1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
|
/* Low-level functions for universes
*
* Written by Konrad Hinsen
*/
#define _UNIVERSE_MODULE
#include "MMTK/core.h"
#include "MMTK/universe.h"
#define DEBUG 0
#define THREAD_DEBUG 0
/*
* Utility functions
*/
/* Calculate determinant and inverse of the coordinate transformation
* matrix for parallelepipedic universes.
*/
static void
parallelepiped_invert(double *data)
{
int i;
data[9+0] = data[4]*data[8]-data[7]*data[5];
data[9+3] = data[6]*data[5]-data[3]*data[8];
data[9+6] = data[3]*data[7]-data[6]*data[4];
data[9+1] = data[7]*data[2]-data[1]*data[8];
data[9+4] = data[0]*data[8]-data[6]*data[2];
data[9+7] = data[6]*data[1]-data[0]*data[7];
data[9+2] = data[1]*data[5]-data[4]*data[2];
data[9+5] = data[3]*data[2]-data[0]*data[5];
data[9+8] = data[0]*data[4]-data[3]*data[1];
data[18] = data[0]*data[9+0]+data[1]*data[9+3]+data[2]*data[9+6];
if (fabs(data[18]) > 0.) {
double r = 1./data[18];
for (i = 0; i < 9; i++)
data[i+9] *= r;
}
else {
for (i = 0; i < 9; i++)
data[i+9] = 0.;
}
}
static PyObject *
parallelepiped_invert_py(PyObject *dummy, PyObject *args)
{
PyArrayObject *geometry;
if (!PyArg_ParseTuple(args, "O!",
&PyArray_Type, &geometry))
return NULL;
if (geometry->nd != 1 || geometry->dimensions[0] != 19) {
PyErr_SetString(PyExc_ValueError, "Bad universe data shape");
return NULL;
}
parallelepiped_invert((double *)geometry->data);
Py_INCREF(Py_None);
return Py_None;
}
/*
* Distance vector functions
*/
static void
distance_vector(vector3 d, vector3 r1, vector3 r2, double *data)
{
distance_vector_1(d, r1, r2, data);
}
static void
orthorhombic_distance_vector(vector3 d, vector3 r1, vector3 r2, double *data)
{
distance_vector_2(d, r1, r2, data);
}
static void
parallelepipedic_distance_vector(vector3 d, vector3 r1, vector3 r2,
double *data)
{
distance_vector_3(d, r1, r2, data);
}
/*
* Position correction functions (to fold coordinates into the central box)
*/
static void
no_correction(vector3 *x, int natoms, double *data)
{
}
static void
orthorhombic_correction(vector3 *x, int natoms, double *data)
{
double a = data[0];
double b = data[1];
double c = data[2];
double ah = 0.5*a, bh = 0.5*b, ch = 0.5*c;
int i;
#if DEBUG
if (a > 0. && b > 0. && c > 0.)
for (i = 0; i < natoms; i++) {
if (x[i][0] > ah) x[i][0] -= a;
while (x[i][0] > ah) {
printf("x[%d]=%lf, a=%lf\n", i, x[i][0], a);
x[i][0] -= a;
}
if (x[i][0] < -ah) x[i][0] += a;
while (x[i][0] < -ah) {
printf("x[%d]=%lf, -a=%lf\n", i, x[i][0], -a);
x[i][0] += a;
}
if (x[i][1] > bh) x[i][1] -= b;
while (x[i][1] > bh) {
printf("x[%d]=%lf, b=%lf\n", i, x[i][1], b);
x[i][1] -= b;
}
if (x[i][1] < -bh) x[i][1] += b;
while (x[i][1] < -bh) {
printf("x[%d]=%lf, -b=%lf\n", i, x[i][1], -b);
x[i][1] += b;
}
if (x[i][2] > ch) x[i][2] -= c;
while (x[i][2] > ch) {
printf("x[%d]=%lf, c=%lf\n", i, x[i][2], c);
x[i][2] -= c;
}
if (x[i][2] < -ch) x[i][2] += c;
while (x[i][2] < -ch) {
printf("x[%d]=%lf, -c=%lf\n", i, x[i][2], -c);
x[i][2] += c;
}
}
#else
if (a > 0. && b > 0. && c > 0.)
for (i = 0; i < natoms; i++) {
while (x[i][0] >= ah) x[i][0] -= a;
while (x[i][0] < -ah) x[i][0] += a;
while (x[i][1] >= bh) x[i][1] -= b;
while (x[i][1] < -bh) x[i][1] += b;
while (x[i][2] >= ch) x[i][2] -= c;
while (x[i][2] < -ch) x[i][2] += c;
}
#endif
}
static void
parallelepipedic_correction(vector3 *x, int natoms, double *data)
{
double xf, yf, zf;
int i;
for (i = 0; i < natoms; i++) {
xf = data[0+9]*x[i][0] + data[1+9]*x[i][1] + data[2+9]*x[i][2];
yf = data[3+9]*x[i][0] + data[4+9]*x[i][1] + data[5+9]*x[i][2];
zf = data[6+9]*x[i][0] + data[7+9]*x[i][1] + data[8+9]*x[i][2];
while (xf >= 0.5) xf -= 1.;
while (xf < -0.5) xf += 1.;
while (yf >= 0.5) yf -= 1.;
while (yf < -0.5) yf += 1.;
while (zf >= 0.5) zf -= 1.;
while (zf < -0.5) zf += 1.;
x[i][0] = data[0]*xf + data[1]*yf + data[2]*zf;
x[i][1] = data[3]*xf + data[4]*yf + data[5]*zf;
x[i][2] = data[6]*xf + data[7]*yf + data[8]*zf;
}
}
/*
* Volume scaling functions
*/
static double
no_volume(double scale_factor, double *data)
{
return -1.;
}
static double
orthorhombic_volume(double scale_factor, double *data)
{
data[0] *= scale_factor;
data[1] *= scale_factor;
data[2] *= scale_factor;
return data[0]*data[1]*data[2];
}
static double
parallelepipedic_volume(double scale_factor, double *data)
{
int i;
for (i = 0; i < 9; i++)
data[i] *= scale_factor;
for (i = 9; i < 18; i++)
data[i] /= scale_factor;
data[18] *= scale_factor*scale_factor*scale_factor;
return fabs(data[18]);
}
/*
* Box coordinate transformation functions
*/
static void
no_box(vector3 *x, vector3 *b, int n, double *data, int mode)
{
}
static void
orthorhombic_box(vector3 *x, vector3 *b, int n, double *data, int mode)
{
int i;
if (mode == 1 || mode == 3) /* real-to-box or reciprocal box-to-real */
for (i = 0; i < n; i++) {
b[i][0] = x[i][0]/data[0];
b[i][1] = x[i][1]/data[1];
b[i][2] = x[i][2]/data[2];
}
else if (mode == 0 || mode == 2) /* box-to-real or reciprocal real-to-box */
for (i = 0; i < n; i++) {
x[i][0] = b[i][0]*data[0];
x[i][1] = b[i][1]*data[1];
x[i][2] = b[i][2]*data[2];
}
}
static void
parallelepipedic_box(vector3 *x, vector3 *b, int n, double *data, int mode)
{
int i;
vector3 r;
if (mode == 1) /* real-to-box */
for (i = 0; i < n; i++) {
r[0] = data[0+9]*x[i][0] + data[1+9]*x[i][1] + data[2+9]*x[i][2];
r[1] = data[3+9]*x[i][0] + data[4+9]*x[i][1] + data[5+9]*x[i][2];
r[2] = data[6+9]*x[i][0] + data[7+9]*x[i][1] + data[8+9]*x[i][2];
vector_copy(b[i], r);
}
else if (mode == 3) /* reciprocal box-to-real */
for (i = 0; i < n; i++) {
r[0] = data[0+9]*b[i][0] + data[3+9]*b[i][1] + data[6+9]*b[i][2];
r[1] = data[1+9]*b[i][0] + data[4+9]*b[i][1] + data[7+9]*b[i][2];
r[2] = data[2+9]*b[i][0] + data[5+9]*b[i][1] + data[8+9]*b[i][2];
vector_copy(x[i], r);
}
else if (mode == 0) /* box-to-real */
for (i = 0; i < n; i++) {
r[0] = data[0]*b[i][0] + data[1]*b[i][1] + data[2]*b[i][2];
r[1] = data[3]*b[i][0] + data[4]*b[i][1] + data[5]*b[i][2];
r[2] = data[6]*b[i][0] + data[7]*b[i][1] + data[8]*b[i][2];
vector_copy(x[i], r);
}
else if (mode == 2) /* reciprocal real-to-box */
for (i = 0; i < n; i++) {
r[0] = data[0]*x[i][0] + data[3]*x[i][1] + data[6]*x[i][2];
r[1] = data[1]*x[i][0] + data[4]*x[i][1] + data[7]*x[i][2];
r[2] = data[2]*x[i][0] + data[5]*x[i][1] + data[8]*x[i][2];
vector_copy(b[i], r);
}
}
/*
* Trajectory transformation functions
*/
static void
no_trajectory(vector3 *x, vector3 *b, int nsteps, double *data, int to_box)
{
}
static void
orthorhombic_trajectory(vector3 *x, vector3 *b, int nsteps,
double *data, int to_box)
{
int i;
if (to_box)
for (i = 0; i < nsteps; i++) {
b[i][0] = x[i][0]/data[3*i];
b[i][1] = x[i][1]/data[3*i+1];
b[i][2] = x[i][2]/data[3*i+2];
}
else
for (i = 0; i < nsteps; i++) {
x[i][0] = b[i][0]*data[3*i];
x[i][1] = b[i][1]*data[3*i+1];
x[i][2] = b[i][2]*data[3*i+2];
}
}
static void
parallelepipedic_trajectory(vector3 *x, vector3 *b, int nsteps,
double *data, int to_box)
{
double ud[19];
int i, j;
if (to_box)
for (i = 0; i < nsteps; i++) {
for (j = 0; j < 9; j++)
ud[j] = data[9*i+j];
parallelepiped_invert(ud);
b[i][0] = ud[0+9]*x[i][0] + ud[1+9]*x[i][1] + ud[2+9]*x[i][2];
b[i][1] = ud[3+9]*x[i][0] + ud[4+9]*x[i][1] + ud[5+9]*x[i][2];
b[i][2] = ud[6+9]*x[i][0] + ud[7+9]*x[i][1] + ud[8+9]*x[i][2];
}
else
for (i = 0; i < nsteps; i++) {
x[i][0] = data[9*i+0]*b[i][0] + data[9*i+1]*b[i][1] + data[9*i+2]*b[i][2];
x[i][1] = data[9*i+3]*b[i][0] + data[9*i+4]*b[i][1] + data[9*i+5]*b[i][2];
x[i][2] = data[9*i+6]*b[i][0] + data[9*i+7]*b[i][1] + data[9*i+8]*b[i][2];
}
}
/*
* Bounding box functions
*/
static void
infinite_bounding_box(vector3 *box1, vector3 *box2, vector3 *x,
int n, double *data)
{
int i;
vector_copy(*box1, x[0]);
vector_copy(*box2, x[0]);
for (i = 1; i < n; i++) {
if (x[i][0] < (*box1)[0]) (*box1)[0] = x[i][0];
if (x[i][1] < (*box1)[1]) (*box1)[1] = x[i][1];
if (x[i][2] < (*box1)[2]) (*box1)[2] = x[i][2];
if (x[i][0] > (*box2)[0]) (*box2)[0] = x[i][0];
if (x[i][1] > (*box2)[1]) (*box2)[1] = x[i][1];
if (x[i][2] > (*box2)[2]) (*box2)[2] = x[i][2];
}
}
static void
orthorhombic_bounding_box(vector3 *box1, vector3 *box2, vector3 *x,
int n, double *data)
{
(*box2)[0] = 0.5*data[0];
(*box2)[1] = 0.5*data[1];
(*box2)[2] = 0.5*data[2];
(*box1)[0] = -(*box2)[0];
(*box1)[1] = -(*box2)[1];
(*box1)[2] = -(*box2)[2];
}
static double
max3(double a1, double a2, double a3)
{
double max = fabs(a1);
if (fabs(a2) > max)
max = fabs(a2);
if (fabs(a3) > max)
max = fabs(a3);
if (fabs(a1+a2) > max)
max = fabs(a1+a2);
if (fabs(a1+a3) > max)
max = fabs(a1+a3);
if (fabs(a2+a3) > max)
max = fabs(a2+a3);
if (fabs(a1+a2+a3) > max)
max = fabs(a1+a2+a3);
return max;
}
static void
parallelepipedic_bounding_box(vector3 *box1, vector3 *box2, vector3 *x,
int n, double *data)
{
(*box2)[0] = 0.5*max3(data[0], data[3], data[6]);
(*box2)[1] = 0.5*max3(data[1], data[4], data[7]);
(*box2)[2] = 0.5*max3(data[2], data[5], data[8]);
(*box1)[0] = -(*box2)[0];
(*box1)[1] = -(*box2)[1];
(*box1)[2] = -(*box2)[2];
}
/*
* Type "universe specification"
*
* Objects of this type provide a low-level description of universes,
* in particular their geometry.
*
* The structure declaration is in mmtk_universe.h.
*/
/* Allocation and deallocation */
static PyUniverseSpecObject *
universe_new(void)
{
PyUniverseSpecObject *self;
int i, error;
self = PyObject_NEW(PyUniverseSpecObject, &PyUniverseSpec_Type);
if (self == NULL) {
PyErr_NoMemory();
return NULL;
}
self->geometry = NULL;
self->geometry_data = NULL;
self->distance_function = NULL;
self->correction_function = NULL;
self->volume_function = NULL;
self->box_function = NULL;
self->trajectory_function = NULL;
self->bounding_box_function = NULL;
self->is_periodic = 0;
self->is_orthogonal = 0;
#ifdef WITH_THREAD
error = 0;
self->main_state_lock = PyThread_allocate_lock();
if (self->main_state_lock == NULL)
error = 1;
if (!error) {
self->configuration_change_lock = PyThread_allocate_lock();
if (self->configuration_change_lock == NULL)
error = 1;
}
for (i = 0; i < MMTK_MAX_THREADS && !error; i++) {
self->state_wait_lock[i] = PyThread_allocate_lock();
if (self->state_wait_lock[i] == NULL)
error = 1;
else
PyThread_acquire_lock(self->state_wait_lock[i], 1);
self->state_access_type[i] = 0;
}
if (error) {
PyErr_SetString(PyExc_OSError, "couldn't allocate lock");
PyObject_Del(self);
return NULL;
}
self->state_access = 0;
self->waiting_threads = 0;
#endif
return self;
}
static void
universe_dealloc(PyUniverseSpecObject *self)
{
Py_XDECREF(self->geometry);
PyObject_Del(self);
}
/* Methods */
static PyObject*
call_correction_function_py(PyObject *self, PyObject *args)
{
PyUniverseSpecObject *universe = (PyUniverseSpecObject *)self;
PyArrayObject *configuration;
vector3 *x;
int natoms;
double *data;
if (!PyArg_ParseTuple(args, "O!",
&PyArray_Type, &configuration))
return NULL;
x = (vector3 *)configuration->data;
natoms = configuration->dimensions[0];
data = (double *)universe->geometry->data;
universe->correction_function(x, natoms, data);
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
distance_vector_py(PyObject *self, PyObject *args)
{
PyUniverseSpecObject *universe = (PyUniverseSpecObject *)self;
PyArrayObject *r1, *r2;
PyArrayObject *geometry_data = NULL;
PyArrayObject *d;
#if defined(NUMPY)
npy_intp three = 3;
#else
int three = 3;
#endif
if (!PyArg_ParseTuple(args, "O!O!|O!",
&PyArray_Type, &r1,
&PyArray_Type, &r2,
&PyArray_Type, &geometry_data))
return NULL;
#if defined(NUMPY)
d = (PyArrayObject *)PyArray_SimpleNew(1, &three, PyArray_DOUBLE);
#else
d = (PyArrayObject *)PyArray_FromDims(1, &three, PyArray_DOUBLE);
#endif
if (d == NULL)
return NULL;
if (geometry_data != NULL)
universe->distance_function(*(vector3 *)d->data,
*(vector3 *)r1->data, *(vector3 *)r2->data,
(double *)geometry_data->data);
else
universe->distance_function(*(vector3 *)d->data,
*(vector3 *)r1->data, *(vector3 *)r2->data,
(double *)universe->geometry->data);
return (PyObject *)d;
}
/* State lock management */
int
PyUniverseSpec_StateLock(PyUniverseSpecObject *universe, int action)
{
/* action = 1: acquire read access
action = 2: release read access
action = -1: acquire write access
action = -2: release write access
*/
#ifdef WITH_THREAD
int error;
int i;
#if THREAD_DEBUG
int id = PyThread_get_thread_ident();
#endif
PyThread_acquire_lock(universe->main_state_lock, 1);
#if THREAD_DEBUG
printf("thread %d entering; state is %d, %d threads waiting\n",
id, universe->state_access, universe->waiting_threads);
for (i = 0; i < MMTK_MAX_THREADS; i++) {
if (universe->state_access_type[i] == 1)
printf(" lock %d waiting for read access\n", i);
else if (universe->state_access_type[i] == -1)
printf(" lock %d waiting for write access\n", i);
}
#endif
error = 0;
switch(action) {
case 1:
while (universe->state_access < 0) {
if (universe->waiting_threads == MMTK_MAX_THREADS) {
PyErr_SetString(PyExc_OSError, "too many threads");
error = 1;
}
for (i = 0; i < MMTK_MAX_THREADS; i++) {
if (universe->state_access_type[i] == 0)
break;
}
#if THREAD_DEBUG
printf("thread %d waiting for read access using lock %d\n", id, i);
#endif
universe->state_access_type[i] = 1;
universe->waiting_threads++;
PyThread_release_lock(universe->main_state_lock);
PyThread_acquire_lock(universe->state_wait_lock[i], 1);
PyThread_acquire_lock(universe->main_state_lock, 1);
universe->waiting_threads--;
universe->state_access_type[i] = 0;
}
#if THREAD_DEBUG
printf("thread %d has read access\n", id);
#endif
universe->state_access++;
break;
case 2:
#if THREAD_DEBUG
if (universe->state_access <= 0)
printf("thread %d found state < 0 after read access\n", id);
printf("thread %d gives up read access; %d threads waiting\n",
id, universe->waiting_threads);
#endif
universe->state_access--;
if (universe->state_access == 0 && universe->waiting_threads > 0) {
for (i = 0; i < MMTK_MAX_THREADS; i++) {
if (universe->state_access_type[i] == -1) {
#if THREAD_DEBUG
printf("thread %d releases lock %d\n", id, i);
#endif
PyThread_release_lock(universe->main_state_lock);
PyThread_release_lock(universe->state_wait_lock[i]);
PyThread_acquire_lock(universe->main_state_lock, 1);
break;
}
}
#if THREAD_DEBUG
if (i == MMTK_MAX_THREADS)
printf("Error: no thread waiting for write access!\n");
#endif
}
break;
case -1:
while (universe->state_access != 0) {
if (universe->waiting_threads == MMTK_MAX_THREADS) {
PyErr_SetString(PyExc_OSError, "too many threads");
error = 1;
}
for (i = 0; i < MMTK_MAX_THREADS; i++) {
if (universe->state_access_type[i] == 0)
break;
}
#if THREAD_DEBUG
printf("thread %d waiting for write access using lock %d\n", id, i);
#endif
universe->state_access_type[i] = -1;
universe->waiting_threads++;
PyThread_release_lock(universe->main_state_lock);
PyThread_acquire_lock(universe->state_wait_lock[i], 1);
PyThread_acquire_lock(universe->main_state_lock, 1);
universe->waiting_threads--;
universe->state_access_type[i] = 0;
}
#if THREAD_DEBUG
printf("thread %d has write access\n", id);
#endif
universe->state_access = -1;
break;
case -2:
#if THREAD_DEBUG
printf("thread %d gives up write access; %d threads waiting\n",
id, universe->waiting_threads);
#endif
universe->state_access = 0;
if (universe->waiting_threads > 0) {
for (i = 0; i < MMTK_MAX_THREADS; i++) {
if (universe->state_access_type[i] == -1) {
#if THREAD_DEBUG
printf("thread %d releases lock %d\n", id, i);
#endif
PyThread_release_lock(universe->main_state_lock);
PyThread_release_lock(universe->state_wait_lock[i]);
PyThread_acquire_lock(universe->main_state_lock, 1);
break;
}
}
if (i == MMTK_MAX_THREADS) {
for (i = 0; i < MMTK_MAX_THREADS; i++) {
if (universe->state_access_type[i] == 1) {
#if THREAD_DEBUG
printf("thread %d releases lock %d\n", id, i);
#endif
PyThread_release_lock(universe->main_state_lock);
PyThread_release_lock(universe->state_wait_lock[i]);
PyThread_acquire_lock(universe->main_state_lock, 1);
}
}
#if THREAD_DEBUG
if (i == MMTK_MAX_THREADS)
printf("Error: no thread waiting for read access!\n");
#endif
}
}
break;
}
PyThread_release_lock(universe->main_state_lock);
return !error;
#else
return 1;
#endif
}
static PyObject*
state_lock_py(PyObject *object, PyObject *args)
{
PyUniverseSpecObject *self = (PyUniverseSpecObject *)object;
int action;
int ok;
if (!PyArg_ParseTuple(args, "i", &action))
return NULL;
Py_BEGIN_ALLOW_THREADS;
ok = PyUniverseSpec_StateLock(self, action);
Py_END_ALLOW_THREADS;
if (ok) {
Py_INCREF(Py_None);
return Py_None;
}
else
return NULL;
}
static PyObject*
configuration_change_lock_py(PyObject *object, PyObject *args)
{
PyUniverseSpecObject *self = (PyUniverseSpecObject *)object;
int action;
int success;
if (!PyArg_ParseTuple(args, "i", &action))
return NULL;
/* action = 0: acquire lock non-blocking
action = 1: acquire lock blocking
action = 2: release lock
*/
#ifdef WITH_THREAD
Py_BEGIN_ALLOW_THREADS;
success = 0; /* initialize to make gcc happy */
switch(action) {
case 0:
success = PyThread_acquire_lock(self->configuration_change_lock, 0);
break;
case 1:
success = PyThread_acquire_lock(self->configuration_change_lock, 1);
break;
case 2:
PyThread_release_lock(self->configuration_change_lock);
success = 1;
break;
}
Py_END_ALLOW_THREADS;
return PyInt_FromLong((long)success);
#else
return PyInt_FromLong(1L);
#endif
}
/* Documentation string */
static char PyUniverseSpec_Type__doc__[] =
"low-level universe specification";
/* Method table */
static struct PyMethodDef universe_methods[] = {
{"distanceVector", distance_vector_py, 1},
{"foldCoordinatesIntoBox", call_correction_function_py, 1},
{"stateLock", state_lock_py, 1},
{"configurationChangeLock", configuration_change_lock_py, 1},
{NULL, NULL} /* sentinel */
};
/* Attribute access. */
static PyObject *
universe_getattr(PyUniverseSpecObject *self, char *name)
{
return Py_FindMethod(universe_methods, (PyObject *)self, name);
}
/* Type object */
PyTypeObject PyUniverseSpec_Type = {
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"UniverseSpec", /*tp_name*/
sizeof(PyUniverseSpecObject), /*tp_basicsize*/
0, /*tp_itemsize*/
/* methods */
(destructor)universe_dealloc, /*tp_dealloc*/
0, /*tp_print*/
(getattrfunc)universe_getattr, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
/* Space for future expansion */
0L,0L,
/* Documentation string */
PyUniverseSpec_Type__doc__
};
/*
* Creators for infinite and periodic universes
*/
static PyObject *
InfiniteUniverseSpec(PyObject *dummy, PyObject *args)
{
PyUniverseSpecObject *new;
if (!PyArg_ParseTuple(args, ""))
return NULL;
new = universe_new();
if (new == NULL)
return NULL;
#if defined(NUMPY)
new->geometry = (PyArrayObject *)PyArray_SimpleNew(0, NULL, PyArray_DOUBLE);
#else
new->geometry = (PyArrayObject *)PyArray_FromDims(0, NULL, PyArray_DOUBLE);
#endif
new->geometry_data = NULL;
new->geometry_data_length = 0;
new->distance_function = distance_vector;
new->correction_function = no_correction;
new->volume_function = no_volume;
new->box_function = no_box;
new->trajectory_function = no_trajectory;
new->bounding_box_function = infinite_bounding_box;
new->is_periodic = 0;
new->is_orthogonal = 0;
return (PyObject *)new;
}
static PyObject *
OrthorhombicPeriodicUniverseSpec(PyObject *dummy, PyObject *args)
{
PyUniverseSpecObject *new;
PyArrayObject *geometry;
if (!PyArg_ParseTuple(args, "O!", &PyArray_Type, &geometry))
return NULL;
new = universe_new();
if (new == NULL)
return NULL;
new->geometry = geometry;
Py_INCREF(geometry);
new->geometry_data = (double *)new->geometry->data;
new->geometry_data_length = 3;
new->distance_function = orthorhombic_distance_vector;
new->correction_function = orthorhombic_correction;
new->volume_function = orthorhombic_volume;
new->box_function = orthorhombic_box;
new->trajectory_function = orthorhombic_trajectory;
new->bounding_box_function = orthorhombic_bounding_box;
new->is_periodic = 1;
new->is_orthogonal = 1;
return (PyObject *)new;
}
static PyObject *
ParallelepipedicPeriodicUniverseSpec(PyObject *dummy, PyObject *args)
{
PyUniverseSpecObject *new;
PyArrayObject *geometry;
if (!PyArg_ParseTuple(args, "O!", &PyArray_Type, &geometry))
return NULL;
if (geometry->nd != 1 || geometry->dimensions[0] != 19) {
PyErr_SetString(PyExc_ValueError, "Bad universe data shape");
return NULL;
}
new = universe_new();
if (new == NULL)
return NULL;
new->geometry = geometry;
Py_INCREF(geometry);
new->geometry_data = (double *)new->geometry->data;
new->geometry_data_length = 9;
parallelepiped_invert(new->geometry_data);
new->distance_function = parallelepipedic_distance_vector;
new->correction_function = parallelepipedic_correction;
new->volume_function = parallelepipedic_volume;
new->box_function = parallelepipedic_box;
new->trajectory_function = parallelepipedic_trajectory;
new->bounding_box_function = parallelepipedic_bounding_box;
new->is_periodic = 1;
new->is_orthogonal = 0;
return (PyObject *)new;
}
/*
* Find offset to be added to each atom position to make all atoms
* contiguous in spite of periodic boundary conditions.
*/
static PyObject *
contiguous_object_offset(PyObject *dummy, PyObject *args)
{
PyUniverseSpecObject *spec;
PyArrayObject *pairs, *conf, *offsets;
PyArrayObject *geometry = NULL;
double *geometry_data;
long *p;
vector3 *x, *o;
int npairs, box_coor_flag;
int i;
if (!PyArg_ParseTuple(args, "O!O!O!O!i|O!",
&PyUniverseSpec_Type, &spec,
&PyArray_Type, &pairs,
&PyArray_Type, &conf,
&PyArray_Type, &offsets,
&box_coor_flag,
&PyArray_Type, &geometry))
return NULL;
if (!PyArray_ISCONTIGUOUS(conf)) {
PyErr_SetString(PyExc_ValueError, "configuration array not contiguous");
return NULL;
}
if (!PyArray_ISCONTIGUOUS(pairs)) {
PyErr_SetString(PyExc_ValueError, "pair array not contiguous");
return NULL;
}
if (!PyArray_ISCONTIGUOUS(pairs)) {
PyErr_SetString(PyExc_ValueError, "offset array not contiguous");
return NULL;
}
if (geometry == NULL)
geometry_data = spec->geometry_data;
else
geometry_data = (double *)geometry->data;
npairs = pairs->dimensions[0];
p = (long *)pairs->data;
x = (vector3 *)conf->data;
o = (vector3 *)offsets->data;
for (i = 0; i < npairs; i++) {
int a1 = p[2*i], a2=p[2*i+1];
vector3 pos1, d;
vector_copy(pos1, x[a1]);
vector_add(pos1, o[a1], 1.);
spec->distance_function(d, pos1, x[a2], geometry_data);
o[a2][0] = d[0] + pos1[0] - x[a2][0];
o[a2][1] = d[1] + pos1[1] - x[a2][1];
o[a2][2] = d[2] + pos1[2] - x[a2][2];
}
if (box_coor_flag)
spec->box_function(o, o, offsets->dimensions[0], geometry_data, 1);
Py_INCREF(Py_None);
return Py_None;
}
/*
* Module method table
*/
static PyMethodDef universe_module_methods[] = {
{"InfiniteUniverseSpec", InfiniteUniverseSpec, 1},
{"OrthorhombicPeriodicUniverseSpec", OrthorhombicPeriodicUniverseSpec, 1},
{"ParallelepipedicPeriodicUniverseSpec", ParallelepipedicPeriodicUniverseSpec, 1},
{"parallelepiped_invert", parallelepiped_invert_py, 1},
{"contiguous_object_offset", contiguous_object_offset, 1},
{NULL, NULL} /* sentinel */
};
/*
* Initialization function for the module
*/
DL_EXPORT(void)
initMMTK_universe(void)
{
PyObject *m, *d;
static void *PyUniverse_API[PyUniverse_API_pointers];
/* Patch object type */
#ifdef EXTENDED_TYPES
if (PyType_Ready(&PyUniverseSpec_Type) < 0)
return;
#else
PyUniverseSpec_Type.ob_type = &PyType_Type;
#endif
/* Create the module */
m = Py_InitModule("MMTK_universe", universe_module_methods);
d = PyModule_GetDict(m);
/* Import the array module */
#ifdef import_array
import_array();
#endif
/* Add C API pointer array */
PyUniverse_API[PyUniverseSpec_Type_NUM] = (void *)&PyUniverseSpec_Type;
PyUniverse_API[PyUniverseSpec_StateLock_NUM] =
(void *)&PyUniverseSpec_StateLock;
PyDict_SetItemString(d, "_C_API",
PyCObject_FromVoidPtr((void *)PyUniverse_API, NULL));
/* Add function pointer objects */
PyDict_SetItemString(d, "infinite_universe_distance_function",
PyCObject_FromVoidPtr((void *) distance_vector, NULL));
PyDict_SetItemString(d, "infinite_universe_correction_function",
PyCObject_FromVoidPtr((void *) no_correction, NULL));
PyDict_SetItemString(d, "infinite_universe_volume_function",
PyCObject_FromVoidPtr((void *) no_volume, NULL));
PyDict_SetItemString(d, "orthorhombic_universe_distance_function",
PyCObject_FromVoidPtr((void *)
orthorhombic_distance_vector,
NULL));
PyDict_SetItemString(d, "orthorhombic_universe_correction_function",
PyCObject_FromVoidPtr((void *) orthorhombic_correction,
NULL));
PyDict_SetItemString(d, "orthorhombic_universe_volume_function",
PyCObject_FromVoidPtr((void *) orthorhombic_volume,
NULL));
PyDict_SetItemString(d, "orthorhombic_universe_box_transformation",
PyCObject_FromVoidPtr((void *) orthorhombic_box,
NULL));
PyDict_SetItemString(d, "parallelepipedic_universe_distance_function",
PyCObject_FromVoidPtr((void *)
parallelepipedic_distance_vector,
NULL));
PyDict_SetItemString(d, "parallelepipedic_universe_correction_function",
PyCObject_FromVoidPtr((void *) parallelepipedic_correction,
NULL));
PyDict_SetItemString(d, "parallelepipedic_universe_volume_function",
PyCObject_FromVoidPtr((void *) parallelepipedic_volume,
NULL));
PyDict_SetItemString(d, "parallelepipedic_universe_box_transformation",
PyCObject_FromVoidPtr((void *) parallelepipedic_box,
NULL));
/* Check for errors */
if (PyErr_Occurred())
Py_FatalError("can't initialize module MMTK_universe");
}
|