File: MMTK_trajectory_generator.pyx

package info (click to toggle)
mmtk 2.7.9-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,788 kB
  • ctags: 6,600
  • sloc: python: 18,050; ansic: 12,400; makefile: 129; csh: 3
file content (302 lines) | stat: -rw-r--r-- 11,369 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# Trajectory generators in Cython
#
# Written by Konrad Hinsen
#

import_MMTK_universe()
import_MMTK_trajectory()
import_MMTK_forcefield()

from MMTK import Features
import numpy as N
cimport numpy as N
import cython

cdef extern from "stdlib.h":

    ctypedef long size_t
    cdef void *malloc(size_t size)
    cdef void free(void *ptr)

#
# Base class for trajectory generators
#
cdef class TrajectoryGenerator(object):

    """
    Trajectory generator base class

    This base class implements the common aspects of everything that
    generates trajectories: integrators, minimizers, etc.
    """

    def __init__(self, universe, options, name):
        self.universe = universe
        self.options = options
        self.name = name
        self.call_options = {}
        self.features = []
        self.tvars = NULL
        self.tspec = NULL
        
    def setCallOptions(self, options):
        self.call_options = options

    def getActions(self):
        try:
            steps = self.getOption('steps')
        except ValueError:
            steps = None
        return [a.getSpecificationList(self, steps) for a in self.actions]

    def cleanupActions(self):
        for a in self.actions:
            a.cleanup()

    def getOption(self, option):
        try:
            value = self.call_options[option]
        except KeyError:
            try:
                value = self.options[option]
            except KeyError:
                try:
                    value = self.default_options[option]
                except KeyError:
                    raise ValueError('undefined option: ' + option)
        return value

    def optionString(self, options):
        return sum((o + '=' + `self.getOption(o)` + ', ' for o in options),
                   '')[:-2]

    def __call__(self, **options):
        self.setCallOptions(options)
        try:
            self.actions = self.getOption('actions')
        except ValueError:
            self.actions = []
        try:
            if self.getOption('background'):
                import MMTK_state_accessor
                self.state_accessor = MMTK_state_accessor.StateAccessor()
                self.actions.append(self.state_accessor)
        except ValueError:
            pass
        Features.checkFeatures(self, self.universe)
        if self.tvars != NULL:
            free(self.tvars)
            self.tvars = NULL
        configuration = self.universe.configuration()
        self.conf_array = configuration.array
        self.declareTrajectoryVariable_array(self.conf_array,
                                             "configuration",
                                             "Configuration:\n",
                                             length_unit_name,
                                             PyTrajectory_Configuration)
        self.universe_spec = <PyUniverseSpecObject *>self.universe._spec
        if self.universe_spec.geometry_data_length > 0:
            self.declareTrajectoryVariable_box(
                self.universe_spec.geometry_data,
                self.universe_spec.geometry_data_length)
        masses = self.universe.masses()
        self.declareTrajectoryVariable_array(masses.array,
                                             "masses",
                                             "Masses:\n",
                                             mass_unit_name,
                                             PyTrajectory_Internal)
        self.natoms = self.universe.numberOfAtoms()
        self.df = self.universe.degreesOfFreedom()
        self.declareTrajectoryVariable_int(&self.df,
                                           "degrees_of_freedom",
                                           "Degrees of freedom: %d\n",
                                           "", PyTrajectory_Internal)
        if self.getOption('background'):
            from MMTK import ThreadManager
            return ThreadManager.TrajectoryGeneratorThread(
                self.universe, self.start_py, (), self.state_accessor)
        else:
            self.start()
            return None

    def start_py(self):
        self.start()

    cdef start(self):
        pass

    cdef void _addTrajectoryVariable(self, PyTrajectoryVariable v) except *:
        cdef PyTrajectoryVariable *tv
        cdef int i, n
        if self.tvars == NULL:
            self.tvars = <PyTrajectoryVariable *> \
                         malloc(2*sizeof(PyTrajectoryVariable))
            if self.tvars == NULL:
                raise MemoryError
            self.tvars[0] = v
            self.tvars[1].name = NULL
        else:
            n = 0
            tv = self.tvars
            while tv.name != NULL:
                n += 1
                tv += 1
            tv = <PyTrajectoryVariable *> \
                 malloc((n+2)*sizeof(PyTrajectoryVariable))
            if tv == NULL:
                raise MemoryError
            for i in range(n):
                tv[i] = self.tvars[i]
            tv[n] = v
            tv[n+1].name = NULL
            free(self.tvars)
            self.tvars = tv

    cdef void declareTrajectoryVariable_double(self, double * var, char *name,
                                               char *text, char*unit,
                                               int data_class) except *:
        cdef PyTrajectoryVariable v
        v.name = name
        v.text = text
        v.unit = unit
        v.type = PyTrajectory_Scalar
        v.data_class = data_class
        v.value.dp = var
        self._addTrajectoryVariable(v)

    cdef void declareTrajectoryVariable_int(self, int * var, char *name,
                                            char *text, char*unit,
                                            int data_class) except *:
        cdef PyTrajectoryVariable v
        v.name = name
        v.text = text
        v.unit = unit
        v.type = PyTrajectory_IntScalar
        v.data_class = data_class
        v.value.ip = var
        self._addTrajectoryVariable(v)

    cdef void declareTrajectoryVariable_array(self, N.ndarray array, char*name,
                                              char *text, char*unit,
                                              int data_class) except *:
        cdef PyTrajectoryVariable v
        v.name = name
        v.text = text
        v.unit = unit
        v.data_class = data_class
        v.value.array = <PyArrayObject *>array
        if array.ndim == 1:
            v.type = PyTrajectory_ParticleScalar
        elif array.ndim == 2:
            v.type = PyTrajectory_ParticleVector
        else:
            v.type = 0   # suppress warning from gcc
            assert ValueError("array must be 1D or 2D")
        self._addTrajectoryVariable(v)

    cdef void declareTrajectoryVariable_box(self, double * var, int l) except *:
        cdef PyTrajectoryVariable v
        v.name = "box_size"
        v.text = "Box size:"
        v.unit = length_unit_name
        v.type = PyTrajectory_BoxSize
        v.data_class = PyTrajectory_Configuration
        v.value.dp = var
        v.length = l
        self._addTrajectoryVariable(v)

    cdef void initializeTrajectoryActions(self) except *:
        actions = self.getActions()
        self.tspec = PyTrajectory_OutputSpecification(self.universe,
                                                      <PyListObject *>actions,
                                                      self.name, self.tvars);
        if self.tspec == NULL:
            raise MemoryError

    cdef void finalizeTrajectoryActions(self, int last_step,
                                        int error=False) except *:
        if error:
            PyTrajectory_OutputFinish(self.tspec, last_step, 1, 1, self.tvars)
        else:
            PyTrajectory_OutputFinish(self.tspec, last_step, 0, 1, self.tvars)

    cdef int trajectoryActions(self, int step) except -1:
        return PyTrajectory_Output(self.tspec, step, self.tvars, NULL)

    cdef void foldCoordinatesIntoBox(self) nogil:
        self.universe_spec.correction_function(<vector3 *>self.conf_array.data,
                                               self.natoms,
                                               self.universe_spec.geometry_data)

    cdef void acquireReadLock(self) nogil:
        PyUniverseSpec_StateLock(self.universe_spec, 1)
        self.lock_state = 1

    cdef void releaseReadLock(self) nogil:
        PyUniverseSpec_StateLock(self.universe_spec, 2)
        self.lock_state = 0

    cdef void acquireWriteLock(self) nogil:
        PyUniverseSpec_StateLock(self.universe_spec, -1)
        self.lock_state = -1

    cdef void releaseWriteLock(self) nogil:
        PyUniverseSpec_StateLock(self.universe_spec, -2)
        self.lock_state = 0

#
# Base class for trajectory generators that call the C-level
# energy evaluators. It implements a mechanism that makes such
# generators thread-safe.
#
cdef class EnergyBasedTrajectoryGenerator(TrajectoryGenerator):

    def __init__(self, universe, options, name):
        TrajectoryGenerator.__init__(self, universe, options, name)
        self.evaluator_object = None
        self.c_evaluator_object = None
        self.evaluator = NULL

    cdef void initializeTrajectoryActions(self) except *:
        TrajectoryGenerator.initializeTrajectoryActions(self)
        # Construct a C evaluator object for the force field, using
        # the specified number of threads or the default value
        nt = self.getOption('threads')
        self.evaluator_object = self.universe.energyEvaluator(threads=nt)
        self.c_evaluator_object = self.evaluator_object.CEvaluator()
        self.evaluator = <PyFFEvaluatorObject*>self.c_evaluator_object

    cdef void finalizeTrajectoryActions(self, int last_step,
                                        int error=False) except *:
        TrajectoryGenerator.finalizeTrajectoryActions(self, last_step, error)
        self.evaluator = NULL
        self.c_evaluator_object = None
        self.evaluator_object = None
    
    cdef int trajectoryActions(self, int step) except -1:
        cdef int ret_code
        self.evaluator.tstate_save = PyEval_SaveThread()
        if self.lock_state != 0:
            PyUniverseSpec_StateLock(self.universe_spec, 2*self.lock_state)
        ret_code = PyTrajectory_Output(self.tspec, step, self.tvars,
                                       &self.evaluator.tstate_save)
        if self.lock_state != 0:
            PyUniverseSpec_StateLock(self.universe_spec, self.lock_state)
        PyEval_RestoreThread(self.evaluator.tstate_save)
        return ret_code

    cdef void calculateEnergies(self, N.ndarray[double, ndim=2] conf_array,
                                energy_data *energy, int small_change=0) \
                            except *:
        self.evaluator.tstate_save = PyEval_SaveThread()
        if self.lock_state == -1:
            PyUniverseSpec_StateLock(self.universe_spec, -2)
        if self.lock_state != 1:
            PyUniverseSpec_StateLock(self.universe_spec, 1)
        self.evaluator.eval_func(self.evaluator, energy, <PyArrayObject *>conf_array,
                                 small_change)
        if self.lock_state != 1:
            PyUniverseSpec_StateLock(self.universe_spec, 2)
        if self.lock_state == -1:
            PyUniverseSpec_StateLock(self.universe_spec, -1)
        PyEval_RestoreThread(self.evaluator.tstate_save)