File: ewald.c

package info (click to toggle)
mmtk 2.7.9-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,788 kB
  • ctags: 6,600
  • sloc: python: 18,050; ansic: 12,400; makefile: 129; csh: 3
file content (334 lines) | stat: -rw-r--r-- 9,911 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/* Ewald method for electrostatic interactions
 *
 * Written by Konrad Hinsen
 */


#define NO_IMPORT
#define _FORCEFIELD_MODULE
#define PY_ARRAY_UNIQUE_SYMBOL PyArray_MMTKFF_API

#include "MMTK/forcefield.h"
#include "MMTK/forcefield_private.h"

#define DEBUG 0

/*
 * Include erfc code, unless user wants to use an erfc from libm.
 */
#ifndef LIBM_HAS_ERFC
#include "polevl.c"
#include "ndtr.c"
#endif
#ifndef M_PI
#define M_PI   3.14159265358979323846264338327950288
#endif

/*
 * Plain Ewald sum, for orthorhombic systems only.
 */
typedef struct {
   double real;
   double imag;
} complex;

static complex c_1 = {1., 0.};

#define c_mult_real(a, b) ((a).real*(b).real - (a).imag*(b).imag)
#define c_mult_imag(a, b) ((a).real*(b).imag + (a).imag*(b).real)

#if 0
static inline complex
c_mult(complex a, complex b)
{
  complex r;
  r.real = a.real*b.real - a.imag*b.imag;
  r.imag = a.real*b.imag + a.imag*b.real;
  return r;
}
#endif

static double
c_abssq(complex z)
{
  return z.real*z.real + z.imag*z.imag;
}

static double
reciprocal_sum(energy_spec *input, energy_data *energy,
	       double volume, double *charge, double beta,
	       long *kmax, double cutoff_sq,
	       box_fn *box_transformation_fn, double *universe_data,
	       void *scratch, PyFFEvaluatorObject *eval,
	       PyFFEnergyTermObject *term)
{
  vector3 *x = (vector3 *)input->coordinates->data;
  vector3 *xb = (vector3 *)scratch;
  complex *eikx = (complex *)(xb + input->natoms);
  complex *eiky = eikx + input->natoms*(kmax[0]+1);
  complex *eikz = eiky + input->natoms*(2*kmax[1]+1);
  complex *eikr = eikz + input->natoms*(2*kmax[2]+1);
  int *nkvect = (int *)(eikr+input->natoms);
  int *kx = nkvect + 1;
  int *ky = kx + *nkvect;
  int *kz = ky + *nkvect;
  vector3 r1, r2, r3;
  int nx, ny, nz, negy, negz, xk, yk, zk;
  int atoms_per_slice, first_atom, last_atom;
  int vectors_per_slice, first_vector, last_vector;
  double e;
  int i, nk;

  if (input->thread_id == 0) {
    (*box_transformation_fn)(x, xb, input->natoms, universe_data, 1);
    for (i = 0; i < input->natoms; i++) {
      xb[i][0] *= 2.*M_PI;
      xb[i][1] *= 2.*M_PI;
      xb[i][2] *= 2.*M_PI;
    }
  }
  else {
    eikr = (complex *)malloc(2*input->natoms*sizeof(double));
    if (eikr == NULL) {
      energy->error = 1;
      return 0.;
    }
  }
#ifdef WITH_THREAD
  barrier(eval->binfo+term->barrier_index, input->thread_id, input->nthreads);
#endif

  r1[0] = 2.*M_PI;  r1[1] = r1[2] = 0.;
  r2[1] = 2.*M_PI;  r2[2] = r2[0] = 0.;
  r3[2] = 2.*M_PI;  r3[0] = r3[1] = 0.;
  (*box_transformation_fn)(&r1, &r1, 1, universe_data, 3);
  (*box_transformation_fn)(&r2, &r2, 1, universe_data, 3);
  (*box_transformation_fn)(&r3, &r3, 1, universe_data, 3);

  nx = kmax[0]+1;
  ny = 2*kmax[1]+1;
  nz = 2*kmax[2]+1;
  negy = kmax[1];
  negz = kmax[2];

  atoms_per_slice = (input->natoms+input->nslices-1)/input->nslices;
  first_atom = input->slice_id*atoms_per_slice;
  last_atom = (input->slice_id+1)*atoms_per_slice;
  if (last_atom > input->natoms)
    last_atom = input->natoms;

  for (i = first_atom; i < last_atom; i++) {
    eikx[nx*i] = c_1;
    eiky[ny*i] = c_1;
    eikz[nz*i] = c_1;
    eikx[nx*i+1].real = cos(xb[i][0]);
    eikx[nx*i+1].imag = sin(xb[i][0]);
    eiky[ny*i+1].real = cos(xb[i][1]);
    eiky[ny*i+1].imag = sin(xb[i][1]);
    eikz[nz*i+1].real = cos(xb[i][2]);
    eikz[nz*i+1].imag = sin(xb[i][2]);
    eiky[ny*i+negy+1].real = eiky[ny*i+1].real;
    eiky[ny*i+negy+1].imag = -eiky[ny*i+1].imag;
    eikz[nz*i+negz+1].real = eikz[nz*i+1].real;
    eikz[nz*i+negz+1].imag = -eikz[nz*i+1].imag;
    for (xk = 2; xk <= kmax[0]; xk++) {
      eikx[nx*i+xk].real = c_mult_real(eikx[nx*i+xk-1], eikx[nx*i+1]);
      eikx[nx*i+xk].imag = c_mult_imag(eikx[nx*i+xk-1], eikx[nx*i+1]);
    }
    for (yk = 2; yk <= kmax[1]; yk++) {
      eiky[ny*i+yk].real = c_mult_real(eiky[ny*i+yk-1], eiky[ny*i+1]);
      eiky[ny*i+yk].imag = c_mult_imag(eiky[ny*i+yk-1], eiky[ny*i+1]);
      eiky[ny*i+negy+yk].real = eiky[ny*i+yk].real;
      eiky[ny*i+negy+yk].imag = -eiky[ny*i+yk].imag;
    }
    for (zk = 2; zk <= kmax[2]; zk++) {
      eikz[nz*i+zk].real = c_mult_real(eikz[nz*i+zk-1], eikz[nz*i+1]);
      eikz[nz*i+zk].imag = c_mult_imag(eikz[nz*i+zk-1], eikz[nz*i+1]);
      eikz[nz*i+negz+zk].real = eikz[nz*i+zk].real;
      eikz[nz*i+negz+zk].imag = -eikz[nz*i+zk].imag;
    }
  }
#ifdef WITH_THREAD
  barrier(eval->binfo+term->barrier_index+1,
	  input->thread_id, input->nthreads);
#endif

  vectors_per_slice = (*nkvect+input->nslices-1)/input->nslices;
  first_vector = input->slice_id*vectors_per_slice;
  last_vector = (input->slice_id+1)*vectors_per_slice;
  if (last_vector > *nkvect)
    last_vector = *nkvect;

  e = 0.;
  for (nk = first_vector; nk < last_vector; nk++) {
    int xk = kx[nk];
    int yk = ky[nk];
    int zk = kz[nk];
    int iyk = (yk < 0) ? negy-yk : yk;
    int izk = (zk < 0) ? negz-zk : zk;
    vector3 k = {0., 0., 0.};
    double ksq, expfactor;
    complex sum;

    vector_add(k, r1, xk);
    vector_add(k, r2, yk);
    vector_add(k, r3, zk);
    ksq = vector_length_sq(k);
    expfactor = exp(-ksq/(4.*beta*beta))/ksq;
    if (xk != 0)
      expfactor *= 2;

    sum.real = sum.imag = 0.;
    for (i = 0; i < input->natoms; i++) {
      complex temp;
      temp.real = c_mult_real(eikx[nx*i+xk], eiky[ny*i+iyk]);
      temp.imag = c_mult_imag(eikx[nx*i+xk], eiky[ny*i+iyk]);
      eikr[i].real = c_mult_real(temp, eikz[nz*i+izk]);
      eikr[i].imag = c_mult_imag(temp, eikz[nz*i+izk]);
      sum.real += charge[i]*eikr[i].real;
      sum.imag += charge[i]*eikr[i].imag;
    }
    e += c_abssq(sum)*expfactor;
    if (energy->gradients != NULL) {
      for (i = 0; i < input->natoms; i++) {
	vector3 grad;
	double a = 4.*M_PI*expfactor*electrostatic_energy_factor *
	  charge[i]*(sum.imag*eikr[i].real-sum.real*eikr[i].imag)/volume;
	grad[0] = a*k[0];
	grad[1] = a*k[1];
	grad[2] = a*k[2];
#ifdef GRADIENTFN
	if (energy->gradient_fn != NULL)
	  (*energy->gradient_fn)(energy, i, grad);
	else
#endif
        {
	  vector3 *f = (vector3 *)((PyArrayObject *)energy->gradients)->data;
	  f[i][0] += grad[0];
	  f[i][1] += grad[1];
	  f[i][2] += grad[2];
	}
      }
    }
    if (energy->force_constants != NULL) {
#if 0
      tensor3 fij;
      int j;
      tensor_product(fij, k, k,
		     4.*M_PI*expfactor*electrostatic_energy_factor/volume);
      for (i = 0; i < input->natoms; i++)
	for (j = i; j < input->natoms; j++) {
	  double f = charge[i]*charge[j];
	}
      if (energy->fc_fn != NULL) {
      }
      else {
      }
#endif
      PyErr_SetString(PyExc_ValueError, "not yet implemented");
      energy->error = 1;
    }
  }
  if (input->thread_id != 0)
    free(eikr);
  return 2.*M_PI*e*electrostatic_energy_factor/volume;
}

/*
 * Count k vectors for memory allocation and initialize scratch area.
 */
int
init_kvectors(box_fn *box_transformation_fn, double *universe_data, int natoms,
	      long *kmax, double cutoff_sq, void *scratch, int nvect)
{
  vector3 *xb = (vector3 *)scratch;  /* Size natoms */
  complex *eikx = (complex *)(xb + natoms);  /* Size (kmax[0]+1)*natoms */
  complex *eiky = eikx + natoms*(kmax[0]+1);  /* Size (2*kmax[1]+1)*natoms */
  complex *eikz = eiky + natoms*(2*kmax[1]+1);  /* Size (2*kmax[2]+1)*natoms */
  complex *eikr = eikz + natoms*(2*kmax[2]+1);  /* Size natoms */
  int *nkvect = (int *)(eikr+natoms);  /* Size 1 */
  int *kx = nkvect + 1;  /* Size nvect */
  int *ky = kx + nvect;  /* Size nvect */
  int *kz = ky + nvect;  /* Size nvect */

  vector3 r1, r2, r3;
  int x, y, z;
  int nk = 0;

  r1[0] = 2.*M_PI;  r1[1] = r1[2] = 0.;
  r2[1] = 2.*M_PI;  r2[2] = r2[0] = 0.;
  r3[2] = 2.*M_PI;  r3[0] = r3[1] = 0.;
  (*box_transformation_fn)(&r1, &r1, 1, universe_data, 3);
  (*box_transformation_fn)(&r2, &r2, 1, universe_data, 3);
  (*box_transformation_fn)(&r3, &r3, 1, universe_data, 3);

  if (scratch != NULL)
    *nkvect = nvect;
  for (x = 0; x <= kmax[0]; x++) {
    for (y = -kmax[1]; y <= kmax[1]; y++) {
      for (z = -kmax[2]; z <= kmax[2]; z++) {
	vector3 k = {0., 0., 0.};
	double ksq;
	vector_add(k, r1, x);
	vector_add(k, r2, y);
	vector_add(k, r3, z);
	ksq = vector_length_sq(k);
	if (ksq < cutoff_sq && ksq > 0) {
	  if (scratch != NULL) {
	    kx[nk] = x; ky[nk] = y; kz[nk] = z;
	  }
	  nk++;
	}
      }
    }
  }
#if 0
  printf("%d k vectors\n", nk);
#endif
  return nk;
}

/* The Ewald evaluator does not calculate the real-space sum,
   which is evaluated in nonbonded_evaluator! */
void
es_ewald_evaluator(PyFFEnergyTermObject *self,
		   PyFFEvaluatorObject *eval,
		   energy_spec *input,
		   energy_data *energy)
{
  box_fn *box_transformation_fn = self->universe_spec->box_function;
  volume_fn *v_fn = self->universe_spec->volume_function;
  double *universe_data = self->universe_spec->geometry_data;
  double volume = (*v_fn)(1., universe_data);

  double *charge = (double *)((PyArrayObject *)self->data[1])->data;
  long *kmax = (long *)((PyArrayObject *)self->data[2])->data;
  double inv_cutoff = (self->param[0] == 0.) ? 0. : 1./self->param[0];
  double beta = self->param[2];
  double reciprocal_cutoff_sq = self->param[3];
  double charge_sum;
  double e = 0.;
  int k;

  if (reciprocal_cutoff_sq > 0.)
    inv_cutoff = 0.;

  if (input->slice_id == 0) {
    charge_sum = 0.;
    for (k = 0; k < input->natoms; k++)
      charge_sum += charge[k]*charge[k];
    e -= charge_sum*electrostatic_energy_factor * 
         (beta/sqrt(M_PI)+0.5*inv_cutoff*erfc(beta*self->param[0]));
  }
  energy->energy_terms[self->index] = e;

  if (reciprocal_cutoff_sq > 0.)
    energy->energy_terms[self->index+1] =
      reciprocal_sum(input, energy, volume, charge, beta,
		     kmax, reciprocal_cutoff_sq,
		     box_transformation_fn, universe_data,
		     self->scratch, eval, self);

  energy->energy_terms[self->virial_index] +=
    energy->energy_terms[self->index] + energy->energy_terms[self->index+1];
}