            self._masses = self.getParticleScalar('_mass')
        return self._masses

    def charges(self):
        """
        Return the atomic charges defined by the universe's
        force field.

        :returns: the charges of all atoms in the universe
        :rtype: :class:`~MMTK.ParticleProperties.ParticleScalar`
        """
        ff = self._forcefield
        if ff is None:
            raise ValueError("no force field defined")
        return ff.charges(self)

    def velocities(self):
        """
        :returns: the current velocities of all atoms, or None if
                  no velocities are defined. Note that this is not a
                  copy of the current state but a reference to it;
                  its data will change whenever any changes are made
                  to the current velocities.
        :rtype: :class:`~MMTK.ParticleProperties.ParticleVector`
        """
        try:
            return self._atom_properties['velocity']
        except KeyError:
            return None

    def setVelocities(self, velocities, block=True):
        """
        Update the current velocities of the universe by copying
        the given input velocities.
        
        :param velocities: the new velocities, or None to remove
                           the velocity definition from the universe
        :type velocities: :class:`~MMTK.ParticleProperties.ParticleVector`
        :param block: if True, the operation blocks other threads
                      from accessing the configuration before the update
                      is completed. If False, it is assumed that the
                      caller takes care of locking.
        :type block: bool
        """
        if velocities is None:
            try:
                del self._atom_properties['velocity']
            except KeyError:
                pass
        else:
            try:
                v = self._atom_properties['velocity']
            except KeyError:
                v = ParticleProperties.ParticleVector(self)
                self._atom_properties['velocity'] = v
            if block:
                self.acquireWriteStateLock()
            try:
                v.assign(velocities)
            finally:
                if block:
                    self.releaseWriteStateLock()

    def initializeVelocitiesToTemperature(self, temperature):
        """
        Generate random velocities for all atoms from a Boltzmann
        distribution.

        :param temperature: the reference temperature for the Boltzmann
                            distribution
        :type temperature: float
        """
        self.configuration()
        masses = self.masses()
        if self._atom_properties.has_key('velocity'):
            del self._atom_properties['velocity']
        fixed = self.getParticleBoolean('fixed')
        np = self.numberOfPoints()
        velocities = N.zeros((np, 3), N.Float)
        for i in xrange(np):
            m = masses[i]
            if m > 0. and not fixed[i]:
                velocities[i] = Random.randomVelocity(temperature,
                                                           m).array
        self._atom_properties['velocity'] = \
                          ParticleProperties.ParticleVector(self, velocities)
        self.adjustVelocitiesToConstraints()

    def scaleVelocitiesToTemperature(self, temperature, block=True):
        """
        Scale all velocities by a common factor in order to obtain
        the specified temperature.

        :param temperature: the reference temperature
        :type temperature: float
        :param block: if True, the operation blocks other threads
                      from accessing the configuration before the update
                      is completed. If False, it is assumed that the
                      caller takes care of locking.
        :type block: bool
        """
        velocities = self.velocities()
        factor = N.sqrt(temperature/self.temperature())
        if block:
            self.acquireWriteStateLock()
        try:
            velocities.scaleBy(factor)
        finally:
            if block:
                self.releaseWriteStateLock()

    def degreesOfFreedom(self):
        return GroupOfAtoms.degreesOfFreedom(self) \
               - self.numberOfDistanceConstraints()

    def distanceConstraintList(self):
        """
        :returns: the list of distance constraints
        :rtype: list
        """
        return self._objects.distanceConstraintList()

    def numberOfDistanceConstraints(self):
        """
        :returns: the number of distance constraints
        :rtype: int
        """
        return self._objects.numberOfDistanceConstraints()

    def setBondConstraints(self):
        """
        Sets distance constraints for all bonds.
        """
        self.configuration()
        self._objects.setBondConstraints(self)
        self.enforceConstraints()

    def removeDistanceConstraints(self):
        """
        Removes all distance constraints.
        """
        self._objects.removeDistanceConstraints(self)

    def enforceConstraints(self, configuration=None, velocities=None):
        """
        Enforces the previously defined distance constraints
        by modifying the configuration and velocities.

        :param configuration: the configuration in which the
                              constraints are enforced
                              (None for current configuration)
        :type configuration: :class:`~MMTK.ParticleProperties.Configuration`
        :param velocities: the velocities in which the
                              constraints are enforced
                              (None for current velocities)
        :type velocities: :class:`~MMTK.ParticleProperties.ParticleVector`
        """
        from MMTK import Dynamics
        Dynamics.enforceConstraints(self, configuration)
        self.adjustVelocitiesToConstraints(velocities)

    def adjustVelocitiesToConstraints(self, velocities=None, block=True):
        """
        Modifies the velocities to be compatible with
        the distance constraints, i.e. projects out the velocity
        components along the constrained distances.

        :param velocities: the velocities in which the
                              constraints are enforced
                              (None for current velocities)
        :type velocities: :class:`~MMTK.ParticleProperties.ParticleVector`
        :param block: if True, the operation blocks other threads
                      from accessing the configuration before the update
                      is completed. If False, it is assumed that the
                      caller takes care of locking.
        :type block: bool
        """
        from MMTK import Dynamics
        if velocities is None:
            velocities = self.velocities()
        if velocities is not None:
            if block:
                self.acquireWriteStateLock()
            try:
                Dynamics.projectVelocities(self, velocities)
            finally:
                if block:
                    self.releaseWriteStateLock()

    def bondLengthDatabase(self):
        if self._bond_database is None:
            self._bond_database = None
            if self._bond_database is None:
                ff = self._forcefield
                try:
                    self._bond_database = ff.bondLengthDatabase(self)
                except AttributeError:
                    pass
            if self._bond_database is None:
                self._bond_database = Bonds.DummyBondLengthDatabase(self)
        return self._bond_database

    def forcefield(self):
        """
        :returns: the force field
        :rtype: :class:`~MMTK.ForceFields.ForceField.ForceField`
        """
        return self._forcefield

    def energyEvaluatorParameters(self, subset1 = None, subset2 = None):
        self.configuration()
        from MMTK.ForceFields import ForceField
        ffdata = ForceField.ForceFieldData()
        return self._forcefield.evaluatorParameters(self, subset1, subset2,
                                                    ffdata)

    def energyEvaluator(self, subset1 = None, subset2 = None,
                        threads=None, mpi_communicator=None):
        if self._forcefield is None:
            raise ValueError("no force field defined")
        try:
            eval = self._evaluator[(subset1, subset2, threads)]
        except KeyError:
            from MMTK.ForceFields import ForceField
            eval = ForceField.EnergyEvaluator(self, self._forcefield,
                                              subset1, subset2,
                                              threads, mpi_communicator)
            self._evaluator[(subset1, subset2, threads)] = eval
        return eval

    def energy(self, subset1 = None, subset2 = None, small_change=False):
        """
        :param subset1: a subset of a universe, or None
        :type subset1: :class:`~MMTK.ChemicalObjects.ChemicalObject`
        :param subset2: a subset of a universe, or None
        :type subset2: :class:`~MMTK.ChemicalObjects.ChemicalObject`
        :param small_change: if True, algorithms optimized for small
                             configurational changes relative to the last
                             evaluation may be used.
        :type small_change: bool
        :returns: the potential energy of interaction between the atoms
                  in subset1 and the atoms in subset2. If subset2 is None,
                  the interactions within subset1 are calculated. It both
                  subsets are None, the potential energy of the whole
                  universe is returned.
        :rtype: float
        """
        eval = self.energyEvaluator(subset1, subset2)
        return eval(0, 0, small_change)

    def energyAndGradients(self, subset1 = None, subset2 = None,
                           small_change=False):
        """
        :returns: the energy and the energy gradients
        :rtype: (float, :class:`~MMTK.ParticleProperties.ParticleVector`)
        """
        eval = self.energyEvaluator(subset1, subset2)
        return eval(1, 0, small_change)

    def energyAndForceConstants(self, subset1 = None, subset2 = None,
                                small_change=False):
        """
        :returns: the energy and the force constants
        :rtype: (float, :class:`~MMTK.ParticleProperties.SymmetricPairTensor`)
        """
        eval = self.energyEvaluator(subset1, subset2)
        e, g, fc = eval(0, 1, small_change)
        return e, fc

    def energyGradientsAndForceConstants(self, subset1 = None, subset2 = None,
                                         small_change=False):
        """
        :returns: the energy, its gradients, and the force constants
        :rtype: (float, :class:`~MMTK.ParticleProperties.ParticleVector`,
                 :class:`~MMTK.ParticleProperties.SymmetricPairTensor`)
        """
        eval = self.energyEvaluator(subset1, subset2)
        return eval(1, 1, small_change)

    def energyTerms(self, subset1 = None, subset2 = None, small_change=False):
        """
        :returns: a dictionary containing the energy values for each
                  energy term separately. The energy terms are defined by the
                  force field.
        :rtype: dict
        """
        eval = self.energyEvaluator(subset1, subset2)
        eval(0, 0, small_change)
        return eval.lastEnergyTerms()

    def configurationDifference(self, conf1, conf2):
        """
        :param conf1: a configuration
        :type conf1: :class:`~MMTK.ParticleProperties.Configuration`
        :param conf2: a configuration
        :type conf2: :class:`~MMTK.ParticleProperties.Configuration`
        :returns: the difference vector between the two configurations
                  for each atom, taking into account the universe
                  topology (e.g. minimum-image convention).
        :rtype: :class:`~MMTK.ParticleProperties.ParticleVector`
        """
        d = conf2-conf1
        cell = conf1.cell_parameters
        if cell is not None:
            self._spec.foldCoordinatesIntoBox(d.array)
        return d
            
    def distanceVector(self, p1, p2, conf=None):
        """
        :param p1: a vector or a chemical object whose position is taken
        :param p2: a vector or a chemical object whose position is taken
        :param conf: a configuration (None for the current configuration)
        :returns: the distance vector between p1 and p2 (i.e. the
                  vector from p1 to p2) in the configuration conf,
                  taking into account the universe's topology.
        """
        p1 = self.position(p1, conf)
        p2 = self.position(p2, conf)
        if conf is None:
            return Vector(self._spec.distanceVector(p1.array, p2.array))
        else:
            cell = self._fixCellParameters(conf.cell_parameters)
            if cell is None:
                return Vector(self._spec.distanceVector(p1.array, p2.array))
            else:
                return Vector(self._spec.distanceVector(p1.array, p2.array,
                                                        cell))
            
    def distance(self, p1, p2, conf = None):
        """
        :param p1: a vector or a chemical object whose position is taken
        :param p2: a vector or a chemical object whose position is taken
        :param conf: a configuration (None for the current configuration)
        :returns: the distance between p1 and p2, i.e. the length
                  of the distance vector
        :rtype: float
        """
        return self.distanceVector(p1, p2, conf).length()

    def angle(self, p1, p2, p3, conf = None):
        """
        :param p1: a vector or a chemical object whose position is taken
        :param p2: a vector or a chemical object whose position is taken
        :param p3: a vector or a chemical object whose position is taken
        :param conf: a configuration (None for the current configuration)
        :returns: the angle between the distance vectors p1-p2 and p3-p2
        :rtype: float
        """
        v1 = self.distanceVector(p2, p1, conf)
        v2 = self.distanceVector(p2, p3, conf)
        return v1.angle(v2)

    def dihedral(self, p1, p2, p3, p4, conf = None):
        """
        :param p1: a vector or a chemical object whose position is taken
        :param p2: a vector or a chemical object whose position is taken
        :param p3: a vector or a chemical object whose position is taken
        :param p4: a vector or a chemical object whose position is taken
        :param conf: a configuration (None for the current configuration)
        :returns: the dihedral angle between the plane containing the
                  distance vectors p1-p2 and p3-p2 and the plane containing
                  the distance vectors p2-p3 and p4-p3
        :rtype: float
        """
        v1 = self.distanceVector(p2, p1, conf)
        v2 = self.distanceVector(p3, p2, conf)
        v3 = self.distanceVector(p3, p4, conf)
        a = v1.cross(v2).normal()
        b = v3.cross(v2).normal()
        cos = a*b
        sin = b.cross(a)*v2/v2.length()
        return Transformation.angleFromSineAndCosine(sin, cos)

    def _deleteAtom(self, atom):
        pass

    def basisVectors(self):
        """
        :returns: the basis vectors of the elementary cell of a periodic
                  universe, or None for a non-periodic universe
        :rtype: NoneType or list
        """
        return None

    def reciprocalBasisVectors(self):
        """
        :returns: the reciprocal basis vectors of the elementary cell of
                  a periodic universe, or None for a non-periodic universe
        :rtype: NoneType or list
        """
        return None

    def cellParameters(self):
        return None

    def setCellParameters(self, parameters):
        if parameters is not None:
            raise ValueError('incompatible cell parameters')

    def _fixCellParameters(self, cell_parameters):
        return cell_parameters

    def cellVolume(self):
        """
        :returns: the volume of the elementary cell of a periodic
                  universe, None for a non-periodic universe
        :rtype: NoneType or float
        """
        return None

    def largestDistance(self):
        """
        :returns: the largest possible distance between any two points
                  that can be represented independent of orientation, i.e. the
                  radius of the largest sphere that fits into the simulation
                  cell. Returns None if no such upper limit exists.
        :rtype: NoneType or float
        """
        return None

    def contiguousObjectOffset(self, objects = None, conf = None,
                               box_coordinates = False):
        """
        :param objects: a list of chemical objects, or None for all
                        objects in the universe
        :type objects: list
        :param conf: a configuration (None for the current configuration)
        :param box_coordinates: use box coordinates rather than real ones
        :type box_coordinates: bool
        :returns: a set of displacement vectors relative to
                  the conf which, when added to the configuration,
                  create a configuration in which none of the objects
                  is split across the edge of the elementary cell.
                  For nonperiodic universes the return value is None.
        :rtype: :class:`~MMTK.ParticleProperties.ParticleVector`
        """
        return None

    def contiguousObjectConfiguration(self, objects = None, conf = None):
        """
        :param objects: a list of chemical objects, or None for all
                        objects in the universe
        :type objects: list
        :param conf: a configuration (None for the current configuration)
        :returns: configuration conf (default: current configuration)
                  corrected by the contiguous object offsets for that
                  configuration.
        :rtype: :class:`~MMTK.ParticleProperties.Configuration`
        """
        if conf is None:
            conf = self.configuration()
        offset = self.contiguousObjectOffset(objects, conf)
        if offset is not None:
            return conf + offset
        else:
            return copy.copy(conf)

    def realToBoxCoordinates(self, vector):
        """
        Box coordinates are defined only for periodic universes;
        their components have values between -0.5 and 0.5; these
        extreme values correspond to the walls of the simulation box.

        :param vector: a point in the universe
        :returns: the box coordinate equivalent of vector, or the original
                  vector if no box coordinate system exists
        :rtype: Scientific.Geometry.Vector
        """
        return vector
    
    def boxToRealCoordinates(self, vector):
        """
        :param vector: a point in the universe expressed in box coordinates
        :returns: the real-space equivalent of vector
        :rtype: Scientific.Geometry.Vector
        """
        return vector

    def _realToBoxPointArray(self, array, parameters=None):
        return array

    def _boxToRealPointArray(self, array, parameters=None):
        return array

    def cartesianToFractional(self, vector):
        """
        Fractional coordinates are defined only for periodic universes;
        their components have values between 0. and 1.

        :param vector: a point in the universe
        :type vector: Scientific.Geometry.Vector
        :returns: the fractional coordinate equivalent of vector
        :rtype: Scientific.N.array_type
        """
        raise ValueError("Universe is not periodic")

    def cartesianToFractionalMatrix(self):
        raise ValueError("Universe is not periodic")

    def fractionalToCartesian(self, array):
        """
        Fractional coordinates are defined only for periodic universes;
        their components have values between 0. and 1.

        :param array: an array of fractional coordinates
        :type array: Scientific.N.array_type
        :returns: the real-space equivalent of vector
        :rtype: Scientific.Geometry.Vector
        """
        raise ValueError("Universe is not periodic")

    def fractionalToCartesianMatrix(self):
        raise ValueError("Universe is not periodic")

    def foldCoordinatesIntoBox(self):
        return

    def randomPoint(self):
        """
        :returns: a random point from a uniform distribution within
                  the universe. This operation is defined only for
                  finite-volume universes, e.g. periodic universes.
        :rtype: Scientific.Geometry.Vector
        """
        raise TypeError("undefined operation")

    def map(self, function):
        """
        Apply a function to all objects in the universe and
        return the list of the results. If the results are chemical
        objects, a Collection object is returned instead of a list.

        :param function: the function to be applied
        :type function: callable
        :returns: the list or collection of the results
        """
        return self._objects.map(function)

    def description(self, objects = None, index_map = None):
        if objects is None:
            objects = self
        attributes = {}
        for attr in dir(self):
            if attr[0] != '_':
                object = getattr(self, attr)
                if ChemicalObjects.isChemicalObject(object) \
                   or Environment.isEnvironmentObject(object):
                    attributes[object] = attr
        items = []
        for o in objects.objectList():
            attr = attributes.get(o, None)
            if attr is not None:
                items.append(repr(attr))
            items.append(o.description(index_map))
        for o in self._environment:
            attr = attributes.get(o, None)
            if attr is not None:
                items.append(repr(attr))
            items.append(o.description())
        try:
            classname = self.classname_for_trajectories
        except AttributeError:
            classname = self.__class__.__name__
        s = 'c(%s,[%s])' % \
            (`classname + self._descriptionArguments()`,
             ','.join(items))
        return s

    def _graphics(self, conf, distance_fn, model, module, options):
        return self._objects._graphics(conf, distance_fn, model,
                                       module, options)

    def setFromTrajectory(self, trajectory, step = None):
        """
        Set the state of the universe to the one stored in a trajectory.
        This operation is thread-safe; it blocks other threads that
        want to access the configuration or velocities while the data is
        being updated.

        :param trajectory: a trajectory object for this universe
        :type trajectory: :class:`~MMTK.Trajectory.Trajectory`
        :param step: a step number, or None for the default step
                     (0 for a standard trajectory, the last written
                     step for a restart trajectory)
        :type step: int
        """
        if step is None:
            step = trajectory.defaultStep()
        self.acquireWriteStateLock()
        try:
            self.setConfiguration(trajectory.configuration[step], False)
            vel = self.velocities()
            try:
                vel_tr = trajectory.velocities[step]
            except AttributeError:
                if vel is not None:
                    Utility.warning("velocities were not modified because " +
                                    "the trajectory does not contain " +
                                    "velocity data.")
                return
            if vel is None:
                self._atom_properties['velocity'] = vel_tr
            else:
                vel.assign(vel_tr)
        finally:
            self.releaseWriteStateLock()

    #
    # More efficient reimplementations of methods in Collections.GroupOfAtoms
    #
    def numberOfFixedAtoms(self):
        return self.getParticleBoolean('fixed').sumOverParticles()

    def degreesOfFreedom(self):
        return 3*(self.numberOfAtoms()-self.numberOfFixedAtoms()) \
               - self.numberOfDistanceConstraints()

    def mass(self):
        return self.masses().sumOverParticles()

    def centerOfMass(self, conf = None):
        m = self.masses()
        if conf is None:
            conf = self.configuration()
        return (m*conf).sumOverParticles()/m.sumOverParticles()

    def kineticEnergy(self, velocities = None):
        if velocities is None:
            velocities = self.velocities()
        return 0.5*velocities.massWeightedDotProduct(velocities)

    def momentum(self, velocities = None):
        if velocities is None:
            velocities = self.velocities()
        return (self.masses()*velocities).sumOverParticles()

    def translateBy(self, vector):
        conf = self.configuration().array
        N.add(conf, vector.array[N.NewAxis, :], conf)

    def applyTransformation(self, t):
        conf = self.configuration().array
        rot = t.rotation().tensor.array
        conf[:] = N.dot(conf, N.transpose(rot))
        N.add(conf, t.translation().vector.array[N.NewAxis, :], conf)

    def writeXML(self, file):
        file.write('<?xml version="1.0" encoding="ISO-8859-1" ' +
                   'standalone="yes"?>\n\n')
        file.write('<molecularsystem>\n\n')
        file.write('<templates>\n\n')
        memo = {'counter': 1}
        instances = []
        atoms = []
        for object in self._objects.objectList():
            instances = instances + object.writeXML(file, memo, 1)
            atoms = atoms + object.getXMLAtomOrder()
        file.write('\n</templates>\n\n')
        file.write('<universe %s>\n' % self.XMLSpec())
        for instance in instances:
            file.write('  ')
            file.write(instance)
            file.write('\n')
        conf = self.configuration()
        if conf.hasValidPositions():
            file.write('  <configuration>\n')
            file.write('    <atomArray units="units:nm"\n')
            file.write('    x3="')
            for atom in atoms:
                file.write(str(conf[atom][0]))
                file.write(' ')
            file.write('"\n')
            file.write('    y3="')
            for atom in atoms:
                file.write(str(conf[atom][1]))
                file.write(' ')
            file.write('"\n')
            file.write('    z3="')
            for atom in atoms:
                file.write(str(conf[atom][2]))
                file.write(' ')
            file.write('"\n')
            file.write('    />\n')
            file.write('  </configuration>\n')
        file.write('</universe>\n\n') 
        file.write('</molecularsystem>\n')
       

#
# Infinite universes
#
class InfiniteUniverse(Universe):

    """
    Infinite (unbounded and nonperiodic) universe.
    """

    def __init__(self, forcefield=None, **properties):
        """
        :param forcefield: a force field, or None for no force field
        :type forcefield: :class:`~MMTK.ForceFields.ForceField.ForceField`
        """
        Universe.__init__(self, forcefield, properties)
        self._createSpec()

    def CdistanceFunction(self):
        from MMTK_universe import infinite_universe_distance_function
        return infinite_universe_distance_function, N.array([0.])

    def CcorrectionFunction(self):
        from MMTK_universe import infinite_universe_correction_function
        return infinite_universe_correction_function, N.array([0.])

    def CvolumeFunction(self):
        from MMTK_universe import infinite_universe_volume_function
        return infinite_universe_volume_function, N.array([0.])

    def CboxTransformationFunction(self):
        return None, N.array([0.])

    def _createSpec(self):
        from MMTK_universe import InfiniteUniverseSpec
        self._spec = InfiniteUniverseSpec()

    def _descriptionArguments(self):
        if self._forcefield is None:
            return '()'
        else:
            return '(%s)' % self._forcefield.description()

    def XMLSpec(self):
        return 'topology="infinite"'

#
# 3D periodic universe base class
#
class Periodic3DUniverse(Universe):

    is_periodic = True

    def setVolume(self, volume):
        """
        Multiplies all edge lengths by the same factor such that the cell
        volume becomes equal to the specified value.

        :param volume: the desired volume
        :type volume: float
        """
        factor = (volume/self.cellVolume())**(1./3.)
        self.scaleSize(factor)

    def foldCoordinatesIntoBox(self):
        self._spec.foldCoordinatesIntoBox(self.configuration().array)
    
    def basisVectors(self):
        return [self.boxToRealCoordinates(Vector(1., 0., 0.)),
                self.boxToRealCoordinates(Vector(0., 1., 0.)),
                self.boxToRealCoordinates(Vector(0., 0., 1.))]

    def cartesianToFractional(self, vector):
        r1, r2, r3 = self.reciprocalBasisVectors()
        return N.array([r1*vector, r2*vector, r3*vector])

    def cartesianToFractionalMatrix(self):
        return N.array(self.reciprocalBasisVectors())

    def fractionalToCartesian(self, array):
        e1, e2, e3 = self.basisVectors()
        return array[0]*e1 + array[1]*e2 + array[2]*e3

    def fractionalToCartesianMatrix(self):
        return N.transpose(self.basisVectors())

    def randomPoint(self):
        return self.boxToRealCoordinates(Random.randomPointInBox(1., 1., 1.))

    def contiguousObjectOffset(self, objects = None, conf = None,
                               box_coordinates = 0):
        from MMTK_universe import contiguous_object_offset
        if objects is None or objects == self or objects == [self]:
            default = True
            objects = self._objects.objectList()
            pairs = self._bond_pairs
        else:
            default = False
            pairs = None
        if conf is None:
            conf = self.configuration()
        cell = self._fixCellParameters(conf.cell_parameters)
        offset = ParticleProperties.ParticleVector(self)
        if pairs is None:
            pairs = []
            for o in objects:
                new_object = True
                if ChemicalObjects.isChemicalObject(o):
                    units = o.bondedUnits()
                elif Collections.isCollection(o) or isUniverse(o):
                    units = set([u
                                 for element in o
                                 for u in element.topLevelChemicalObject()
                                                              .bondedUnits()])
                else:
                    raise ValueError(str(o) + " not a chemical object")
                for bu in units:
                    atoms = [a.index for a in bu.atomsWithDefinedPositions()]
                    mpairs = bu.traverseBondTree(lambda a: a.index)
                    mpairs = [(a1, a2) for (a1, a2) in mpairs
                              if a1 in atoms and a2 in atoms]
                    if len(mpairs) == 0:
                        mpairs = Utility.pairs(atoms)
                    new_object = False
                    pairs.extend(mpairs)
            pairs = N.array(pairs)
            if default:
                self._bond_pairs = pairs
        if cell is None:
            contiguous_object_offset(self._spec, pairs, conf.array,
                                     offset.array, box_coordinates)
        else:
            contiguous_object_offset(self._spec, pairs, conf.array,
                                     offset.array, box_coordinates, cell)
        return offset

    def _graphics(self, conf, distance_fn, model, module, options):
        objects = self._objects._graphics(conf, distance_fn, model,
                                          module, options)
        v1, v2, v3 = self.basisVectors()
        p = -0.5*(v1+v2+v3)
        color = options.get('color', 'white')
        material = module.EmissiveMaterial(color)
        objects.append(module.Line(p, p+v1, material=material))
        objects.append(module.Line(p, p+v2, material=material))
        objects.append(module.Line(p+v1, p+v1+v2, material=material))
        objects.append(module.Line(p+v2, p+v1+v2, material=material))
        objects.append(module.Line(p, p+v3, material=material))
        objects.append(module.Line(p+v1, p+v1+v3, material=material))
        objects.append(module.Line(p+v2, p+v2+v3, material=material))
        objects.append(module.Line(p+v1+v2, p+v1+v2+v3, material=material))
        objects.append(module.Line(p+v3, p+v1+v3, material=material))
        objects.append(module.Line(p+v3, p+v2+v3, material=material))
        objects.append(module.Line(p+v1+v3, p+v1+v2+v3, material=material))
        objects.append(module.Line(p+v2+v3, p+v1+v2+v3, material=material))
        return objects

#
# Orthorhombic universe with periodic boundary conditions
#
class OrthorhombicPeriodicUniverse(Periodic3DUniverse):

    """
    Periodic universe with orthorhombic elementary cell.
    """

    def __init__(self, size = None, forcefield = None, **properties):
        """
        :param size: a sequence of length three specifying the edge
                     lengths along the x, y, and z directions
        :param forcefield: a force field, or None for no force field
        :type forcefield: :class:`~MMTK.ForceFields.ForceField.ForceField`
        """
        Universe.__init__(self, forcefield, properties)
        self.data = N.zeros((3,), N.Float)
        if size is not None:
            self.setSize(size)
        self._createSpec()

    is_orthogonal = True

    def __setstate__(self, state):
        Universe.__setstate__(self, state)
        if len(self.data.shape) == 2:
            self.data = self.data[0]

    def setSize(self, size):
        self.data[:] = size

    def scaleSize(self, factor):
        """
        Multiplies all edge lengths by a factor.

        :param factor: the scale factor
        :type factor: float
        """
        self.data[:] = factor*self.data
        self._spec.foldCoordinatesIntoBox(self.configuration().array)

    def setCellParameters(self, parameters):
        if parameters is not None:
            self.data[:] = parameters

    def realToBoxCoordinates(self, vector):
        x, y, z = vector
        return Vector(x/self.data[0],
                      y/self.data[1],
                      z/self.data[2])

    def boxToRealCoordinates(self, vector):
        x, y, z = vector
        return Vector(x*self.data[0],
                      y*self.data[1],
                      z*self.data[2])

    def _realToBoxPointArray(self, array, parameters=None):
        if parameters is None:
            parameters = self.data
        if parameters.shape == (3,):
            parameters = parameters[N.NewAxis, :]
        return array/parameters

    def _boxToRealPointArray(self, array, parameters=None):
        if parameters is None:
            parameters = self.data
        if parameters.shape == (3,):
            parameters = parameters[N.NewAxis, :]
        return array*parameters

    def CdistanceFunction(self):
        from MMTK_universe import orthorhombic_universe_distance_function
        return orthorhombic_universe_distance_function, self.data

    def CcorrectionFunction(self):
        from MMTK_universe import orthorhombic_universe_correction_function
        return orthorhombic_universe_correction_function, self.data

    def CvolumeFunction(self):
        from MMTK_universe import orthorhombic_universe_volume_function
        return orthorhombic_universe_volume_function, self.data

    def CboxTransformationFunction(self):
        from MMTK_universe import orthorhombic_universe_box_transformation
        return orthorhombic_universe_box_transformation, self.data

    def cellParameters(self):
        return self.data

    def reciprocalBasisVectors(self):
        return [Vector(1., 0., 0.)/self.data[0],
                Vector(0., 1., 0.)/self.data[1],
                Vector(0., 0., 1.)/self.data[2]]

    def cellVolume(self):
        return N.multiply.reduce(self.data)

    def largestDistance(self):
        return 0.5*N.minimum.reduce(self.data)

    def _createSpec(self):
        from MMTK_universe import OrthorhombicPeriodicUniverseSpec
        self._spec = OrthorhombicPeriodicUniverseSpec(self.data)

    def _descriptionArguments(self):
        if self._forcefield is None:
            return '((0.,0.,0.),)'
        else:
            return '((0.,0.,0.),%s)' % self._forcefield.description()

    def XMLSpec(self):
        return 'topology="periodic3d" ' + \
               'cellshape="orthorhombic" ' + \
               ('cellsize="%f %f %f" ' % tuple(self.data)) + \
               'units="units:nm"'

#
# Cubic universe with periodic boundary conditions
#
class CubicPeriodicUniverse(OrthorhombicPeriodicUniverse):

    """
    Periodic universe with cubic elementary cell.
    """

    def setSize(self, size):
        """
        Set the edge length to a given value.

        :param size: the new size
        :type size: float
        """
        OrthorhombicPeriodicUniverse.setSize(self, 3*(size,))

    def _descriptionArguments(self):
        if self._forcefield is None:
            return '(0.)'
        else:
            return '(0.,%s)' % self._forcefield.description()

#
# Parallelepipedic universe with periodic boundary conditions
#
class ParallelepipedicPeriodicUniverse(Periodic3DUniverse):

    """
    Periodic universe with parallelepipedic elementary cell.
    """

    def __init__(self, shape = None, forcefield = None, **properties):
        """
        :param shape: the basis vectors
        :type shape: sequence of Scientific.Geometry.Vector
        :param forcefield: a force field, or None for no force field
        :type forcefield: :class:`~MMTK.ForceFields.ForceField.ForceField`
        """
        Universe.__init__(self, forcefield, properties)
        self.data = N.zeros((19,), N.Float)
        if shape is not None:
            self.setShape(shape)
        self._createSpec()

    is_periodic = True

    def setShape(self, shape):
        self.data[:9] = N.ravel(N.transpose([list(s) for s in shape]))
        from MMTK_universe import parallelepiped_invert
        parallelepiped_invert(self.data)

    def scaleSize(self, factor):
        """
        Multiplies all edge lengths by a factor.

        :param factor: the scale factor
        :type factor: float
        """
        self.data[:9] = factor*self.data[:9]
        from MMTK_universe import parallelepiped_invert
        parallelepiped_invert(self.data)
        self._spec.foldCoordinatesIntoBox(self.configuration().array)

    def setCellParameters(self, parameters):
        if parameters is not None:
            self.data[:9] = parameters
            from MMTK_universe import parallelepiped_invert
            parallelepiped_invert(self.data)

    def _fixCellParameters(self, cell_parameters):
        full_parameters = 0.*self.data
        full_parameters[:9] = cell_parameters
        from MMTK_universe import parallelepiped_invert
        parallelepiped_invert(full_parameters)
        return full_parameters

    def realToBoxCoordinates(self, vector):
        x, y, z = vector
        return Vector(self.data[0+9]*x + self.data[1+9]*y + self.data[2+9]*z,
                      self.data[3+9]*x + self.data[4+9]*y + self.data[5+9]*z,
                      self.data[6+9]*x + self.data[7+9]*y + self.data[8+9]*z)

    def boxToRealCoordinates(self, vector):
        x, y, z = vector
        return Vector(self.data[0]*x + self.data[1]*y + self.data[2]*z,
                      self.data[3]*x + self.data[4]*y + self.data[5]*z,
                      self.data[6]*x + self.data[7]*y + self.data[8]*z)

    def _realToBoxPointArray(self, array, parameters=None):
        if parameters is None:
            matrix = N.reshape(self.data[9:18], (1, 3, 3))
        else:
            parameters = N.concatenate([parameters, N.zeros((10,), N.Float)])
            from MMTK_universe import parallelepiped_invert
            parallelepiped_invert(parameters)
            matrix = N.reshape(parameters[9:18], (1, 3, 3))
        return N.add.reduce(matrix*array[:, N.NewAxis, :], axis=-1)

    def _boxToRealPointArray(self, array, parameters=None):
        if parameters is None:
            parameters = self.data[:9]
        matrix = N.reshape(parameters, (1, 3, 3))
        return N.add.reduce(matrix*array[:, N.NewAxis, :], axis=-1)

    def CdistanceFunction(self):
        from MMTK_universe import parallelepipedic_universe_distance_function
        return parallelepipedic_universe_distance_function, self.data

    def CcorrectionFunction(self):
        from MMTK_universe import parallelepipedic_universe_correction_function
        return parallelepipedic_universe_correction_function, self.data

    def CvolumeFunction(self):
        from MMTK_universe import parallelepipedic_universe_volume_function
        return parallelepipedic_universe_volume_function, self.data

    def CboxTransformationFunction(self):
        from MMTK_universe import parallelepipedic_universe_box_transformation
        return parallelepipedic_universe_box_transformation, self.data

    def cellParameters(self):
        return self.data[:9]

    def reciprocalBasisVectors(self):
        return [Vector(self.data[9:12]),
                Vector(self.data[12:15]),
                Vector(self.data[15:18])]

    def cellVolume(self):
        return abs(self.data[18])

    def largestDistance(self):
        return min([0.5/v.length() for v in self.reciprocalBasisVectors()])

    def _createSpec(self):
        from MMTK_universe import ParallelepipedicPeriodicUniverseSpec
        self._spec = ParallelepipedicPeriodicUniverseSpec(self.data)

    def _descriptionArguments(self):
        if self._forcefield is None:
            return '((Vector(0.,0.,0.),Vector(0.,0.,0.),Vector(0.,0.,0.)))'
        else:
            return '((Vector(0.,0.,0.),Vector(0.,0.,0.),Vector(0.,0.,0.)),%s)'\
                   % self._forcefield.description()

    def XMLSpec(self):
        return 'topology="periodic3d" ' + \
               'cellshape="parallelepipedic" ' + \
               ('cellshape="%f %f %f %f %f %f %f %f %f" '
                % tuple(self.data[:9])) + \
               'units="units:nm"'

#
# Recognition functions
#
def isUniverse(object):
    """
    :param object: any Python object
    :returns: True if object is a universe.
    """
    return isinstance(object, Universe)