1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
# Trajectory generators in Cython
#
# Written by Konrad Hinsen
#
import_MMTK_universe()
import_MMTK_trajectory()
import_MMTK_forcefield()
from MMTK import Features
import numpy as N
cimport numpy as N
import cython
cdef extern from "stdlib.h":
ctypedef long size_t
cdef void *malloc(size_t size)
cdef void free(void *ptr)
#
# Base class for trajectory generators
#
cdef class TrajectoryGenerator(object):
"""
Trajectory generator base class
This base class implements the common aspects of everything that
generates trajectories: integrators, minimizers, etc.
"""
def __init__(self, universe, options, name):
self.universe = universe
self.options = options
self.name = name
self.call_options = {}
self.features = []
self.tvars = NULL
self.tspec = NULL
def setCallOptions(self, options):
self.call_options = options
def getActions(self):
try:
steps = self.getOption('steps')
except ValueError:
steps = None
return [a.getSpecificationList(self, steps) for a in self.actions]
def cleanupActions(self):
for a in self.actions:
a.cleanup()
def getOption(self, option):
try:
value = self.call_options[option]
except KeyError:
try:
value = self.options[option]
except KeyError:
try:
value = self.default_options[option]
except KeyError:
raise ValueError('undefined option: ' + option)
return value
def optionString(self, options):
return sum((o + '=' + `self.getOption(o)` + ', ' for o in options),
'')[:-2]
def __call__(self, **options):
self.setCallOptions(options)
try:
self.actions = self.getOption('actions')
except ValueError:
self.actions = []
try:
if self.getOption('background'):
import MMTK_state_accessor
self.state_accessor = MMTK_state_accessor.StateAccessor()
self.actions.append(self.state_accessor)
except ValueError:
pass
Features.checkFeatures(self, self.universe)
if self.tvars != NULL:
free(self.tvars)
self.tvars = NULL
configuration = self.universe.configuration()
self.conf_array = configuration.array
self.declareTrajectoryVariable_array(self.conf_array,
"configuration",
"Configuration:\n",
length_unit_name,
PyTrajectory_Configuration)
self.universe_spec = <PyUniverseSpecObject *>self.universe._spec
if self.universe_spec.geometry_data_length > 0:
self.declareTrajectoryVariable_box(
self.universe_spec.geometry_data,
self.universe_spec.geometry_data_length)
masses = self.universe.masses()
self.declareTrajectoryVariable_array(masses.array,
"masses",
"Masses:\n",
mass_unit_name,
PyTrajectory_Internal)
self.natoms = self.universe.numberOfAtoms()
self.df = self.universe.degreesOfFreedom()
self.declareTrajectoryVariable_int(&self.df,
"degrees_of_freedom",
"Degrees of freedom: %d\n",
"", PyTrajectory_Internal)
if self.getOption('background'):
from MMTK import ThreadManager
return ThreadManager.TrajectoryGeneratorThread(
self.universe, self.start_py, (), self.state_accessor)
else:
self.start()
return None
def start_py(self):
self.start()
cdef start(self):
pass
cdef void _addTrajectoryVariable(self, PyTrajectoryVariable v) except *:
cdef PyTrajectoryVariable *tv
cdef int i, n
if self.tvars == NULL:
self.tvars = <PyTrajectoryVariable *> \
malloc(2*sizeof(PyTrajectoryVariable))
if self.tvars == NULL:
raise MemoryError
self.tvars[0] = v
self.tvars[1].name = NULL
else:
n = 0
tv = self.tvars
while tv.name != NULL:
n += 1
tv += 1
tv = <PyTrajectoryVariable *> \
malloc((n+2)*sizeof(PyTrajectoryVariable))
if tv == NULL:
raise MemoryError
for i in range(n):
tv[i] = self.tvars[i]
tv[n] = v
tv[n+1].name = NULL
free(self.tvars)
self.tvars = tv
cdef void declareTrajectoryVariable_double(self, double * var, char *name,
char *text, char*unit,
int data_class) except *:
cdef PyTrajectoryVariable v
v.name = name
v.text = text
v.unit = unit
v.type = PyTrajectory_Scalar
v.data_class = data_class
v.value.dp = var
self._addTrajectoryVariable(v)
cdef void declareTrajectoryVariable_int(self, int * var, char *name,
char *text, char*unit,
int data_class) except *:
cdef PyTrajectoryVariable v
v.name = name
v.text = text
v.unit = unit
v.type = PyTrajectory_IntScalar
v.data_class = data_class
v.value.ip = var
self._addTrajectoryVariable(v)
cdef void declareTrajectoryVariable_array(self, N.ndarray array, char*name,
char *text, char*unit,
int data_class) except *:
cdef PyTrajectoryVariable v
v.name = name
v.text = text
v.unit = unit
v.data_class = data_class
v.value.array = <PyArrayObject *>array
if array.ndim == 1:
v.type = PyTrajectory_ParticleScalar
elif array.ndim == 2:
v.type = PyTrajectory_ParticleVector
else:
v.type = 0 # suppress warning from gcc
assert ValueError("array must be 1D or 2D")
self._addTrajectoryVariable(v)
cdef void declareTrajectoryVariable_box(self, double * var, int l) except *:
cdef PyTrajectoryVariable v
v.name = "box_size"
v.text = "Box size:"
v.unit = length_unit_name
v.type = PyTrajectory_BoxSize
v.data_class = PyTrajectory_Configuration
v.value.dp = var
v.length = l
self._addTrajectoryVariable(v)
cdef void initializeTrajectoryActions(self) except *:
actions = self.getActions()
self.tspec = PyTrajectory_OutputSpecification(self.universe,
<PyListObject *>actions,
self.name, self.tvars);
if self.tspec == NULL:
raise MemoryError
cdef void finalizeTrajectoryActions(self, int last_step,
int error=False) except *:
if error:
PyTrajectory_OutputFinish(self.tspec, last_step, 1, 1, self.tvars)
else:
PyTrajectory_OutputFinish(self.tspec, last_step, 0, 1, self.tvars)
cdef int trajectoryActions(self, int step) except -1:
return PyTrajectory_Output(self.tspec, step, self.tvars, NULL)
cdef void foldCoordinatesIntoBox(self) nogil:
self.universe_spec.correction_function(<vector3 *>self.conf_array.data,
self.natoms,
self.universe_spec.geometry_data)
cdef void acquireReadLock(self) nogil:
PyUniverseSpec_StateLock(self.universe_spec, 1)
self.lock_state = 1
cdef void releaseReadLock(self) nogil:
PyUniverseSpec_StateLock(self.universe_spec, 2)
self.lock_state = 0
cdef void acquireWriteLock(self) nogil:
PyUniverseSpec_StateLock(self.universe_spec, -1)
self.lock_state = -1
cdef void releaseWriteLock(self) nogil:
PyUniverseSpec_StateLock(self.universe_spec, -2)
self.lock_state = 0
#
# Base class for trajectory generators that call the C-level
# energy evaluators. It implements a mechanism that makes such
# generators thread-safe.
#
cdef class EnergyBasedTrajectoryGenerator(TrajectoryGenerator):
def __init__(self, universe, options, name):
TrajectoryGenerator.__init__(self, universe, options, name)
self.evaluator_object = None
self.c_evaluator_object = None
self.evaluator = NULL
cdef void initializeTrajectoryActions(self) except *:
TrajectoryGenerator.initializeTrajectoryActions(self)
# Construct a C evaluator object for the force field, using
# the specified number of threads or the default value
nt = self.getOption('threads')
self.evaluator_object = self.universe.energyEvaluator(threads=nt)
self.c_evaluator_object = self.evaluator_object.CEvaluator()
self.evaluator = <PyFFEvaluatorObject*>self.c_evaluator_object
cdef void finalizeTrajectoryActions(self, int last_step,
int error=False) except *:
TrajectoryGenerator.finalizeTrajectoryActions(self, last_step, error)
self.evaluator = NULL
self.c_evaluator_object = None
self.evaluator_object = None
cdef int trajectoryActions(self, int step) except -1:
cdef int ret_code
self.evaluator.tstate_save = PyEval_SaveThread()
if self.lock_state != 0:
PyUniverseSpec_StateLock(self.universe_spec, 2*self.lock_state)
ret_code = PyTrajectory_Output(self.tspec, step, self.tvars,
&self.evaluator.tstate_save)
if self.lock_state != 0:
PyUniverseSpec_StateLock(self.universe_spec, self.lock_state)
PyEval_RestoreThread(self.evaluator.tstate_save)
return ret_code
cdef void calculateEnergies(self, N.ndarray[double, ndim=2] conf_array,
energy_data *energy, int small_change=0) \
except *:
self.evaluator.tstate_save = PyEval_SaveThread()
if self.lock_state == -1:
PyUniverseSpec_StateLock(self.universe_spec, -2)
if self.lock_state != 1:
PyUniverseSpec_StateLock(self.universe_spec, 1)
self.evaluator.eval_func(self.evaluator, energy, <PyArrayObject *>conf_array,
small_change)
if self.lock_state != 1:
PyUniverseSpec_StateLock(self.universe_spec, 2)
if self.lock_state == -1:
PyUniverseSpec_StateLock(self.universe_spec, -1)
PyEval_RestoreThread(self.evaluator.tstate_save)
|